CS217463B1 - Method of continuous control of corrosion of chemical technological plants - Google Patents

Method of continuous control of corrosion of chemical technological plants Download PDF

Info

Publication number
CS217463B1
CS217463B1 CS833377A CS833377A CS217463B1 CS 217463 B1 CS217463 B1 CS 217463B1 CS 833377 A CS833377 A CS 833377A CS 833377 A CS833377 A CS 833377A CS 217463 B1 CS217463 B1 CS 217463B1
Authority
CS
Czechoslovakia
Prior art keywords
corrosion
state
electrode
active
oxygen
Prior art date
Application number
CS833377A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Jaroslav Beran
Adsky Milan Podhr
Original Assignee
Jaroslav Beran
Adsky Milan Podhr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jaroslav Beran, Adsky Milan Podhr filed Critical Jaroslav Beran
Priority to CS833377A priority Critical patent/CS217463B1/en
Publication of CS217463B1 publication Critical patent/CS217463B1/en

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

(54) Sposob kontinuálně] gie kontroly korózie aparátov chemickej technolóVynález rieši sposob kontinuálnej kontroly korózie aparátov tíhemickej technologie elektrochemickou cestou, nedeštruktívne, bez prerušenia výroby. Riešenie je určené hlavně pre také aparáty, ktoré sú vyrobené z austenitickej nehrdzavejúcej ocele a pracujúce v tak velmi agresívnych roztókodh, že kolísáme prevádzkových parametrov, připadne nedodiržanie tedhnologickej disciplíny rýchlo vedie ku kolísaniu korózneho stavu medzi dvorná extrémami, korozně aktívnym a pasivným stavom.(54) Continuous Corrosion Control Method of Chemical Technological Apparatus The present invention addresses the method of continuous corrosion control of apparatuses of thematic technology by an electrochemical method, non-destructively, without interrupting production. The solution is designed especially for such apparatuses, which are made of austenitic stainless steel and working in such a very aggressive solutions that fluctuate operating parameters, or failure to comply with the discipline quickly leads to fluctuations of corrosion state between yard extremes, corrosive active and passive state.

Doteraz známe spósoby koróznej kontroly nedávajú počas prevádzky dostatečné rychle priame údaje o korózii exponovanýdh aparátov a preto neumožňuj ú vykonávat operativně zásahy do výrobného režimu k zlepšeniu koróznej situácie. V literatúre popisované elektrochemické polarizačně metódy, umožňujúce stanovit okamžitú koróznu rýchlosť, sú aplikované len na indikačně elektrody o malej ploché, pretože zapojit celý sledovaný aparát ako polarizačnú elektrodu, by bolo prakticky nemožné. Aj keď je indikačná elektroda vyrobená z takého istého materiálu ako aparát, nebude Vždy spolahlivo charakterizovat stav aparátu. Záleží na jej umieistnení Y syl&téme, geometrii, rozmerodh a ďalších faktor odh.Previously known corrosion control methods do not provide sufficiently rapid direct data on the corrosion of exposed apparatuses during operation and therefore do not allow operative interventions into the production mode to improve the corrosion situation. The electrochemical polarization methods described in the literature, which make it possible to determine the instantaneous corrosion rate, are applied only to small electrode indicating electrodes, since it would be practically impossible to connect the entire apparatus as a polarizing electrode. Although the indicator electrode is made of the same material as the apparatus, it will not always reliably characterize the condition of the apparatus. It depends on its placement Y syl theme, geometry, dimensions and other factor estimates.

Priébežná kontrola obsahu koróznych splodín v technologickém médiu poskytuje len nepriame údaje a zo značným aneskorením o koróznej situácii v aparáte.Continuous control of the corrosion products content in the process medium provides only indirect data and significant delays in the corrosion situation in the apparatus.

Priame údaje o zoislabení stien aparátov je možné v prevádzke získat meraním hrůbky ultrazvukovou meftódou a aj to len na přístupných miestadh a citlivost merania nestačí k tomu, aby metoda reagovala zalVčasu na rýohle změny prevádzkových parametrov. Celý rad ďalších známých kontrol, ako napr. priamia vizuálna prehliadka napadnutého povrchu, nepriame vyhodnocovanie korózie gravimetrické pomocou kontrolnýdh vzoriek a pod., je možné využit pri přerušení výroby.Direct data on attenuation of apparatus walls can be obtained in operation by measuring the depth with an ultrasonic meftode, even at accessible locations only, and the sensitivity of the measurement is not sufficient for the method to respond promptly to rapid changes in operating parameters. A number of other known controls, such as e.g. direct visual inspection of the contaminated surface, indirect corrosion evaluation gravimetric by means of control samples, etc., can be used in production interruption.

Uvedené nedostatky odstraňuje riešenie podl’a vynálezu, ktorého podstata spočívá v tom, že sa meria priebeh korózneho potenciálu kontrolovaného aparátu voči minimálně jednej porovnávacej elektrody vyrobenej z takého istého materiálu ako aparát, pričom sa priébežne indikuje či sa elektródy niachádzajú v korózne aktívnom alebo pasívnom stave. Přitom je konštrukčnou úpravou jednej elektródy zaistené, že aj pri zmene prevádzkových parametrov sa táto neustále nachádza v určitom — referenčnona stave. Sledováním aparátu sa přiradí podlá okamžitej hodnoty korózneho potenciálu jeho okamžitý korózny staiv.The above-mentioned drawbacks are overcome by the solution according to the invention, which consists in measuring the course of the corrosion potential of a controlled apparatus against at least one reference electrode made of the same material as the apparatus, continuously indicating whether the electrodes are in a corrosive active or passive state. . The design of one electrode ensures that, even when operating parameters are changed, it is always in a certain reference state. By monitoring the apparatus, the instantaneous corrosion potential is assigned according to the instantaneous corrosion potential value.

Uvedené riešenie je založené na experimentálně zistenom fakte, že je možné vyrobit korozně sondy, ktorýoh porovnáváme elektrody sa neustále nadhádzajiú v referenčnom koróznom stave, a ďalej, že korozně potenciály austenitiícfcej nehrdzavejúcej ocele v aktívinom a pasívnom stave sa od seba vel/mi rozliišujú. Napr. u aparátov pre výrobu močoviny bolo zistené, že vědomě vytvořenou štrbinou okolo porovnávacej elektrody sa dosiáhne toho, že táto elektroda je neustále v aktívnom stave. U tohoto aparátu bolo tiež namerané, že rozdiel koróznyoh potenciálov medzi aktívnym a pasivným stavom je 500 mV. Prevádzková skúsenosť ďalej ukázala, že korózny stav aparátov je možné považovat za taký istý stav ako porovnávacej eléktródy vtedy, ak je rozdiel idh koróznyoh potenciálov v ahsolútnej hodnotě menší než 50 mV.This solution is based on the experimentally established fact that it is possible to produce corrosion probes to compare electrodes continually pitch in the reference corrosion state, and further that the corrosion potentials of the austenitic stainless steel in the active and passive states are very different from each other. E.g. in urea production apparatuses, it has been found that a deliberately formed gap around the reference electrode achieves that the electrode is constantly in the active state. With this apparatus it was also measured that the difference in corrosion potentials between active and passive states was 500 mV. Operational experience has further shown that the corrosion state of apparatuses can be considered to be the same as the reference electrode when the idh corrosion potential difference at an absolute value is less than 50 mV.

Na zariadení pre výrobu močoviny je možné poukázat aj praktický příklad vynálezu:A practical example of the invention can also be pointed out in the urea plant:

V syntéznom reaktore sa reakciou oxidu uhličitého s amoniakom vytvára karbaminian amonný. Reakčná zmes sa ďalej rozkládá, v kolonách rozkladu, alebo stripovaním naIn the synthesis reactor, ammonium carbaminian is formed by reaction of carbon dioxide with ammonia. The reaction mixture is further decomposed, in columns of decomposition, or stripped to

Claims (1)

2 hodnoty korózneho potenciálu jeho okamžitýkorózny staiv. Uvedené riešenie je založené na experi-mentálně zistenom fakte, že je možné vyrobitkorozně sondy, ktorýtíh porovnávacie elektro-dy sa neustále nachádzajú v referenčnom ko-róznom stave, a ďalej, že korozně potenciályauistenitickej néhrdzavejúcej ocele v aktív-nom a pasívnom stave sa od seba velmi roz-liišujú. Napr. u .aparátov pre výrobu močovi-ny bolo zistené, že vědomě vytvořenouštrbinou okolo porovnávacej elektrody sa do-siáhne toho, že táto elektroda je neustálev aktívnom stave. U tohoto aparátu bolo tiežnamerané, že rozdiel koróznyoh potenciálovmedzi aktívnym a pasivným stavom je500 mV. Prevádzková skúsenosť ďalej uká-zala, že korózny stav aparátov je možné po-važovat za taký istý stav ako porovnávacejelektrody vtedy, ak je rozdiel idh koróznyohpotenciálov v absolútnej hodnotě menší než50 mV. Na zariadení pre výrobu močoviny je mož-né poukázat aj praktický příklad vynálezu: V syntéznom reaktore sa reakciou oxiduuhličitého s amoniakom vytvára karhaminian.amonný. Reakčná zmes sa ďalej rozkládá,v kolonátíh rozkladu, alebo stripovaním na PREDMET Spósob kontinuálnej kontroly korózie apa-rátov tíhemickej technologie vyznačujúci satým, že sa meria priebežne korózny potenciálkontrolovaného aparátu voči porovnávacímelektrodám, ktaré sú vyrobené z takého jisté-ho materiálu lako aparát, pričom sa indikuje,či sa elektrody nachádzajú v korózii aktív- močovinu. Táto zimes je velmi agresívna ajna austenitickú netordzavejúcu ocel’. Pretosa dávkuje kyslík ako pasivátor. Pri nedostat-ku kyslíka sú aparáty v aktívnom stave a vel-mi korodujú. Správné riadenie dávkovaniakyslíka teda predlžuje životnost zariadeniapri ekonomicky zdóvodnených nákladech. Vy-konává sa spósobom podl’a vynálezu: Do kolony tlakového rozkladu sa zabudujejedna sonda s porovnávacou elektrodou vyro-benou z takého istého materiálu ako zairia-denie. Používá isa například materiál podláČSN 17 350.4, připadne podlá AISI 316 Ltzv. močovinovej akosti. Okolo tejto elektrodyje vědomě vytvořená vhodná štnbina, abyelektroda bála stále v .aktívnom stave. Ko-rózny potenciál aparátu v pasívnom stave,oproti tejto elektróde má váčšiu hodnotu+ 500 mV. Za tohoto stavu móže 'byť dávko-vanie kyslíka obmedzené. Ak klesne koróznypotenciál aparátu pod + 450 mV, je nutné.dávkovanie kyslíka zvýšit. Po návrate koróz-neho potenciálu aparátu do póvodného stavuje možné přívod kyslíka zase obmedziť, pro-tože jeho prebytok předřazuje výrobu a ob-medzuje výkon. Takto sa hospodárné udržujekorózia na ekonomicky izdóvodnenej hodnotě. VYNÁLEZU nom alebo pasívnom stave, pričom aspoň jed-na porovnávaná elektroda sa bez chladu nakolísanie prevádzkových parametrov mediianachádza v určitom referenčnom stave, pri-čom aparátu isa přiřadí podlá okamžitej na-meranej hodnoty korózneho potenciálu jehookamžitý korózny stav.2 values of corrosion potential of its immediate corrosion. The solution is based on an experimentally established fact that probes can be produced which are comparable in the reference corrosion state, and that the corrosion potentials of the austenitic stainless steel in the active and passive states are they greatly differ. E.g. in urea cameras, it has been found that by deliberately forming a slit around the comparator electrode, it is ensured that the electrode is in the active state at all times. In this apparatus, it was also shown that the difference in corrosion potential between the active and the passive state is 500 mV. Furthermore, the operating experience has shown that the corrosion state of the apparatuses can be considered as the same as the comparative electrodes when the difference in idh of corrosion potentials is less than 50 mV in absolute value. A practical example of the invention can also be pointed out in the urea plant: In the synthesis reactor, the carbon monoxide is formed by the reaction of carbon dioxide with ammonia. The reaction mixture is further decomposed, by decomposition, by stripping or by stripping onto an object of continuous corrosion control apparatus of a chemical technology characterized by continuously measuring the corrosion of the potentially controlled apparatus against the comparative electrodes produced from such a certain lacquer material while indicates if the electrodes are in active urea corrosion. This zimes is a very aggressive and austenitic non-dissolving steel. Pretosa dispenses oxygen as a passivator. In the absence of oxygen, the apparatuses are in an active state and very corrosive. Thus, the proper dosing of the dosing system extends the life of the device over economically justified costs. It is carried out according to the invention: A probe with a comparative electrode made of the same material as the equipment is incorporated into the pressure decomposition column. For example, ISA 316 Ltzv. urea quality. A suitable web is formed around this electrode to keep the electrode still in active state. The corrosion potential of the apparatus in the passive state, compared to this electrode, has a higher value of + 500 mV. In this state, the oxygen dosage can be limited. If the corrosion potential of the apparatus falls below + 450 mV, it is necessary to increase the oxygen dosage. Upon returning the corrosion potential of the apparatus to the downstream, the oxygen supply can again be limited since its excess precedes production and limits performance. In this way, it is economically viable to maintain an economically sound value. DISCLOSURE OF THE INVENTION or passive state, wherein at least one of the compared electrodes, without cooling the operational parameters of the media in a particular reference state, is assigned an instantaneous corrosion state according to the instantaneous measured value of the corrosion potential.
CS833377A 1977-12-13 1977-12-13 Method of continuous control of corrosion of chemical technological plants CS217463B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS833377A CS217463B1 (en) 1977-12-13 1977-12-13 Method of continuous control of corrosion of chemical technological plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS833377A CS217463B1 (en) 1977-12-13 1977-12-13 Method of continuous control of corrosion of chemical technological plants

Publications (1)

Publication Number Publication Date
CS217463B1 true CS217463B1 (en) 1983-01-28

Family

ID=5433725

Family Applications (1)

Application Number Title Priority Date Filing Date
CS833377A CS217463B1 (en) 1977-12-13 1977-12-13 Method of continuous control of corrosion of chemical technological plants

Country Status (1)

Country Link
CS (1) CS217463B1 (en)

Similar Documents

Publication Publication Date Title
US4268397A (en) Method of treating waste water
US5470484A (en) Method and apparatus for controlling the feed of water treatment chemicals using a voltammetric sensor
US20190145722A1 (en) Cooling water monitoring and control system
US5382331A (en) Method and apparatus for inline electrochemical monitoring and automated control of oxidizing or reducing agents in water systems
SU1080739A3 (en) Method for controlling preparation of chlorine dioxide
Fischer et al. MEA and piperazine corrosion of carbon steel and stainless steel
US3904365A (en) Method and apparatus for measuring the presence of a weak acid or a weak base in a liquid
KR101060815B1 (en) Apparatus and method for continuously measuring acid concentration of pickling solution
US4095176A (en) Method and apparatus for evaluating corrosion protection
EP2350758B1 (en) Method for monitoring a potentiometric measuring probes
CS217463B1 (en) Method of continuous control of corrosion of chemical technological plants
DE2723391A1 (en) DEVICE FOR MEASURING THE DENSITY
JP2977646B2 (en) Method for measuring the concentration of main components in neutral salt electrolytic bath for descaling stainless steel strip
De Bruyn Current corrosion monitoring trends in the petrochemical industry
GB2064131A (en) Determining ionic species electrochemically
KR20000029584A (en) Corrosion monitoring process
DE3011958A1 (en) METHOD AND DEVICE FOR DETECTING LEAKS IN THE COOLING SYSTEM OF LARGE QUANTITIES OF CO-GAS-CONTAINING DEVICES
US3218242A (en) Measurement of the concentration of dissolved oxygen in liquids
KR100236175B1 (en) Automatic Measurement and Control of Alkali Concentration in Degreasing Process Using Ion Selective Electrode
RU2685799C1 (en) Corrosion measurement system with multivariate sensor
DE102017119804B4 (en) Method and sensor device for interference-compensated determination of material application or removal during wet-chemical processes
JP2617981B2 (en) Metal corrosion protection method
EP4624898A1 (en) Corrosion resistance test method, corrosion resistance test apparatus, and corrosion resistance test program for coated metal material, and recording medium
WO1992017642A1 (en) Diagnosing disturbances in the wet part chemistry of a paper machine
Rustandi et al. Behavior of CO2 corrosion of API 5L X52 steel in NaCl solution under turbulent flow condition