CS218702B1 - of high capacity protein immobilization - Google Patents
of high capacity protein immobilization Download PDFInfo
- Publication number
- CS218702B1 CS218702B1 CS35781A CS35781A CS218702B1 CS 218702 B1 CS218702 B1 CS 218702B1 CS 35781 A CS35781 A CS 35781A CS 35781 A CS35781 A CS 35781A CS 218702 B1 CS218702 B1 CS 218702B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- cross
- pectic acid
- water
- linked
- nacl
- Prior art date
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Vynález sa týká spósobu vysokokapacitnej imo- i bilizácie proteínov. Podstata vynálezu, v ktorom sa v prvom stupni pektín alebo vodorozpustná sol kyseliny pektovej zosieťuje v alkalickom prostředí 2-chlórmetyloxiránom spočívá v tom, že sa v druhom stupni aktivujú karboxylové skupiny karbodiimidmi, hydrazín hydrátom či hydrazín hydrátom a potom dusitanem sodným v přítomnosti kyseliny soTnej a v treťom stupni sa využitím známých metod prevedie. naviazanie proteinu.The invention relates to a method for high-capacity immobilization of proteins. The essence of the invention, in which in the first stage pectin or a water-soluble salt of pectic acid is cross-linked in an alkaline medium with 2-chloromethyloxirane, consists in that in the second stage the carboxyl groups are activated with carbodiimides, hydrazine hydrate or hydrazine hydrate and then with sodium nitrite in the presence of hydrochloric acid and in the third stage the protein binding is carried out using known methods.
Description
Vynález sa týká spósobu vysokokapacitnej imo-bilizácie proteínov na modifikovaném pektíne.The invention relates to a method of high throughput immunization of proteins on a modified pectin.
Kovalentnáimobilizácia proteínov na polysa-eharidy vyžaduje v prvom radě vhodná aktiváciupolysacharidu. Jeďným z často používaných spóso-bov je zavedenie karboxylových skupin. Tak jetomu napr. v případe komerčných karboxymetyl-rderivátóv. celulózy (CM-celulózy Lovosa, What-man), agarózy (CM-SepharoseR),. alebo sletova-ných dextránóv (CM-SephadexR C). Takéto kar-boxylové deriváty možno po aktivácii karbodiimi-dom priamo použit na imobilizáciu proteínov.Váčšinou je však vhodnejšie previesť ich na hydra-zidy, résp. azidy či až izokyanáty.The covalent immobilization of proteins into polysaccharides requires a suitable activation of the polysaccharide in the first row. One of the frequently used compounds is the introduction of carboxyl groups. Thus, the jetoma, for example, in the case of commercial carboxymethyl rderivatives. cellulose (CM-cellulose Lovosa, What-man), agarose (CM-Sepharose®) ,. or stranded dextran (CM-Sephadex® C). Such carboxyl derivatives can be used directly for the immobilization of proteins upon activation of the carbodiimide. However, it is preferable to convert them into hydrazides, e.g. azides or isocyanates.
Zavedenie karboxylových skupin ako jeden zošpósobov aktivácie polysacharidov nie je ovšempotřebné, ked polysacharid už tieto skupiny obsa-huje. Tak je tomu v případe sieťovanej kyseliny ipektovej, ktorá sa připraví sletováním pektínuepichlórhydrínom v alkalickom prostředí (V. Ti- Jbenský, E. Kuniak, Čs. patent 140 713 [1971]),Takto sieťované kyselina pektová je makroporéz-nym, gélovitým materiálom s napučiavacím obje-mom (n. o.) vo vodě 4 až 14 ml/g. Stupeňnapučiavania možno nastavit yofbou podmienok|sieťovania. Sletovaná kyselina pektová má vysokýstupeň substitúcie karboxylovými skupinami, DS~ 1. Už v takejto formě, s využitím karbodiimidov,možno použit sieťovanú kyselinu pektovú akonosič pre kovalentnú imobilizáciu proteínov. Dal-šie možnosti dává prevedenie sieťovanej kyselinypektovej na hydrazidy, resp. dalej na azidy. ZatiaTčo hydrazidové deriváty umožňujú výhodné viazaťglykoproteíny cez ich cukomé zlóžky, azidy viažuproteiny cez ich polypeptidický reťazec.The introduction of carboxyl groups as a means of activating polysaccharides is not necessary when the polysaccharide already contains these groups. This is the case with cross-linked ipectic acid, which is prepared by pectinepichlorohydrin in alkaline medium (V. Ti-Jbensky, E. Kuniak, U.S. Patent 140,713 [1971]), and the cross-linked pectic acid is a macroporous, gelled material. swelling volume (water) of 4 to 14 ml / g. The degree of cross-linking can be adjusted by adjusting the crosslinking conditions. Cross-linked pectic acid has a high degree of substitution by carboxyl groups, DS-1. Crosslinked pectic acid and a carrier for covalent immobilization of proteins can already be used in such a form, using carbodiimides. Another possibility is to convert the cross-linked acid to hydrazides, respectively. on the azides. Whilst hydrazide derivatives permit the advantageous binding of glycoproteins through their carbohydrates, the azides bind proteins through their polypeptide chain.
Podstata spósobu vyspkokapacitnej imobilizácieproteínov, v ktorom sa v prvom stupni pektín alebovodorozpustná sof kyseliny pektovej zosieťujev alkalickom prostředí 2-chlórmetyl-oxiránom,spočívá v tom, že sa v druhom stupni aktivujúkarboxylové skupiny karbodiimidmi, hydrazínhydrátom či hydrazín hydrátom a potom dusita-nom sodným v přítomnosti kyseliny sofnej a v tre-ťom stupni sa využitím známých metod prevedienaviazanie proteinu. {The essence of the method of high-capacity immobilization of proteins, in which the pectin or soluble salt of pectic acid crosslinks in the first stage with 2-chloromethyl-oxirane in the first step, is that in the second stage the carboxyl group is activated with carbodiimides, hydrazine hydrate or hydrazine hydrate and then with sodium nitrite in the presence of sophoric acid and, in the third step, by using known methods of protein binding. {
Pre uvedené postupy imobilizácie proteínov jévhodná slabo zosieťovaná kyselina pektová(s epichlórhydrínom), s napúčacím objemom (n. Íi.) ^4 ml H2O/g resp. 3,7 ml metanolu/g. Takýto;él. ibá totiž vysoký vylučovací limit pre proteinyaž áo molekulovej hmotnosti 80 000). Tiež pripríprave jej derivátov, napr. hydrazidov, možnodosiahnuť až DS 0,42, pričom zvyšok karboxylo-vých skupin je vo formě esteru. é Výhodou navrhovaného spósobu vysokokapa-Čitjnej imobilizácie proteínov na vodonerozpustnéderiváty kyseliny pektovej je, že — základný materiál (pektín) je fahko dostupný iprirodný biopolymér - pri sieťovaní sa pektín súčasne deesterifikuje— sieťovaná kyselina pektová má DS Ni, čo r 218702For said protein immobilization procedures, the weakly cross-linked pectic acid (with epichlorohydrin), with a swelling volume (n. 3.7 ml of methanol / g. Such as; there is a high exclusion limit for the protein of 80,000 molecular weight). Also, the preparation of its derivatives, e.g. hydrazides, can be as high as DS 0.42, with the remainder of the carboxyl groups being in the ester form. The advantage of the proposed method of high-throughput immobilization of proteins to water-soluble pectic acid derivatives is that - the basic material (pectin) is readily available and natural biopolymer - pectin is simultaneously de-esterified while cross-linking - cross-linked pectic acid has DS Ni, what r 218702
í umožňuje tiež připravit jej ďalšie deriváty s výso-kýmiDS — v súvislosti s predchádzajúcim možno připra- vit preparáty s vysokým obsahoni proteínov (do100 mg proteínu/g nosiča) „ · — sieťovaná kyselina pektová, jej deriváty ako ajpreparáty s mobilizovanými proteínmi sú gélovitémateriály s dobrými hydrodynamickými vlastnos- ; tami — umožňuje vyrábať preparáty z lacných surovin |pomeme jednoduchým technologickým postu- iporn. Příklady vyhotovenia PřikladlIt also makes it possible to prepare its other derivatives with the following DS - high protein-containing preparations (up to 100 mg protein / g carrier) can be prepared in conjunction with the above - cross-linked pectic acid, its derivatives as well as preparations with mobilized proteins are gel-like materials with good hydrodynamic properties; tami - makes it possible to produce preparations from cheap raw materials | EXAMPLES Example 1
Ku 20 g pektínu (citrusového) sa přidalo za -stálého miešania 13 ml 25%-ho NaOH a nechalo/sa reagovat po dobu 1 h pri 20 °C. Přidalo sa 1,8 mlepichlórhydrínu a po 2 h miešania pri 20 °C sapostupné, vpriebehu 1 h, zvýšila teplota na 40 °C.Pri tejto teplete sa nechá reagovat ešte 1 h. ;Zosietená sodná sof kyseliny pektovej sa postupnépremyla vodou, etanolom a vysušila pri teplote60 °C. Sletovaný pektan sodný sa pomaly premyl0,25 N HC1, dalej vodou do negatívnej reakcie na jchloridy, etanolom a-nakoniec sa vysušil na vzdu-chu. 200 mg sieťovanej kyseliny pektovej (n. o. 14 'ml H2O/g) sa resuspendovalo v 15 ml 1,5 % !roztoku N-cykloňexyl-N'-/N-metyl-morfolinp/ ;/etyl/-karbodiimid-p-toluénsulfonátu v destilova- 1nej vodě okyslenej na pH 4,8 a suspenzia samiešala po dobu 1 h pri izbovej teplote. Aktivova-ný gél sa dokladné premyl vodou a přidal sak roztoku 10 mg acetylcholínesterázy (acetylcholín * hydroláza, EC 3.1.1.7; 25,4 U-mg) v 8 ml deštilo- j- vanej vody. Suspenzia sa miešala po dobu 2 h pp0—2 °C. Po filtrácii a premytí nerozpustnéhopodielu 100 ml 2 M NaCl· vykazovala mobilizova-ná acetylcholínesteráza špecifickú aktivitu 5,8U/mg a preparát mal celková aktivitu 71,3 U/g. Priskladovaní vo zvlhčenom stave pri 4 °C sa pozoro-val v priebehu 6 mesicaov 15%-ný pokles kataly-tickej aktivity. Příklad 2To 20 g of pectin (citrus), 13 ml of 25% NaOH was added with stirring and allowed to react for 1 h at 20 ° C. 1.8 Mlepichlorohydrin was added and after 2 h stirring at 20 ° C, flowing over 1 h, the temperature was raised to 40 ° C. During this heat it was allowed to react for another 1 h. The cross-linked sodium salt of pectic acid was successively washed with water, ethanol and dried at 60 ° C. Sodium pectate was washed slowly with 0.25 N HCl, water was added to the reaction mixture with negative chlorides, ethanol and finally air-dried. 200 mg of cross-linked pectic acid (no 14 ml of H2O / g) were resuspended in 15 ml of a 1.5% solution of N-cyclohexyl-N '- (N-methylmorpholine) ethyl / carbodiimide-p-toluenesulfonate in acidified to pH 4.8 with distilled water, and the suspension was stirred for 1 h at room temperature. The activated gel was washed extensively with water and a bag of 10 mg acetylcholinesterase (acetylcholine * hydrolase, EC 3.1.1.7; 25.4 U-mg) solution was added in 8 ml of dehydrated water. The suspension was stirred for 2 h pp0 - 2 ° C. After filtration and washing of the insoluble portion with 100 ml of 2 M NaCl ·, the mobilized acetylcholinesterase showed a specific activity of 5.8 U / mg and the preparation had a total activity of 71.3 U / g. A 15% decrease in catalytic activity was observed during storage in a humidified condition at 4 ° C over 6 months. Example 2
Sieťovaná kyselina pektová (1 g) připravená akoý příklade 1, sa suspendovala v 100 ml metanolu, . přidalo sa 0,6 ml kóncentrovanej HC1 a refluxovalohod. Po premytí metanolom a vysušení sapródukt (0,95 g) řesuspendoval v zmesi 16,6 mlmetanolu a 16,6 ml 99 % hydrazín hydrátu.Suspenzia sa udržiavala 72 hod pri 38 °C zaobčasného premiešania a po zachytení na sklenejírite premyla 0,15 M NaCl do negatívnej reakcie na tdrazín, 250 ml vody, 250 ml etanolu a produkt sasušil. Hydrazid sieťovanej kyseliny pektovej(0,28 g) obsahoval 4,13 % dusíka. K roztoku 0,5 g ;l^ktozylovaného hovádzieho sérového albuminuΛ01ΟΟ ml 0,1 M acetátového pufru pH 5 sa přidalo40 mg jodistanu sodného a nechalo stát 1,5 hodw hne pri izbovej teplote.. Po přidaní 0,15 mléfedenglykolu sa nechalo stát dalších 0>5 hod za ,Cross-linked pectic acid (1 g) prepared as in Example 1 was suspended in 100 mL of methanol. 0.6 ml of concentrated HCl and reflux were added. After washing with methanol and drying the saproduct (0.95 g) was resuspended in a mixture of 16.6 ml methanol and 16.6 ml 99% hydrazine hydrate. The suspension was maintained at 38 ° C for 72 hrs and mixed with 0.15 M after capture. NaCl to a negative reaction to tdrazine, 250 mL of water, 250 mL of ethanol, and the product dried. Cross-linked pectic acid hydrazide (0.28 g) contained 4.13% nitrogen. To a solution of 0.5 g / l of ktosylated bovine serum albuminΛ01ΟΟ ml of 0.1 M acetate buffer pH 5 was added 40 mg of sodium periodate and left to stand for 1.5 hours at room temperature. 0> 5 hrs for,
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS35781A CS218702B1 (en) | 1981-01-19 | 1981-01-19 | of high capacity protein immobilization |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS35781A CS218702B1 (en) | 1981-01-19 | 1981-01-19 | of high capacity protein immobilization |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS218702B1 true CS218702B1 (en) | 1983-02-25 |
Family
ID=5335509
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS35781A CS218702B1 (en) | 1981-01-19 | 1981-01-19 | of high capacity protein immobilization |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS218702B1 (en) |
-
1981
- 1981-01-19 CS CS35781A patent/CS218702B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3947352A (en) | Polysaccharide matrices for use as adsorbents in affinity chromatography techniques | |
| Parikh et al. | [6] Topics in the methodology of substitution reactions with agarose | |
| Cuatrecasas et al. | [31] Affinity chromatography | |
| US4330440A (en) | Activated matrix and method of activation | |
| US3619371A (en) | Production of a polymeric matrix having a biologically active substance bound thereto | |
| Turková et al. | Methacrylate gels with epoxide groups as supports for immobilization of enzymes in pH range 3–12 | |
| US3788948A (en) | Method of binding,by covalent bonds,proteins and polypeptides to polymers using cyanates | |
| US5116962A (en) | Material for affinity chromatography which is a sulfated polysaccharide bonded to an insoluble polymer | |
| US4560504A (en) | Carboxyl anchored immobilized antibodies | |
| Wilchek et al. | Stable, high capacity and non charged agarose derivatives for immobilization of biologically active compounds and for affinity chromatography | |
| US3853708A (en) | Coupling biologically active substances to oxirane-containing polymers | |
| Schnapp et al. | Immobilization of enzymes by covalent binding to amine supports via cyanogen bromide activation | |
| Miron et al. | Polyacrylhydrazido-agarose: Preparation via periodate oxidation and use for enzyme immobilization and affinity chromatography | |
| CS218702B1 (en) | of high capacity protein immobilization | |
| CA1060366A (en) | Immobilized glycoenzymes | |
| Lilly | [4] Enzymes immobilized to cellulose | |
| US4593004A (en) | Process for the immobilization of cyclodextrine glycosyltransferase enzyme | |
| Turková et al. | Immbilization on cellulose in bead form after periodate oxidation and reductive alkylation | |
| Shimizu et al. | A newly prepared surface‐treated oxystarch for removal of urea | |
| US4279998A (en) | Regenerable insoluble support for protein immobilization | |
| Valentova et al. | Pepsin immobilized by covalent fixation to hydroxyalkyl methacrylate gels: preparation and characterization | |
| Freeman et al. | Isonitrile derivatives of polysaccharides as supports for the covalent fixation of proteins and other ligands | |
| JPS63258579A (en) | Method for producing carrier for immobilizing physiologically active substances | |
| JPH0114240B2 (en) | ||
| Thompson | [25] Pyridoxamine phosphate |