CS226563B1 - Method of and apparatus for measuring static unbalance momentum - Google Patents
Method of and apparatus for measuring static unbalance momentum Download PDFInfo
- Publication number
- CS226563B1 CS226563B1 CS225180A CS225180A CS226563B1 CS 226563 B1 CS226563 B1 CS 226563B1 CS 225180 A CS225180 A CS 225180A CS 225180 A CS225180 A CS 225180A CS 226563 B1 CS226563 B1 CS 226563B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- sin
- cos
- measured
- measuring device
- angle
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 15
- 230000003068 static effect Effects 0.000 title claims description 7
- 230000005484 gravity Effects 0.000 claims description 8
- 238000005259 measurement Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
Landscapes
- Testing Of Balance (AREA)
Description
Vynález sa týká spósobu merania momentu statickej nevyváženosti rotačných telies a zariadenie k jeho prevádzaniu.BACKGROUND OF THE INVENTION The present invention relates to a method for measuring the torque of static unbalance of rotary bodies and to a device for carrying it.
Z doteraz používaných metod merania nevyváženosti sú nejznámejšie metody dynamická, t. j. tie, ktoré merajú moment nevyváženosti pri otéčanl daného předmětu okolo osi, voči ktorej třeba moment nevyváženosti zmerať. Zariadenia, používané u tohto spósobu merania sú povačšine drahé, zložité a náročné na obsluhu.Of the methods used to measure the imbalance so far, the most known methods are dynamic, i. j. those that measure the moment of imbalance as the object rotates about an axis against which the moment of imbalance should be measured. The devices used in this method of measurement are often expensive, complex and labor intensive.
Zo statického merania momentu nevyváženosti sú známe zariadenia, do ktorých sa meraný predmet vkládá v zvislej polohe, t. j. os predmetu, voči ktorej sa meranie robí, žalej len os rotácie, je kolmá na vodorovná rovinu. Výhoda týchto zariadení je v tom, ža možno okamžité určit směr, resp. miesto max. nevyváženosti, t. j. směr polohy ťažiska osi rotácie daného predmetu. Hodnotu momentu nevyváženosti, připadne presnú polohu ťažiska je možné určit pri vlastnom msraní. Nevýhoda tohto spósobu je v tom, že os rotácie meraného predmetu musí byt kolmá na čelnú plochu, na ktorej leží. Odchýlky v kolmosti vnášajú do merania nepřesnost. Ďalšou nevýhodou je skutočnost, že sa velmi obtiažne merá moment nevyváženosti na predmetoch, ktorých dížka je niekoíkonásobne vačšia ako vonkajší priemer. líeranie je velmi obtiažne tiež v případe, keá sa nevie, v akej výške je tažisko predmetu, t. j. vzdialenost ťažiska od čelnej plochy, na ktorej predmet leží. To sa vyskytuje najma u predmetov s vnútornou dutinou, napr. u dělostřeleckých granátov.From the static measurement of the unbalance moment, devices are known in which the object to be measured is inserted in a vertical position, i. j. the axis of the object against which the measurement is made, the psalm only the axis of rotation, is perpendicular to the horizontal plane. The advantage of these devices is that the direction or direction can be determined immediately. space max. imbalance, i. j. the direction of the center of gravity of the axis of rotation of the object. The value of the unbalance moment or the exact position of the center of gravity can be determined by the actual removal. The disadvantage of this method is that the axis of rotation of the object to be measured must be perpendicular to the face on which it lies. Perpendicular deviations bring inaccuracy to the measurement. A further disadvantage is that it is very difficult to measure the moment of imbalance on objects whose length is several times greater than the outer diameter. casting is also very difficult in cases where the height of the object's center of gravity is not known, i. j. the distance of the center of gravity from the front surface on which the object lies. This occurs in particular for objects with an internal cavity, e.g. for artillery shells.
Zo spósobov a metod merania statickej nevyváženosti, používaných bežne v praxi je najznámejšia metoda odvaíovacia. Meraný rotačný predmet sa položí na vedenie, ustavené do vodorovnej polohy. Ťažšia strana meraného predmetu převáži íahšiu stranu, predmet sa kotúía. Na íahšiu stranu sa prikladajú závažia, napr. magnety, pokým predmet nie je vyvé226 565 žený. Přesnost tejto metody je malá a je závislá na kvalitě kolajničiek a kvalitě plflšky předmětu, ktorá sa dotýká kolajničiek, t. j. na valivom třeni medzi predmetom a kolejničkami.Of the methods and methods of measuring static imbalances commonly used in practice, the best known method is the rolling method. The rotary object to be measured is placed on a guide, placed in a horizontal position. The heavier side of the measured object outweighs the lighter side, the object rolls. Weights are attached to the lighter side, e.g. magnets until the object is removed226 565. The accuracy of this method is low and is dependent on the quality of the rails and the quality of the object sheet that touches the rails, i. j. on the rolling friction between the object and the rails.
Spomínaná nevýhody odstraňuje spfisob a zariadeníe, ktorá spolu tvoria predmet přihlášky vynálezu.The aforementioned drawbacks eliminate the method and the device which together form the subject-matter of the invention.
Vynález rieši meranie momentu statickej nevyváženosti na výkyvnom meraoom zariadení nakreslenom na obr. 1. Os rotácie meranáho predmetu je přitom vo vodorovnéj polohe. Zariadenie je velmi citlivé, přesnost meranie je vysoká. Uloženie predmetu do zariadenia sa dá v praxi vačšinou velmi lahko docielit.The invention solves the measurement of the moment of static imbalance on the oscillating measuring device shown in FIG. 1. The axis of rotation of the measured object is in the horizontal position. The device is very sensitive, the measurement accuracy is high. Placing an object in the device is usually very easy to achieve in practice.
Zariadeníe pozostáva z úložnej časti £, tvorenej dvomi plochami zvierajúcimi uhol 80° až 100°, pevne spojenými na čelách výkyvnými ramenami, opatřenými dvomi hrotmi 2, dosahujúcimi na podpory J a výchylkomeru J, pevne spojeného s výkyvnými ramenami (obr. 1).The device consists of a bearing part 8 formed by two surfaces clamping at an angle of 80 ° to 100 °, fixed at the ends by pivoting arms, provided with two prongs 2 reaching to the supports J and a deflector J firmly connected to the pivoting arms (Fig. 1).
Meraný predmet sa vkládá do úložnej časti na ležato, jeho os rotácie je rovnoběžná s pozdížnou osou úložnej časti. Po ustáleni výkyvu sa odčita uhol výkyvu a, (oproti ukazováku £). Meraný predmet sa pootočí okolo svojej osi rotácie o 90°. Po ustáleni výkyvu sa odčita uhol výkyvu α2· Z naměřených hodnOt uhlov a «2 88 vypočítá uhol pootočenia y :The object to be measured is inserted into the bearing part lying flat, its axis of rotation being parallel to the longitudinal axis of the bearing part. After the oscillation has stabilized, the oscillation angle α, (relative to the index finger £) is subtracted. The object to be measured rotates about its axis of rotation by 90 °. After steady swing is read swivel angle α 2 · From the measured values of angles and «2 88 calculates the angle of rotation y:
Z = β + α, (T) pričomZ = β + α, (T) where
Sin a2 tg β --tg (a. - a-) (2) sin . cos («i - aj)Sin and 2 tg β - tg (α - α -) (2) sin. cos («i - i)
Uhol γ je taký uhol, o ktorý třeba pootočit meraný predmet voči svojej osi rotácie, aby sa dostalo tažisko predmetu Tp do vodorovnéj polohy voči osi rotácie. Uhol γ třeba merat voči polohe, pri ktorej sa meral uhol r<,.The angle γ is the angle by which the measured object must be rotated with respect to its axis of rotation to bring the center of gravity of the object Tp to a horizontal position relative to the axis of rotation. The angle γ should be measured relative to the position at which the angle r <,.
Ďalej možno z hodnOt uhlov a «2 vypočítat velkost momentu nevyváženosti podlá vztahu:Further possible angles and values of «2 calculate the size of the torque imbalance as:
M · (G_ . r + G_ . r ) . sin a, z z p s i sin «2 sin rty . cos ( tg («,M · (G_r + G_r). sin a, z of p s i sin «2 sin lips. cos (tg («,
Tf2TF2
Gg hmotnost výkyvných častí zariadenia, rz vzdialenosť vodorovnej osi prechádzajúcej tažiskom výkyvných častí zariadenia od osi prechádzajúcej hrotmi 2,Gg the mass of the pivoting parts of the device, r z the distance of the horizontal axis passing through the center of gravity of the pivoting parts of the device from the axis passing through the tips 2,
Gp hmotnost meranáho telesa, ra vzdialenosť geometriokej osi rotácie měřeného telesa od vodorovnej osi prechádzajúcej hrotmi 2,Gp the mass of the measured body, r and the distance of the geometry geometry axis of rotation of the measured body from the horizontal axis passing through the tips 2,
Γρ vzdialenosť ťažiska predmetu od zvislej osi vedenej hrotmi 2.Distance of the center of gravity of the object from the vertical axis through the points 2.
Odvodnenie vztahu (2) podlá obrázka 2:Derive the relationship (2) as shown in Figure 2:
Ak položíme meraný predmet na zariadenie v lubovolnej polohe, vychýli sa celá sústava napr. o uhol Po pootočení měřeného telesa sa sústava vychýlí o uhol «j.If you place the measured object on the device in any position, the whole system will deflect eg. o angle After turning the measured body, the system deflects by angle j.
Rovnice rovnováhy sústavy sú:Equations of system equilibrium are:
· r · r„i = 0 p pí Z Zl °p · rp2 - Gz · rz2 - 0 · R · r "i = 0 p pI from Zl ° r · p 2 p - y G z · Z 2 - 0
Z toho vyplývá, že ‘pí Gz · rz2 p2It follows that 'Mrs. G z · r Z2 p2
Z obrázka 2 Sálej vyplývá, že Γ81 κ sin rz1 = ra . sin a1 rz a podobna rz2 “ rz * sin “2It is apparent from Figure 2 that Γ 81 κ sin r z1 = r a . sin a 1 r for similar r z2 “ r z * sin “ 2
Ďalej z obrázka vyplývá, že rsi sin «j » —— rg] = rg . sin a, • podobna rs2 “ rs * sin “2Furthermore, it is clear from the figure that r s i sin «j» —— r g] = r g . sin a, • similar to r s2 “ r s * sin “ 2
Pre neznámy uhol P platí „ rp1 + rs1 . ΓΡ1 * rs1 cos P lť ?> p » —t——— p cos p sin (P + <S ) rp2 * rs2 δ ” «, - «2 For an unknown angle P, " r p1 + r s1". Γ Ρ1 * r s1 cos P lt?> P »--- -t p cos p sin (+ P <S) r * r p2 s2 δ '«, - «2
226563 4 do druhej rovnice sa dosadí za p prvá rovnica r_o * ps2 sin ( β + δ ) = -Σ£-2£ γρι + rs1 cos I) ro2 + r-2 sin ( Ρ + δ ) s ° . cos fi ΓΡ1 + Γ81226563 4 the second equation is replaced by p the first equation r_o * p s2 sin (β + δ) = -Σ £ -2 £ γ ρι + r s1 cos I) r o2 + r-2 sin (Ρ + δ) s ° . cos fi Γ Ρ 1 + Γ 81
1’avá i pravá strana rovnice sa vydělí cos β sin ( β + <5 ) rp2 + rs2 cos β rp, + r8l rozložením sin ( β + S) sa dostane sin β . cos δ + cos β . sin 8 rp2 + rs2 eos/J rp, + rgJ l'avá strana rovnice sa upraví rp2 + rs2 tg fí . cos δ + sin δ » rp1 + rs1 po úpravě tg β rp2 ♦ rs2 cos δ . (rp, + rs1) tg δ doseděním za rp1, rp2, r8), rg2, rz, a rz2 sa dostane tg β1'avá the right side of the equation are divided by cos β sin (β + <5) R? 2 + y s 2 cos β r p + r 8 liters layout sin (β + S) reaches sin β. cos δ + cos β. sin 8 r p2 + r s2 eos / J r p , + r g The left side of the equation is adjusted to r p2 + r s2 tg phi. cos δ + sin δ » r p1 + r s1 after adjustment tg β r p2 ♦ r s2 cos δ. (r p , + r s1 ) tg δ by substituting for r p1 , r p2 , r 8) , r g2 , r z , ar z2 to get tg β
Gz . rz . sin a2 + r8 . sin a2 cos δG z . r z . sin and 2 + r 8 . sin and 2 cos δ
ZGz . rs . sin a, *\ <-r- ·’.·» úprayou rovnice sa dostane tg β = (Qz . r, + 0p . r8) . aln «2 (Gz . rz + Gp . rs) . sin a, . cos δZG z . r s . sin a, * \ <-r- · '. · »tq β = (Q z . r, + 0 p . r 8 ). aln 2 2 (G z . r z + G p . r s ). you are on, . cos δ
- tg δ sin a2 tg n =--tg δ sin . cos δ- tg δ sin and 2 tg n = - tg δ sin. cos δ
Odvodenie vztahu (3) podl’a obrázka 2:To derive the relationship (3) from Figure 2:
Výsledný moment nevyváženosti sa označí M.The resulting moment of imbalance is denoted M.
M = Gp . pM = G p . p
Pře p platí cos p Pp1 + rs1 P p p1 + r s1
P B p cos PP B p cos P
Za p sa dosadí do predchádzajúcej rovnice * G_ rp1 + rs1After p is substituted to the previous equation * G_ r p1 + r s1
M F cos βM F cos β
Doseděním za rp, 8 rs, 8 úpravou rovnice sa dostaneBy settling for r p , 8 r s, 8 by adjusting the equation it gets
Μ = θ8 ' Γζ1 + QP · rs · sln *1 Q Gp . cos β PΜ = θ 8 ' Γζ1 + Q P s r Sun * 1 Q Gp. cos β P
Doseděním za r . a áalšou úpravou sa dostane vztahSitting for r. and further editing will get the relationship
0- . r« + Gn cos p0-. r «+ G n cos p
Pre cos β vyjádřeného pomocou funkcie tangens platí cos β 1 - ·— *\/Y + tg2p dosadením za tg β vztah © sa dostane cos p ±\ / Z sin “2 \2 \/l +(-:--tg 5) v ssin . cos δ yFor cos β expressed by the tangent function, cos β 1 - · - * \ / Y + tg 2 p substitutes for tg β relation © to get cos p ± \ / Z sin “2 \ 2 \ / l + (-: - tg 5) in ssin. cos δ y
Dosadením tejto rovnice do vztahu (5) a úpravou sa dostane rovnica « 3 <°z · rz + Gp · rs> ♦ sin «1 · l/1 / sin a2 , , n2 + /-£-/- /tg (ft . a ) i sin . cos («, - «j) / < /By substituting this equation into (5) and adjusting, the equation « 3 <° z · r z + Gp · r s> ♦ sin « 1 · l / 1 / sin and 2 ,, n 2 + / - £ - / - / tg (ft . a ) and sin. cos («, -« j) / </
Z popisu činnosti zariadenia vyplývá, že u každého meraného predmetu je možné zistit moment nevyváženosti a jeho miesto, teda je možné ho dodatočne staticky vyvážit.It follows from the description of the operation of the device that it is possible to determine the moment of imbalance and its location for each measured object, so it can be additionally statically balanced.
Uvedený spfisob a zariadenie na meranie momentu nevyváženosti možno využit v rfiznyoh oblastiach priemyslu, napr. pri výrobě brúsnych kotúčov, kolies rfiznych motorových i nemotorových vozidiel, zalomených hriadel’ov, rotorov, v zbrojnom priemysle, ale tiež pri výrobě súčiastok a výrobkov rdzneho nerotačnáho tvaru. Pre urýchlenle meranie je výhodné na niektorú z výkyvných častí zariadenia umiestniť tlmič kmitov vzduchový, elektromagnetický, olejový ati.Said method and the device for measuring the moment of imbalance can be used in industrial areas, e.g. in the manufacture of grinding wheels, wheels of motorized and non-motorized vehicles, crankshafts, rotors, in the arms industry, but also in the manufacture of components and products of various non-rotational shape. For accelerated measurement, it is advantageous to place air, electromagnetic, oil, etc. vibration dampers on one of the pivoting parts of the device.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS225180A CS226563B1 (en) | 1980-04-01 | 1980-04-01 | Method of and apparatus for measuring static unbalance momentum |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS225180A CS226563B1 (en) | 1980-04-01 | 1980-04-01 | Method of and apparatus for measuring static unbalance momentum |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS226563B1 true CS226563B1 (en) | 1984-04-16 |
Family
ID=5359083
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS225180A CS226563B1 (en) | 1980-04-01 | 1980-04-01 | Method of and apparatus for measuring static unbalance momentum |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS226563B1 (en) |
-
1980
- 1980-04-01 CS CS225180A patent/CS226563B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| GB1435650A (en) | Method and apparatus for measuring curvature and curvature variations in pipelines and the like | |
| JP2019093928A (en) | Linear measurement system of track | |
| GB1381392A (en) | Support for spherical objects during testing | |
| CS226563B1 (en) | Method of and apparatus for measuring static unbalance momentum | |
| US2636380A (en) | Air gauge | |
| US5243788A (en) | Grinding wheel balancing method and apparatus | |
| Boynton et al. | A new high accuracy instrument for measuring moment of inertia and center of gravity | |
| GB2197477A (en) | Diametral variation determination for workpieces | |
| JPS588459B2 (en) | Cleanliness balance measuring device | |
| US3272015A (en) | Rotor balancing device | |
| US1855664A (en) | Level | |
| JPH0648333Y2 (en) | Roll bending / wear measuring device | |
| DE59409839D1 (en) | Gas friction vacuum gauge with horizontal axis of rotation and inclinometer | |
| ES2965648T3 (en) | Optimization method for a weighing belt | |
| SU1092386A1 (en) | Method of determination of hard material coefficient of friction | |
| JPH0545943Y2 (en) | ||
| FI90917C (en) | Measuring apparatus for thickness | |
| KR100507237B1 (en) | Device for measuring eccentric of differential gear of vehicle and method for measuring the eccentric | |
| JP2709025B2 (en) | Cylindrical accuracy inspection device | |
| CN114812936A (en) | Detection device for rapidly and quantitatively evaluating static balance of straight-barrel type revolving body and balancing method thereof | |
| SU979874A1 (en) | Method and device for measuring mass | |
| JPH0611417A (en) | Test rack for running vehicle | |
| ODA et al. | Dynamic behavior of thin-rimmed spur gears with various web arrangements | |
| JPS6047909A (en) | Measuring method of changing position and dimension by using sound | |
| SU945636A1 (en) | Method of determination of surface of revolution symmetrical curvilinear generatrix peak |