CS207237B1 - Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow - Google Patents
Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow Download PDFInfo
- Publication number
- CS207237B1 CS207237B1 CS596479A CS596479A CS207237B1 CS 207237 B1 CS207237 B1 CS 207237B1 CS 596479 A CS596479 A CS 596479A CS 596479 A CS596479 A CS 596479A CS 207237 B1 CS207237 B1 CS 207237B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- probe
- detectors
- flux
- determined
- detector
- Prior art date
Links
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
ČESKOSLOVENSKÁ SOCIALISTICKÁ REPUBLIKA (19) POPIS VYNALEZU K AUTORSKÉMU OSVEDČENIU ! 207237 (11) Ol) i s i (22) Přihlášené 03 09 79(21) (PV 5964-79) i (h) Int.Cl.3jťgWt i/oo ÚÁAD PRO VYNÁLEZYAOBJEVY (40) Zverejnené 15 09 80 (45) Vydané 01 10 82 (75)THE CZECHOSLOVAK SOCIALIST REPUBLIC (19) DESCRIPTION FOUND TO COPYRIGHT CERTIFICATE! 207237 (11) Ol) isi (22) Submitted 03 09 79 (21) (PV 5964-79) i (h) Int.Cl.3jtgWt i / oo DEPOSIT FOR INVENTORIES (40) Published 15 09 80 (45) Released 01 10 82 (75) \ t
j Autor vynálezu FIGEDY ŠTEFAN prom. fyz., TRNAVA (54) Sposob určenia optimálneho rozmiestnenia detektorov v sondě meranianeutrónového tokuThe inventor FIGS. phys., TRNAVA (54) The method of determining the optimal detector placement in the meranianeutron flow probe
Vynález sa týká spósobu určenia optimálnehorozmiestnenia detektorov v sondě merania neutro-nového toku, alebo toku gama žiarenia v aktívnejzóně jádrového reaktora.The invention relates to a method for determining the optimum location of detectors in a neutron flux measurement probe, or gamma radiation flux in an active core reactor core.
Meranie neutrónového toku, připadne toku ga-ma žiarenia po výške aktívnej zóny reaktorapředpokládá určiť rozmiestnenie detektorov povýške aktívnej zóny tak, aby bolo možné pomocoutakto umiestnených detektorov čo najvemejšievypočítat neutrónový tok, alebo tok gama žiareniav danom mieste. Dosial známy přístup k riešeniutohto problému bol empirický připadne intuitivný,čo málo za následok, že pomocou takto určenéhorozmiestnenia detektorov nebolo možné dostateč-né presne určiť hodnoty meraných veličin, t. j.neutrónového toku připadne toku gama žia-renia.Measurement of neutron flux, eventual flow of radiation at the height of the active zone, requires the detector to determine the distribution of detectors by the elevation of the active zone so as to calculate as much as possible the neutron flux or the gamma radiation flux of the site. The previously known approach to this problem has been empirical and intuitive, with little consequence that, with the aid of such a detector arrangement, it has not been possible to determine precisely the values of the measured variables, i.e. the neutron flow falls to the gamma radiation flow.
Vyššie uvedené nedostatky sú odstránené spóso-bom určenia optimálneho rozmiestnenia detekto-rov v sondě merania neutrónového toku, alebotoku gama žiarenia, kterého podstata spočíváv nasledujúcom. Priebeh neutrónového toku, ale-bo toku gama žiarenia po výške aktívnej zónyreaktora sa předpokládá v tvare funkcie 0 (z), kdez je súradnica. Typ funkcie možno voliť podíapotřeby. Integrál toku na úseku detektora jeúměrný signálu detektora. Za předpokladu znalos-tí skutečného rozloženia toku v danom reaktore, 207237 zisteného experimentálně, alebo teoreticky, mož-no integráciou tohto toku na úseku každéhodetektora určiť relatívnu hodnotu signálu I® j-téhodetektora. Obdobné, integráciou funkcie 0 (z) na ' úseku každého detektora možno určiť předpoklá-dané hodnotu signálu I? j-tého detektora.Jednotlivé hodnoty:The aforementioned drawbacks are eliminated by the method of determining the optimum positioning of the detectors in the neutron flux measurement probe, or the gamma radiation, which is based on the following. The course of the neutron flux or gamma-ray flux along the height of the active zone of the reactor is assumed to be 0 (z), where the coordinate is. The function type can be used to select the cost. Flow integral on detector section is proportional to detector signal. Assuming the knowledge of the actual flow distribution in a given reactor, 207237 detected experimentally or theoretically, the relative value of the signal of the I-thetector can be determined by integrating this flow in the region of each detector. Similarly, by integrating the function 0 (z) on the section of each detector, the predicted value of the signal I can be determined? j-th detector.
I/3, kde j = 1 až N kde N — počet detektorov v sondě,zaťažime náhodnými chybami merania. Týmto sa ešte viac přiblížíme ku skutečným podmienkamexperimentu. Hodnotu chyby merania predpokla-dáme na základe skúseností, získaných z prevádz-; kových meraní. Rozmiestnenie náhodných chýb na I jednotlivých detektoroch v sondě prevedieme nazáklade generácie náhodných čísiel. Týmto spóso-bom získáme nové, poopravené hodnoty I®, Metó-dou najmenších štvorcov, t.j. požadováním mini- ! málnej hodnoty výrazu f/if - ID2 možno zistiť konkrétny tvar funkcie 0 (z) a tým ajjej odlišnost od skutečného rozloženia toku. Tentopostup možno 'opakovat’ pre váčší počet náhodnéi rozmiesthených chýb na jednotlivých detektoroch! v danom konkrétnom usporiadaní detektorovI / 3, where j = 1 to N where N - the number of detectors in the probe, load with random measurement errors. This brings us closer to the real conditions of the experiment. We assume the value of the measurement error based on the experience gained from the measurements. Placing random errors on I individual detectors in the probe will be based on random number generation. In this way, we obtain new, least squares rectified I® values, i. E. of the f / if-ID2 expression, the particular form of the 0 (z) function can be determined, and thus its difference from the actual flow distribution. This procedure can be 'repeated' for a larger number of randomly spaced errors on individual detectors! in a particular detector arrangement
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS596479A CS207237B1 (en) | 1979-09-03 | 1979-09-03 | Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS596479A CS207237B1 (en) | 1979-09-03 | 1979-09-03 | Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS207237B1 true CS207237B1 (en) | 1981-07-31 |
Family
ID=5405623
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS596479A CS207237B1 (en) | 1979-09-03 | 1979-09-03 | Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS207237B1 (en) |
-
1979
- 1979-09-03 CS CS596479A patent/CS207237B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0771464B1 (en) | Method and a system for accurately calculating pwr power from excore detector currents corrected for changes in 3-d power distribution and coolant density | |
| Godfroy et al. | On-line flow visualization in multiphase reactors using neural networks | |
| CN108899102A (en) | The method for arranging of the fixed self-power neutron detector general for presurized water reactor | |
| Huet et al. | Study of commercial detector responses in non-equilibrium small photon fields of a 1000 MU/min CyberKnife system | |
| CS207237B1 (en) | Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow | |
| McSpaden et al. | Analysis of the MUSiC 3He Multiplicity Data | |
| Hankins | A neutron monitoring instrument having a response approximately proportional to the dose rate from thermal to 7.0 MeV | |
| Mcelroy Jr et al. | Initial characterization of a DD neutron generator-driven fast neutron coincidence collar | |
| Lindén et al. | Flowact, flow rate measurements in pipes with the pulsed-neutron activation method | |
| KR20230127410A (en) | Method of calculating radioactivity concentration in radioactive waste | |
| US4751040A (en) | Means and techniques useful in the monitoring and accountability of radioactive materials | |
| Thornton et al. | Design and performance testing of a tritium calorimeter | |
| McKenzie et al. | Future of the MUSiC Experiment Data | |
| RU2200988C2 (en) | Method for metering neutron flux in power reactor | |
| Russo et al. | Evaluation of an integrated holdup measurement system using the GGH formalism with the M {sup 3} CA | |
| Ryazanov et al. | Justification of the Possibility to Apply the Neutron Method to Control Nuclear Fissile Nuclides Accumulation in Filters and Air Ducts of the Spent Nuclear Fuel Reprocessing Plant | |
| Besov et al. | Neutron constants verification by nonstationary experiments with multiplying systems | |
| Hong et al. | Feasibility of a Linear Diode Array Detector for Commissioning of a Radiotherapy Planning System | |
| Schumchyk et al. | Scattered Radiation (Skyshine) Contribution to an Open Basement Located in a Simulated Fallout Field | |
| Saxe et al. | Variation of Neutron-Density Noise During Core Life in a Pressurized Water Reactor | |
| Kehler | Feasibility of using PNA techniques for in-situ calibration of UPTF two-phase flow instrumentation.[Upper Plenum Test Facility] | |
| RU1807527C (en) | Gear for determination of nonuniformity of nuclear fuel in circular dissolver | |
| Lamaze et al. | Integral reaction rate measurements in 252Cf and 235U fission spectra | |
| Nakamura et al. | First trial to study the feasibility of direct plutonium mass measurement in a process tank by a new NDA-Advanced Solution Measurement and Monitoring System | |
| Rudy | Overview of Calorimetric Assay of Plutonium in the United States |