CS201770B1 - Method of fixing the depth of aluminium layer and interlayer on the iron foundation - Google Patents
Method of fixing the depth of aluminium layer and interlayer on the iron foundation Download PDFInfo
- Publication number
- CS201770B1 CS201770B1 CS564078A CS564078A CS201770B1 CS 201770 B1 CS201770 B1 CS 201770B1 CS 564078 A CS564078 A CS 564078A CS 564078 A CS564078 A CS 564078A CS 201770 B1 CS201770 B1 CS 201770B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- aluminum
- depth
- chloride
- interlayer
- iron
- Prior art date
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 23
- 229910052742 iron Inorganic materials 0.000 title claims description 11
- 238000000034 method Methods 0.000 title claims description 8
- 239000010410 layer Substances 0.000 title description 18
- 239000011229 interlayer Substances 0.000 title description 11
- 239000004411 aluminium Substances 0.000 title 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 12
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 239000002585 base Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 235000011164 potassium chloride Nutrition 0.000 claims description 5
- 239000001103 potassium chloride Substances 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- 238000000576 coating method Methods 0.000 description 10
- 238000004090 dissolution Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910000680 Aluminized steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
Vynález rieši epfisob stanovenia hrůbky hliníkovej vrstvy a medzivrstvy vytvorenej žiarove, alebo elektrolyticky na železných, resp. ocelových základech.The invention solves the episode of determining the depth of the aluminum layer and the intermediate layer formed by heat, or electrolytically, on the iron and the iron layers. steel foundations.
Hliníkové povlaky vytvořené žiarovým spfisobom (namáčením základu do roztaveného klinika), alebo vylúčené elektrolyticky v prostředí roztavených solí na železných (ocelových) základoch majú vynikájúce antikorozně vlastnosti. Základným předpokladem pře vyhodnotenie kvality povlaku je atanovenie jeho hrůbky, ako aj hrůbky difúznej vrstvy (medzivrstvy) na rozhraní medzi základným kovom a hliníkovou vrstvou, ktorá v podstatě určuje mechanické vlastnosti vylúčených povlakov. V technickéj praxi se hrůbky hliníkových povlakov určujú gravimetricky (hmotnostně) na základe hmotnostného prírastku vzorky daných rozmerov, alebo mikroskopicky na priečnom řeze vzorky. Pri gravimetrickou: stanovení sa stanoví len celkové množstvo vylúčeného hlinlka a nie je možné určiť hrůbku hliníkovej vrstvy a medzivrstvy na řázovom rozhraní hliník/železo. Vizuálně (mikroskopické) stanoveni® nie je objektivně, vyžaduje si přípravu nábrusov, ktorá je časové velmi náročná a stanovené hodnoty aú zatěžované veTkou subjektivnou chybou (až 50 %). V posledněj době sa na meranie hrúbok hliníkových vrstiev používá stanovenie pomocou rtg mikroanalyzátora. Nevýhodou tejto metody, podobné ako pri vizuálněj metoda, je najmá nutnost přípravy kvalitných nábrusov. Okrem toho, ak aa má apolahlivo určiť priemerná hrúbka vrstvy, musí sa meranie opakovat na niektorých priečnych rezoch. Zistilo sa tiež, že táto meto'da nie je vhodná na stanovenie hrůbky medzivratvy a pri hrúbke vrstvy menšej ako 5 pm sú hodnoty naměřené pomocou mikroanalyzátoraAluminum coatings formed by heat treatment (dipping the base into a molten clinic) or deposited electrolytically in an environment of molten salts on iron (steel) bases have excellent anticorrosive properties. The prerequisite for evaluating the quality of the coating is to determine its depth as well as the depth of the diffusion layer (interlayer) at the interface between the parent metal and the aluminum layer, which essentially determines the mechanical properties of the deposited coatings. In technical practice, the depths of aluminum coatings are determined gravimetrically (by weight) on the basis of the weight gain of a sample of given dimensions, or microscopically on a cross-section of the sample. For gravimetric determination, only the total amount of excreted clay is determined and it is not possible to determine the depth of the aluminum layer and the interlayer at the aluminum / iron interface. Visually (microscopic) determination is not objective, it requires preparation of polished sections, which is very time consuming and determined values are burdened by a large subjective error (up to 50%). More recently, an X-ray microanalyst assay has been used to measure the thickness of aluminum layers. The disadvantage of this method, similar to the visual method, is the very necessity of preparing high-quality polished sections. In addition, if aa is to readily determine the average layer thickness, the measurement must be repeated on some cross-sections. It has also been found that this method is not suitable for determining the depth of an intermediate gate, and at a layer thickness of less than 5 µm, the values are measured using a microanalyzer.
201 770201 770
201 770 zatažené značnou chybou. Nevýhodou je tiež akutočnosť, že tento nákladný přístroj nepatří k běžnému vybaveniu prevádzkových ekúéobnýeh laboratorií.201 770 overwhelmed by a significant error. A disadvantage is also the fact that this costly apparatus is not a standard equipment of in-service ecological laboratories.
Podstata vynálezu spočívá v anodickom rozpúžtaní vzorky pohliníkovaného železného (ocelového) plechu, reap. iného základu v prostředí roztavených aoll na báze chloridov za podmienok, ktoré umožňujú kvantitativné etanovenie hrůbky hliníkovej vrstvy a medzivrstvy. Ako elektrolyt aa používá roztavená zmes chloridu hlinitého s chloridmi alkalických kovov o zložení 70 až 75 % hmot. chloridu hlinitého, 5 až 24 % hmot. chloridu sodného e 5 až 24 hmot. % chloridu draselného, přednostně o zložení 70 % hmot. chloridu hlinitého, 15 % hmot. chloridu eodného a 15 % hmot. chloridu draselného. Chlorid sodný a chlorid draselný sú navzájom zastupitelné s podmienkou, že ich úhrnná koncentráeia v elektrolyte nepresiahne 30 % hmot. Utrácí článok pozostáva z grafitového kelímka, ktorý elúži zároveň ako katoda, pohliníkovanej časti, ktorá je zapojená ako anoda a z hliníkovej referenčnej elektrody. Anodické rozpúžtanie se realizuje pri teplote 180 až 230 °C a konStantnej prúdovej hustotě, ktorá sa mdže volit v rozmedzí 4 až 8 A.dm , pri ktorej aa dosiahne 100 % prúdová účinnost. Pri anodickom rozpúStaní kondtantným jednosměrným prúdom se registruje potenciál anody ako funkcia času vzhladom k referenčnej hliníkovej elektrodo. Na regiatrovanej krivke zretelne vystupujú dve časti, ktúré zodpovedajú rozpúžtaniu hliníkovej vrstvy a medzivrstvy. Na základe nameranej závieloeti potenciál - čas, známých rozmerov aktívneho povrchu ano'dy (plocha tej časti pohliníkovaného základu, ktorá je ponořená v elektrolyte) a známej hodnoty prúdu sa pomocou Paredayovho zákona vypočítá hrúbka hliníkovej vrstvy a medzivrstvy, pričom sa vyohádza zo skutočnosti, že pri aktívnej ploché 1 cm rozpustí 1 ampérsekunda, t.j. 1 coulómb vrstvu hliníka o hrúbke 0,34 pm a difúznu vrstvu Fe - Al o priemernej hrúbke 0,355 pm. Stanovené hodnoty hrůbky vrstvy a medzivrstvy sú zatažené chybou max. + 2 %.The principle of the invention consists in anodic dissolution of a sample of aluminized iron (steel) sheet, reap. in a molten chloride-based environment under conditions which allow quantitative determination of the depth of the aluminum layer and the interlayer. A molten mixture of aluminum chloride and alkali metal chlorides having a composition of 70 to 75 wt. % aluminum chloride, 5 to 24 wt. % sodium chloride 5 to 24 wt. % potassium chloride, preferably 70 wt. % aluminum chloride, 15 wt. % eodium chloride and 15 wt. potassium chloride. Sodium chloride and potassium chloride are interchangeable, provided that their total electrolyte concentration does not exceed 30% by weight. The spent cell consists of a graphite crucible which elutes at the same time as a cathode, an aluminized part which is connected as an anode and an aluminum reference electrode. The anodic dissolution is carried out at a temperature of 180 to 230 ° C and a constant current density, which can be selected in the range of 4 to 8 A.dm, at which aa achieves 100% current efficiency. In anodic dissolution with a condenser direct current, the anode potential is registered as a function of time relative to the reference aluminum electrode. Two parts, corresponding to the aluminum layer and the interlayer, are clearly visible on the regatted curve. Based on the measured potential-time divergence, the known dimensions of the active surface of the yesde (the area of that part of the alumina base immersed in the electrolyte) and the known current value, the thickness of the aluminum layer and the interlayer is calculated using Pareday's law. for active flat 1 cm dissolves 1 ampere second, ie 1 coulom layer of aluminum with a thickness of 0.34 µm and a diffusion layer of Fe - Al with an average thickness of 0.355 µm. The determined values of the layer thickness and the interlayer are drawn by error max. + 2%.
Navrhnutý spdeob anodického rozpú&tahia hliníkových povlakov na železných základech v elektrolytoch na báze chloridov umožňuje jednoduché, rýchle a přesné etanovenie hrůbky vylúčenej hliníkovej vrstvy a najme medzivrstvy na fázovom rozhraní železo/hliník, ktorej přítomnost v podstatnej miere určuje mechanické vlastnosti vylúčených hliníkových povlakov. Stanovené hodnoty eú zatažené chybou max. * 2 %.The proposed method of anodic dissolution of aluminum coatings on iron bases in chloride-based electrolytes allows simple, rapid and accurate etching of the depth of the deposited aluminum layer and in particular the interlayers at the iron / aluminum phase interface whose presence largely determines the mechanical properties of the deposited aluminum coatings. Specified eu values with error max. * 2%.
Příklad 1Example 1
Anodickým rozpúéťaním Hliníkového povlaku na železnom základe v tvare plie&ku s aktívnym povrchom 2 cm2 v tavenine o zložení 70 % hmot. chloridu hlinitého, 15 % hmot. chloridu so'dneho a 14 % hmot. chloridu draselného pri teplote 200 °C, anodickéj prúdovej husto te 5 A.dm”2 a čase elektrolýzy 11 minút sa atanovila hrúbka hliníkovej vrstvy 4,68 tim a hrúbka medzivrstvy 1,48 (m.By anodic dissolution of an iron-based aluminum coating in the shape of a plunger with an active surface of 2 cm 2 in a melt of 70 wt. % aluminum chloride, 15 wt. % sodium chloride and 14 wt. of potassium chloride at 200 ° C, anodic current density of 5 A.dm 2 and an electrolysis time of 11 minutes, an aluminum layer thickness of 4.68 µm and an interlayer thickness of 1.48 (m.
Příklad 2Example 2
Anodickým rozpúéťaním hliníkového povlaku na železnom základe v tvare drdtu o prieo mere 0,5 mm s aktívnym povrchom 0,16 cnr v tavenine o rovnakom zložení, pri teploteAnodic dissolution of an aluminum coating on an iron base in the form of a wire of 0.5 mm diameter with an active surface of 0.16 cnr in a melt of the same composition, at a temperature of
220 °C, pri rovnakéj prúdovej hustotě a čase elektrolýzy 3 min. sa stanovila hrúbka hliníkovej vretvy 15,43 jun e hrúbka medzivrstvy 1,74 pni.220 ° C, at the same current density and electrolysis time 3 min. An aluminum strand thickness of 15.43 jun and an interlayer thickness of 1.74 psi was determined.
201 770201 770
Navrhnutý spdsob atanovenie hrůbky hliníkových povlakov sa mdže použiť aj pre urSenie hrůbky hliníkových povlakov získaných inými metodami, napr. naparováním vo vákuu, difúznym hlinlkovaním a pod., ako aj pre urSenie hrůbky difúznej medzivrstvy, vznikájúcej pri tepelnom sprecování pohliníkovanej oceli.The proposed method for determining the depth of aluminum coatings can also be used to determine the depth of aluminum coatings obtained by other methods, e.g. by vacuum vapor deposition, diffusion-claying, and the like, as well as to determine the depth of the diffusion interlayer resulting from the heat treatment of the aluminized steel.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS564078A CS201770B1 (en) | 1978-08-31 | 1978-08-31 | Method of fixing the depth of aluminium layer and interlayer on the iron foundation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS564078A CS201770B1 (en) | 1978-08-31 | 1978-08-31 | Method of fixing the depth of aluminium layer and interlayer on the iron foundation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS201770B1 true CS201770B1 (en) | 1980-11-28 |
Family
ID=5401625
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS564078A CS201770B1 (en) | 1978-08-31 | 1978-08-31 | Method of fixing the depth of aluminium layer and interlayer on the iron foundation |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS201770B1 (en) |
-
1978
- 1978-08-31 CS CS564078A patent/CS201770B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101195458B1 (en) | Method for treating the surface of metal | |
| Brilloit et al. | Penetration and chemical reactions in carbon cathodes during aluminum electrolysis: part i. laboratory experiments | |
| Spooner | The anodic treatment of aluminum in sulfuric acid solutions | |
| GB1580994A (en) | Material for selective absorption of solar energy and production thereof | |
| Christensen et al. | The influence of oxide on the electrodeposition of niobium from alkali fluoride melts | |
| Kunze et al. | Electrolytic determination of tin and tin‐iron alloy coating weights on tin plate | |
| Xue et al. | Sodium and bath penetration into TiB2-carbon cathodes during laboratory aluminium electrolysis | |
| Yao et al. | Effects of ceramic coating by micro-plasma oxidation on the corrosion resistance of Ti–6Al–4V alloy | |
| CS201770B1 (en) | Method of fixing the depth of aluminium layer and interlayer on the iron foundation | |
| Kipouros et al. | The electrodeposition of improved molybdenum coatings from molten salts by the use of electrolyte additives | |
| Nitta et al. | Electrodeposition of tungsten from Li2WO4-Na2WO4-K2WO4 based melts | |
| Kellner | Electrodeposition of coherent boron | |
| Tschöpe et al. | Critical reflections on laboratory wear tests for ranking commercial cathode materials in aluminium cells | |
| CA1054555A (en) | Electrodepositing method | |
| RU2142026C1 (en) | Iron plating electrolyte | |
| SU1737025A1 (en) | Electrolyte for bright nickel plating | |
| Sieber et al. | Corrosion protection of Al/Mg compounds by simultaneous plasma electrolytic oxidation | |
| US3688559A (en) | Method for testing heat insulating lining materials for aluminum electrolysis cells | |
| US3958741A (en) | Method of mounting silicon anodes in a chlor-alkali cell | |
| Haarberg | Effects of electrolyte impurities on the current efficiency during aluminium electrolysis | |
| Wood et al. | On The Nature of Anodic Oxide Films Formed on Aluminium in Boric Acid-Formamide Solutions | |
| Li et al. | Study on the process of preparing Al-Ce alloy by electrodeposition | |
| Nguyen et al. | Behaviour of TiB2-Coating on Graphitized Carbon Cathodes During Laboratory Aluminium Electrolysis | |
| Fellner et al. | Determination of the rate of formation and of the thickness of the diffusion layer in the system Fe-Al in the temperature range 200–600° C | |
| Chandran et al. | Characteristics of Non—Cyanide Acid Zinc Plating Baths and Coatings |