CS201690B1 - Electrochemical-machining tool - Google Patents
Electrochemical-machining tool Download PDFInfo
- Publication number
- CS201690B1 CS201690B1 CS283478A CS283478A CS201690B1 CS 201690 B1 CS201690 B1 CS 201690B1 CS 283478 A CS283478 A CS 283478A CS 283478 A CS283478 A CS 283478A CS 201690 B1 CS201690 B1 CS 201690B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- electrode
- profile
- electrolyte
- machining tool
- electrochemical machining
- Prior art date
Links
- 238000003754 machining Methods 0.000 title claims description 15
- 239000003792 electrolyte Substances 0.000 claims description 21
- 230000001154 acute effect Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 description 3
- 102100027340 Slit homolog 2 protein Human genes 0.000 description 2
- 101710133576 Slit homolog 2 protein Proteins 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
(54) Nástroj na elektrochemické obrábanie(54) Electrochemical machining tool
Vynález 8a týká nástroja na elektrochemické obrábanie s prívodom elektrolytu do Strbiny nástroja.The invention 8a relates to an electrochemical machining tool with an electrolyte supply to the tool gap.
V súčasnoati sa pri elektrochemickou obrábaní vSčšinou privádza elektrolyt, připadne zmes elektrolytu a plynu do pracovného priestoru medzi elektrodu a obrobok vtokovými átrbinami vytvořenými v telese elektrody. Vtokové Strbiny sú vytvořené kolmo alebo pod určitým uhlem k obrábanému povrchu. Do pracovného priestoru medzi elektrodu a obrobok vstupuje elektrolyt prierezom, ktorý je daný obvodom prívodnej štrbiny a velTcosťou medzery medzi elektrodou a obrobkom.At the present time, in the case of electrochemical machining, the electrolyte, or a mixture of electrolyte and gas, is usually fed into the working space between the electrode and the workpiece through gaps formed in the electrode body. The inflow slots are formed perpendicular or at a certain angle to the work surface. The electrolyte enters the working space between the electrode and the workpiece through a cross-section which is determined by the circumference of the feed gap and the gap between the electrode and the workpiece.
Nevýhody uvedeného spdsobu přívodu elektrolytu do pracovného priestoru spočívajú v tem, Se v ddeledku náhlého zúženia štrbiny a změny směru toku dochádza k prudkému poklesu tlaku až o 50 5) z tlaku přivedeného do telesa elektrody, čo má za následok, že cez pracovný priestor preteká podstatné menáie množstvo elektrolytu, ako by zodpovedalo přivedenému tlaku do telesa nástrojovéj elektrody. ZvSčáením pracovnej medzery k možnosti pretekania vačSieho množstva elektrolytu nastáva zníženie rýchlosti ohrábania i přesnosti zhotoveného tvaru a zharšenie akosti opracovaného povrchu. Pri zvyšovaní vstupného tlaku elektrolytu je nutné použiť výkonnéjšie čerpadlá i kompresory v případe, že sa pracuje zmesou plyn - elektrolyt. Spoločnou nevýhodou uvedených variácií je vel’ká spotřeba energie.The disadvantages of said method of electrolyte supply to the working space are that, due to the sudden narrowing of the gap and the change in flow direction, there is a sharp drop in pressure of up to 50% from the pressure applied to the electrode body. the amount of electrolyte as it would correspond to the applied pressure to the tool electrode body. By increasing the working gap to the possibility of overflowing more electrolyte, there is a reduction in the speed of bending and in the accuracy of the produced shape, and the quality of the treated surface deteriorates. When increasing the inlet pressure of the electrolyte, it is necessary to use more efficient pumps and compressors in the case that the gas-electrolyte mixture is used. A common disadvantage of these variations is the large energy consumption.
201 690201 690
201 090201 090
Uvedené nedostatky zmierňuje nástroj na elektrochemické obrátaanie podl'a vynálezu, ktorého podstata spočívá v tom, že profil Strbiny ústiacej na činnú plochu elektrody má tvar obecnej křivky. So podstaty vynálezu patři i to, že profil Strbiny ústiacej na činnú plochu elektrody má tvar sinusoidy. K podstatě vynálezu patří tiež, že steny profilu Strbiny ústiacej na činnú plochu elektrody zvierajú ostrý uhol voči pozdížnej oei profiluThe above-mentioned drawbacks are alleviated by the electrochemical inversion tool according to the invention, which is characterized in that the profile of the slit opening onto the working surface of the electrode has the shape of a general curve. It is also within the scope of the invention that the profile of the slit opening onto the active surface of the electrode has the shape of a sinusoid. It is also within the scope of the invention that the walls of the profile of the slit opening onto the electrode active surface form an acute angle to the longitudinal profile of the profile.
Výhody nástroja k elektrochemickému obrábaniu spočívajú najmS v tom, že zvlněným profilem Strbiny sa podstatné zváčSí vstupný prierez pre vstup elektrolytu do pracovného priestoru. ZvSčšením vstupného prierezu do pracovného priestoru eliminuje sa pokles tlaku v pracovnom prieetore, čo sa prejeví zvfičšením prietoku elektrolytu cez pracovný priestor pri rovnakej velkosti pracovnej medzery, alebo pri rovnakom vstupnem tlaku elektrolytu do telesa elektrody. Vynález umožňuje zvýáenie tlaku elektrolytu, připadne zmesi plyn-elektrolyt v pracovnom priestore, čím sa dosahuje vščšia vodivost ddsledkom zmenšenia objemu plynnéj zložky pri vstupe do pracovného priestoru a pri přechode pracovným priestorom. Ddsledkom váčSieho priebehu elektrolytu dochádza k podstatné menšiemu otepleniu pri jeho přechode pracovným priestorom, tým sa zvyšuje Specifický úber materiálu, čo sa prejavuje v zvýšenéj energetickej účinnosti procesu elektrochemického obrábania a čo umožňuje zvýšit rýchlost obrábania, připadne pri rovnakých podmienkach obrábat vačšie plochy.The advantages of the electrochemical machining tool are, in particular, that the corrugated profile of the slot substantially increases the inlet cross-section for the electrolyte to enter the working space. Increasing the inlet cross-section into the working space eliminates the pressure drop in the working port, which results in an increase in the electrolyte flow through the working space at the same working gap size, or at the same electrolyte inlet pressure into the electrode body. The invention makes it possible to increase the pressure of the electrolyte or gas-electrolyte mixture in the working space, thereby achieving greater conductivity due to the reduction of the volume of the gaseous component upon entering the working space and passing through the working space. As a result of the increased electrolyte flow, there is substantially less warming as it passes through the working space, thereby increasing the specific removal of material, which results in increased energy efficiency of the electrochemical machining process and allows increased machining speed or larger surfaces under the same conditions.
Nástroj na elektrochemické obrábanie je příkladné zobrazený na pripojenom výkrese, kde obr. 1 zobrazuje pdvodné riešenie Strbiny na privádzanie elektrolytu, na obr. 2 je nakreslená átrbina v tvare sinusoidy, obr. 3 zobrazuje profil Strbiny, ktorej steny zvierajú ostrý uhol voči pozdížnej osi profilu, na obr. 4 je nakreslené prevedenie nástroja, u ktorého je štrbina vytvořená priamo v prívodnom kanáli elektrolytu a obr. 5 zobrazuje vytvorenie Strbiny vo vložke vsunutaj do prívodného kanála elektrolytu.An electrochemical machining tool is shown by way of example in the accompanying drawing, wherein FIG. 1 shows an original solution of an electrolyte supply gap, FIG. 2 is a sinusoid-shaped slit, FIG. 3 shows a profile of a slit whose walls form an acute angle to the longitudinal axis of the profile; FIG. 4 shows an embodiment of a tool in which the slot is formed directly in the electrolyte supply channel; and FIG. 5 shows the formation of a slot in the insert inserted into the electrolyte supply channel.
Nástroj na elektrochemické obrábanie pozostáva z elektrody 1 s vytvořeným prívodným kanálom 2. Prívodný kanál 2 je ukončený štrbinou 2 ústiacou na činnú plochu 2 elektrody 1, ktorej profil má tvar obecnej křivky. Profil Strbiny 2 může byť vytvořený priamo v telese elektrody 1 alebo vo vložke £, vsunutej do prívodného kanála 2. Podl’a charakteru obrábania mdže byť štrbina 2 tvaru sinusoidy, připadne ateny 6 Strbiny 2 ústiacej na činnú plochu 2 elektrody 1 mdžu zvierať ostrý uhol voči pozdížnej osi 2 profilu Strbiny 2·The electrochemical machining tool consists of an electrode 1 with a lead-in channel 2 formed. The lead-in channel 2 is terminated by a slot 2 opening on the active surface 2 of the electrode 1, the profile of which is in the form of a general curve. The profile of the slit 2 can be formed directly in the electrode body 1 or in the insert 6 inserted into the supply channel 2. Depending on the nature of the machining, the slot 2 can be sinusoid-shaped or possibly atena 6. in relation to the longitudinal axis 2 of the profile Strbiny 2 ·
Funkcia nástroja na elektrochemické obrábanie je nasledovná..Do prívodného kanála 2 elektrody 1 je privádzaný elektrolyt pod tlakom a cez Strbinu 2 vytéká do pracovnej medzery a obmýva činnú plochu 2 elektrody. Profil Strbiny 2 zvlněného tvaru umožňuje dokonalé obmývanie činnéj plochy 2 elektrody 1, čo umožňuje elektrodu X poeúvať do záběru vščšou rýchlosťou. Přivedením elektrickoj energie na elektrodu 1 a obrobok za přítomnosti elektrolytu nestává elektrochemické obrábanie.The function of the electrochemical machining tool is as follows. An electrolyte is supplied to the feed channel 2 of the electrode 1 under pressure and flows through the slot 2 into the working gap and washes the active surface 2 of the electrode. The profile of the undulating shape of the slit 2 allows perfect washing of the active surface 2 of the electrode 1, allowing the electrode X to engage at a higher speed. By applying electrical energy to the electrode 1 and the workpiece in the presence of an electrolyte, electrochemical machining does not occur.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS283478A CS201690B1 (en) | 1978-05-04 | 1978-05-04 | Electrochemical-machining tool |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS283478A CS201690B1 (en) | 1978-05-04 | 1978-05-04 | Electrochemical-machining tool |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS201690B1 true CS201690B1 (en) | 1980-11-28 |
Family
ID=5366596
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS283478A CS201690B1 (en) | 1978-05-04 | 1978-05-04 | Electrochemical-machining tool |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS201690B1 (en) |
-
1978
- 1978-05-04 CS CS283478A patent/CS201690B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3352774A (en) | Apparatus for electrolytically tapered or contoured cavities | |
| HK53885A (en) | Wire threading in wire-cut electroerosion machining processes | |
| US4217190A (en) | Method and apparatus for electrochemically finishing airfoil edges | |
| CS201690B1 (en) | Electrochemical-machining tool | |
| JPS58165923A (en) | Electric discharge processing | |
| US3384563A (en) | Method of radiusing the edge of an aperture electrolytically | |
| US3414501A (en) | Method and apparatus for shaping, sharpening and polishing razor blades | |
| Kozak et al. | Accuracy problems of the pulse electrochemical machining | |
| JPS5695540A (en) | Wire cut type electrospark machining method | |
| JPS6010854B2 (en) | Wire cut electric discharge machining method | |
| US3427239A (en) | Tool electrode for electro-erosive machinery | |
| USRE31605E (en) | Method and apparatus for electrochemically finishing airfoil edges | |
| CN208437780U (en) | A kind of fixture of electrical discharge machining metal foil | |
| ATE34781T1 (en) | PLANT FOR REGENERATION OF AN AMMONIA CAUSTIC SOLUTION. | |
| GB1303245A (en) | ||
| CN206493154U (en) | Insert processing tool | |
| GB1210697A (en) | Improvements in or relating to apparatus for use in the electrolytic machining of elongated stock material | |
| SU496147A1 (en) | Device for electrochemical dimensional processing of complex profiles | |
| CN213557775U (en) | Electrostatic oiler knife beam | |
| CN215145421U (en) | Electrolyte rectification and back pressure device for profile surface electrolytic machining | |
| JPS608893Y2 (en) | Electrode for electrical discharge machining | |
| CN209717033U (en) | A kind of collet chuck group | |
| CN201275627Y (en) | Composite knife bar for processing special screw thread | |
| CN210848830U (en) | Medical tightening pipe for laser cutting | |
| CN108213622A (en) | The once electrolytic processing molding method of stock endoporus difference groove profile |