CS207237B1 - Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow - Google Patents

Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow Download PDF

Info

Publication number
CS207237B1
CS207237B1 CS596479A CS596479A CS207237B1 CS 207237 B1 CS207237 B1 CS 207237B1 CS 596479 A CS596479 A CS 596479A CS 596479 A CS596479 A CS 596479A CS 207237 B1 CS207237 B1 CS 207237B1
Authority
CS
Czechoslovakia
Prior art keywords
probe
detectors
flux
determined
detector
Prior art date
Application number
CS596479A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Stefan Figedy
Original Assignee
Stefan Figedy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stefan Figedy filed Critical Stefan Figedy
Priority to CS596479A priority Critical patent/CS207237B1/en
Publication of CS207237B1 publication Critical patent/CS207237B1/en

Links

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

ČESKOSLOVENSKÁ SOCIALISTICKÁ REPUBLIKA (19) POPIS VYNALEZU K AUTORSKÉMU OSVEDČENIU ! 207237 (11) Ol) i s i (22) Přihlášené 03 09 79(21) (PV 5964-79) i (h) Int.Cl.3jťgWt i/oo ÚÁAD PRO VYNÁLEZYAOBJEVY (40) Zverejnené 15 09 80 (45) Vydané 01 10 82 (75)THE CZECHOSLOVAK SOCIALIST REPUBLIC (19) DESCRIPTION FOUND TO COPYRIGHT CERTIFICATE! 207237 (11) Ol) isi (22) Submitted 03 09 79 (21) (PV 5964-79) i (h) Int.Cl.3jtgWt i / oo DEPOSIT FOR INVENTORIES (40) Published 15 09 80 (45) Released 01 10 82 (75) \ t

j Autor vynálezu FIGEDY ŠTEFAN prom. fyz., TRNAVA (54) Sposob určenia optimálneho rozmiestnenia detektorov v sondě meranianeutrónového tokuThe inventor FIGS. phys., TRNAVA (54) The method of determining the optimal detector placement in the meranianeutron flow probe

Vynález sa týká spósobu určenia optimálnehorozmiestnenia detektorov v sondě merania neutro-nového toku, alebo toku gama žiarenia v aktívnejzóně jádrového reaktora.The invention relates to a method for determining the optimum location of detectors in a neutron flux measurement probe, or gamma radiation flux in an active core reactor core.

Meranie neutrónového toku, připadne toku ga-ma žiarenia po výške aktívnej zóny reaktorapředpokládá určiť rozmiestnenie detektorov povýške aktívnej zóny tak, aby bolo možné pomocoutakto umiestnených detektorov čo najvemejšievypočítat neutrónový tok, alebo tok gama žiareniav danom mieste. Dosial známy přístup k riešeniutohto problému bol empirický připadne intuitivný,čo málo za následok, že pomocou takto určenéhorozmiestnenia detektorov nebolo možné dostateč-né presne určiť hodnoty meraných veličin, t. j.neutrónového toku připadne toku gama žia-renia.Measurement of neutron flux, eventual flow of radiation at the height of the active zone, requires the detector to determine the distribution of detectors by the elevation of the active zone so as to calculate as much as possible the neutron flux or the gamma radiation flux of the site. The previously known approach to this problem has been empirical and intuitive, with little consequence that, with the aid of such a detector arrangement, it has not been possible to determine precisely the values of the measured variables, i.e. the neutron flow falls to the gamma radiation flow.

Vyššie uvedené nedostatky sú odstránené spóso-bom určenia optimálneho rozmiestnenia detekto-rov v sondě merania neutrónového toku, alebotoku gama žiarenia, kterého podstata spočíváv nasledujúcom. Priebeh neutrónového toku, ale-bo toku gama žiarenia po výške aktívnej zónyreaktora sa předpokládá v tvare funkcie 0 (z), kdez je súradnica. Typ funkcie možno voliť podíapotřeby. Integrál toku na úseku detektora jeúměrný signálu detektora. Za předpokladu znalos-tí skutečného rozloženia toku v danom reaktore, 207237 zisteného experimentálně, alebo teoreticky, mož-no integráciou tohto toku na úseku každéhodetektora určiť relatívnu hodnotu signálu I® j-téhodetektora. Obdobné, integráciou funkcie 0 (z) na ' úseku každého detektora možno určiť předpoklá-dané hodnotu signálu I? j-tého detektora.Jednotlivé hodnoty:The aforementioned drawbacks are eliminated by the method of determining the optimum positioning of the detectors in the neutron flux measurement probe, or the gamma radiation, which is based on the following. The course of the neutron flux or gamma-ray flux along the height of the active zone of the reactor is assumed to be 0 (z), where the coordinate is. The function type can be used to select the cost. Flow integral on detector section is proportional to detector signal. Assuming the knowledge of the actual flow distribution in a given reactor, 207237 detected experimentally or theoretically, the relative value of the signal of the I-thetector can be determined by integrating this flow in the region of each detector. Similarly, by integrating the function 0 (z) on the section of each detector, the predicted value of the signal I can be determined? j-th detector.

I/3, kde j = 1 až N kde N — počet detektorov v sondě,zaťažime náhodnými chybami merania. Týmto sa ešte viac přiblížíme ku skutečným podmienkamexperimentu. Hodnotu chyby merania predpokla-dáme na základe skúseností, získaných z prevádz-; kových meraní. Rozmiestnenie náhodných chýb na I jednotlivých detektoroch v sondě prevedieme nazáklade generácie náhodných čísiel. Týmto spóso-bom získáme nové, poopravené hodnoty I®, Metó-dou najmenších štvorcov, t.j. požadováním mini- ! málnej hodnoty výrazu f/if - ID2 možno zistiť konkrétny tvar funkcie 0 (z) a tým ajjej odlišnost od skutečného rozloženia toku. Tentopostup možno 'opakovat’ pre váčší počet náhodnéi rozmiesthených chýb na jednotlivých detektoroch! v danom konkrétnom usporiadaní detektorovI / 3, where j = 1 to N where N - the number of detectors in the probe, load with random measurement errors. This brings us closer to the real conditions of the experiment. We assume the value of the measurement error based on the experience gained from the measurements. Placing random errors on I individual detectors in the probe will be based on random number generation. In this way, we obtain new, least squares rectified I® values, i. E. of the f / if-ID2 expression, the particular form of the 0 (z) function can be determined, and thus its difference from the actual flow distribution. This procedure can be 'repeated' for a larger number of randomly spaced errors on individual detectors! in a particular detector arrangement

Claims (1)

PREDMETSUBJECT Spósob určenia Optimálneho rozmiestnenia detektorov v sondě merania neutrónového toku alebo toku gama žiarenia vyznačujúci sa tým, že na základe znalosti skutočného neutrónového toku alebo toku gama žiarenia, určeného experimentálně alebo teoreticky, sa neutrónový tok alebo tok gama žiarenia určí metódou aproximácie funkcii detektorov v sondě na presnosť stanovenia toku neutrónov alebo toku gama žiarenia.Method of determining Optimal placement of detectors in a neutron flux or gamma flux measuring probe, characterized in that, based on the knowledge of the actual neutron flux or gamma flux, determined experimentally or theoretically, the neutron flux or gamma flux is determined by a method of approximating accuracy of neutron flux or gamma flux determination. Príkladom konkrétného prevedenia uvedeného postupu móže slúžif použitie funkcie 0 (z) v tvare Fourierovho rozvoja. Rozmiestnenie ±5%-ných chýb na jednotlivých detektorech prevedieme využitím generáde náhodných čísiel zabezpečenej funkčnou procedúrou v programovom vybavení počítača. Hodnota chyby bola určená na základe prevádzkových meraní. Podlá toho, v ktorej časti intervalu (0; 1) sa vygenerované náhodné číslo nachádza, bola hodnota IE násobená číslom 1,05 alebo 0,95. Tento postup bol opakovaný pře každý jednotlivý detektor v sondě. Metódou najmenších štvorcov boli určené koefidenty Fourierovho rozvoja. Obdobným spósobom určíme funkdu 0 (z) pre iné rozmiestnenie detektorov.An example of a specific embodiment of the above procedure is the use of the function 0 (z) in the form of Fourier development. The distribution of ± 5% errors on individual detectors is performed by using a random number of random numbers provided by a functional procedure in the computer software. The error value was determined based on operational measurements. Depending on which part of the interval (0; 1) the generated random number is found, the value of I E was multiplied by 1.05 or 0.95. This procedure was repeated over each individual detector in the probe. The least squares method was used to determine coefficients of Fourier development. In a similar way we determine the function 0 (z) for a different detector layout. pre každé jednotlivé navrhnuté rozmiestnenie detektorov v sondě, pričom hodnoty ΙΕ, kde IE označuje hodnotu signálu j-tého detektora v sondě, sú zatažované náhodnými chybami a na základe odlišnosti takto určeného toku od skutočného toku sa určí optimálně rozmiestnenie detektorov v sondě.for each individual design of the detectors in the probe, where E Ε , where I E denotes the j-detector's signal value in the probe, are randomized and randomly determined by the difference of the flow thus determined from the actual flow.
CS596479A 1979-09-03 1979-09-03 Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow CS207237B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS596479A CS207237B1 (en) 1979-09-03 1979-09-03 Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS596479A CS207237B1 (en) 1979-09-03 1979-09-03 Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow

Publications (1)

Publication Number Publication Date
CS207237B1 true CS207237B1 (en) 1981-07-31

Family

ID=5405623

Family Applications (1)

Application Number Title Priority Date Filing Date
CS596479A CS207237B1 (en) 1979-09-03 1979-09-03 Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow

Country Status (1)

Country Link
CS (1) CS207237B1 (en)

Similar Documents

Publication Publication Date Title
EP0771464B1 (en) Method and a system for accurately calculating pwr power from excore detector currents corrected for changes in 3-d power distribution and coolant density
Godfroy et al. On-line flow visualization in multiphase reactors using neural networks
CN108899102A (en) The method for arranging of the fixed self-power neutron detector general for presurized water reactor
Huet et al. Study of commercial detector responses in non-equilibrium small photon fields of a 1000 MU/min CyberKnife system
CS207237B1 (en) Method of determination of optimal arrangement of detectors in the probe of measuring the neutron flow
McSpaden et al. Analysis of the MUSiC 3He Multiplicity Data
Hankins A neutron monitoring instrument having a response approximately proportional to the dose rate from thermal to 7.0 MeV
Mcelroy Jr et al. Initial characterization of a DD neutron generator-driven fast neutron coincidence collar
Lindén et al. Flowact, flow rate measurements in pipes with the pulsed-neutron activation method
KR20230127410A (en) Method of calculating radioactivity concentration in radioactive waste
US4751040A (en) Means and techniques useful in the monitoring and accountability of radioactive materials
Thornton et al. Design and performance testing of a tritium calorimeter
McKenzie et al. Future of the MUSiC Experiment Data
RU2200988C2 (en) Method for metering neutron flux in power reactor
Russo et al. Evaluation of an integrated holdup measurement system using the GGH formalism with the M {sup 3} CA
Ryazanov et al. Justification of the Possibility to Apply the Neutron Method to Control Nuclear Fissile Nuclides Accumulation in Filters and Air Ducts of the Spent Nuclear Fuel Reprocessing Plant
Besov et al. Neutron constants verification by nonstationary experiments with multiplying systems
Hong et al. Feasibility of a Linear Diode Array Detector for Commissioning of a Radiotherapy Planning System
Schumchyk et al. Scattered Radiation (Skyshine) Contribution to an Open Basement Located in a Simulated Fallout Field
Saxe et al. Variation of Neutron-Density Noise During Core Life in a Pressurized Water Reactor
Kehler Feasibility of using PNA techniques for in-situ calibration of UPTF two-phase flow instrumentation.[Upper Plenum Test Facility]
RU1807527C (en) Gear for determination of nonuniformity of nuclear fuel in circular dissolver
Lamaze et al. Integral reaction rate measurements in 252Cf and 235U fission spectra
Nakamura et al. First trial to study the feasibility of direct plutonium mass measurement in a process tank by a new NDA-Advanced Solution Measurement and Monitoring System
Rudy Overview of Calorimetric Assay of Plutonium in the United States