CS217463B1 - Method of continuous control of corrosion of chemical technological plants - Google Patents
Method of continuous control of corrosion of chemical technological plants Download PDFInfo
- Publication number
- CS217463B1 CS217463B1 CS833377A CS833377A CS217463B1 CS 217463 B1 CS217463 B1 CS 217463B1 CS 833377 A CS833377 A CS 833377A CS 833377 A CS833377 A CS 833377A CS 217463 B1 CS217463 B1 CS 217463B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- corrosion
- state
- electrode
- active
- oxygen
- Prior art date
Links
- 238000005260 corrosion Methods 0.000 title claims description 35
- 230000007797 corrosion Effects 0.000 title claims description 35
- 239000000126 substance Substances 0.000 title claims description 3
- 238000000034 method Methods 0.000 title description 7
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 6
- 239000004202 carbamide Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 239000000523 sample Substances 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 claims description 2
- 239000011541 reaction mixture Substances 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 5
- 229910052760 oxygen Inorganic materials 0.000 claims 5
- 239000001301 oxygen Substances 0.000 claims 5
- 230000000052 comparative effect Effects 0.000 claims 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 229910002091 carbon monoxide Inorganic materials 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 239000004922 lacquer Substances 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
(54) Sposob kontinuálně] gie kontroly korózie aparátov chemickej technolóVynález rieši sposob kontinuálnej kontroly korózie aparátov tíhemickej technologie elektrochemickou cestou, nedeštruktívne, bez prerušenia výroby. Riešenie je určené hlavně pre také aparáty, ktoré sú vyrobené z austenitickej nehrdzavejúcej ocele a pracujúce v tak velmi agresívnych roztókodh, že kolísáme prevádzkových parametrov, připadne nedodiržanie tedhnologickej disciplíny rýchlo vedie ku kolísaniu korózneho stavu medzi dvorná extrémami, korozně aktívnym a pasivným stavom.(54) Continuous Corrosion Control Method of Chemical Technological Apparatus The present invention addresses the method of continuous corrosion control of apparatuses of thematic technology by an electrochemical method, non-destructively, without interrupting production. The solution is designed especially for such apparatuses, which are made of austenitic stainless steel and working in such a very aggressive solutions that fluctuate operating parameters, or failure to comply with the discipline quickly leads to fluctuations of corrosion state between yard extremes, corrosive active and passive state.
Doteraz známe spósoby koróznej kontroly nedávajú počas prevádzky dostatečné rychle priame údaje o korózii exponovanýdh aparátov a preto neumožňuj ú vykonávat operativně zásahy do výrobného režimu k zlepšeniu koróznej situácie. V literatúre popisované elektrochemické polarizačně metódy, umožňujúce stanovit okamžitú koróznu rýchlosť, sú aplikované len na indikačně elektrody o malej ploché, pretože zapojit celý sledovaný aparát ako polarizačnú elektrodu, by bolo prakticky nemožné. Aj keď je indikačná elektroda vyrobená z takého istého materiálu ako aparát, nebude Vždy spolahlivo charakterizovat stav aparátu. Záleží na jej umieistnení Y syl&téme, geometrii, rozmerodh a ďalších faktor odh.Previously known corrosion control methods do not provide sufficiently rapid direct data on the corrosion of exposed apparatuses during operation and therefore do not allow operative interventions into the production mode to improve the corrosion situation. The electrochemical polarization methods described in the literature, which make it possible to determine the instantaneous corrosion rate, are applied only to small electrode indicating electrodes, since it would be practically impossible to connect the entire apparatus as a polarizing electrode. Although the indicator electrode is made of the same material as the apparatus, it will not always reliably characterize the condition of the apparatus. It depends on its placement Y syl theme, geometry, dimensions and other factor estimates.
Priébežná kontrola obsahu koróznych splodín v technologickém médiu poskytuje len nepriame údaje a zo značným aneskorením o koróznej situácii v aparáte.Continuous control of the corrosion products content in the process medium provides only indirect data and significant delays in the corrosion situation in the apparatus.
Priame údaje o zoislabení stien aparátov je možné v prevádzke získat meraním hrůbky ultrazvukovou meftódou a aj to len na přístupných miestadh a citlivost merania nestačí k tomu, aby metoda reagovala zalVčasu na rýohle změny prevádzkových parametrov. Celý rad ďalších známých kontrol, ako napr. priamia vizuálna prehliadka napadnutého povrchu, nepriame vyhodnocovanie korózie gravimetrické pomocou kontrolnýdh vzoriek a pod., je možné využit pri přerušení výroby.Direct data on attenuation of apparatus walls can be obtained in operation by measuring the depth with an ultrasonic meftode, even at accessible locations only, and the sensitivity of the measurement is not sufficient for the method to respond promptly to rapid changes in operating parameters. A number of other known controls, such as e.g. direct visual inspection of the contaminated surface, indirect corrosion evaluation gravimetric by means of control samples, etc., can be used in production interruption.
Uvedené nedostatky odstraňuje riešenie podl’a vynálezu, ktorého podstata spočívá v tom, že sa meria priebeh korózneho potenciálu kontrolovaného aparátu voči minimálně jednej porovnávacej elektrody vyrobenej z takého istého materiálu ako aparát, pričom sa priébežne indikuje či sa elektródy niachádzajú v korózne aktívnom alebo pasívnom stave. Přitom je konštrukčnou úpravou jednej elektródy zaistené, že aj pri zmene prevádzkových parametrov sa táto neustále nachádza v určitom — referenčnona stave. Sledováním aparátu sa přiradí podlá okamžitej hodnoty korózneho potenciálu jeho okamžitý korózny staiv.The above-mentioned drawbacks are overcome by the solution according to the invention, which consists in measuring the course of the corrosion potential of a controlled apparatus against at least one reference electrode made of the same material as the apparatus, continuously indicating whether the electrodes are in a corrosive active or passive state. . The design of one electrode ensures that, even when operating parameters are changed, it is always in a certain reference state. By monitoring the apparatus, the instantaneous corrosion potential is assigned according to the instantaneous corrosion potential value.
Uvedené riešenie je založené na experimentálně zistenom fakte, že je možné vyrobit korozně sondy, ktorýoh porovnáváme elektrody sa neustále nadhádzajiú v referenčnom koróznom stave, a ďalej, že korozně potenciály austenitiícfcej nehrdzavejúcej ocele v aktívinom a pasívnom stave sa od seba vel/mi rozliišujú. Napr. u aparátov pre výrobu močoviny bolo zistené, že vědomě vytvořenou štrbinou okolo porovnávacej elektrody sa dosiáhne toho, že táto elektroda je neustále v aktívnom stave. U tohoto aparátu bolo tiež namerané, že rozdiel koróznyoh potenciálov medzi aktívnym a pasivným stavom je 500 mV. Prevádzková skúsenosť ďalej ukázala, že korózny stav aparátov je možné považovat za taký istý stav ako porovnávacej eléktródy vtedy, ak je rozdiel idh koróznyoh potenciálov v ahsolútnej hodnotě menší než 50 mV.This solution is based on the experimentally established fact that it is possible to produce corrosion probes to compare electrodes continually pitch in the reference corrosion state, and further that the corrosion potentials of the austenitic stainless steel in the active and passive states are very different from each other. E.g. in urea production apparatuses, it has been found that a deliberately formed gap around the reference electrode achieves that the electrode is constantly in the active state. With this apparatus it was also measured that the difference in corrosion potentials between active and passive states was 500 mV. Operational experience has further shown that the corrosion state of apparatuses can be considered to be the same as the reference electrode when the idh corrosion potential difference at an absolute value is less than 50 mV.
Na zariadení pre výrobu močoviny je možné poukázat aj praktický příklad vynálezu:A practical example of the invention can also be pointed out in the urea plant:
V syntéznom reaktore sa reakciou oxidu uhličitého s amoniakom vytvára karbaminian amonný. Reakčná zmes sa ďalej rozkládá, v kolonách rozkladu, alebo stripovaním naIn the synthesis reactor, ammonium carbaminian is formed by reaction of carbon dioxide with ammonia. The reaction mixture is further decomposed, in columns of decomposition, or stripped to
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS833377A CS217463B1 (en) | 1977-12-13 | 1977-12-13 | Method of continuous control of corrosion of chemical technological plants |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS833377A CS217463B1 (en) | 1977-12-13 | 1977-12-13 | Method of continuous control of corrosion of chemical technological plants |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS217463B1 true CS217463B1 (en) | 1983-01-28 |
Family
ID=5433725
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS833377A CS217463B1 (en) | 1977-12-13 | 1977-12-13 | Method of continuous control of corrosion of chemical technological plants |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS217463B1 (en) |
-
1977
- 1977-12-13 CS CS833377A patent/CS217463B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4268397A (en) | Method of treating waste water | |
| US5470484A (en) | Method and apparatus for controlling the feed of water treatment chemicals using a voltammetric sensor | |
| US20190145722A1 (en) | Cooling water monitoring and control system | |
| US5382331A (en) | Method and apparatus for inline electrochemical monitoring and automated control of oxidizing or reducing agents in water systems | |
| SU1080739A3 (en) | Method for controlling preparation of chlorine dioxide | |
| Fischer et al. | MEA and piperazine corrosion of carbon steel and stainless steel | |
| US3904365A (en) | Method and apparatus for measuring the presence of a weak acid or a weak base in a liquid | |
| KR101060815B1 (en) | Apparatus and method for continuously measuring acid concentration of pickling solution | |
| US4095176A (en) | Method and apparatus for evaluating corrosion protection | |
| EP2350758B1 (en) | Method for monitoring a potentiometric measuring probes | |
| CS217463B1 (en) | Method of continuous control of corrosion of chemical technological plants | |
| DE2723391A1 (en) | DEVICE FOR MEASURING THE DENSITY | |
| JP2977646B2 (en) | Method for measuring the concentration of main components in neutral salt electrolytic bath for descaling stainless steel strip | |
| De Bruyn | Current corrosion monitoring trends in the petrochemical industry | |
| GB2064131A (en) | Determining ionic species electrochemically | |
| KR20000029584A (en) | Corrosion monitoring process | |
| DE3011958A1 (en) | METHOD AND DEVICE FOR DETECTING LEAKS IN THE COOLING SYSTEM OF LARGE QUANTITIES OF CO-GAS-CONTAINING DEVICES | |
| US3218242A (en) | Measurement of the concentration of dissolved oxygen in liquids | |
| KR100236175B1 (en) | Automatic Measurement and Control of Alkali Concentration in Degreasing Process Using Ion Selective Electrode | |
| RU2685799C1 (en) | Corrosion measurement system with multivariate sensor | |
| DE102017119804B4 (en) | Method and sensor device for interference-compensated determination of material application or removal during wet-chemical processes | |
| JP2617981B2 (en) | Metal corrosion protection method | |
| EP4624898A1 (en) | Corrosion resistance test method, corrosion resistance test apparatus, and corrosion resistance test program for coated metal material, and recording medium | |
| WO1992017642A1 (en) | Diagnosing disturbances in the wet part chemistry of a paper machine | |
| Rustandi et al. | Behavior of CO2 corrosion of API 5L X52 steel in NaCl solution under turbulent flow condition |