CS196485B1 - Ferrous alloy for quantometer adjusting - Google Patents

Ferrous alloy for quantometer adjusting Download PDF

Info

Publication number
CS196485B1
CS196485B1 CS551078A CS551078A CS196485B1 CS 196485 B1 CS196485 B1 CS 196485B1 CS 551078 A CS551078 A CS 551078A CS 551078 A CS551078 A CS 551078A CS 196485 B1 CS196485 B1 CS 196485B1
Authority
CS
Czechoslovakia
Prior art keywords
weight
adjusting
quantometer
iron
ferrous alloy
Prior art date
Application number
CS551078A
Other languages
Czech (cs)
Inventor
Karel Bicovsky
Original Assignee
Karel Bicovsky
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karel Bicovsky filed Critical Karel Bicovsky
Priority to CS551078A priority Critical patent/CS196485B1/en
Publication of CS196485B1 publication Critical patent/CS196485B1/en

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

Vynález se týká lité slitiny železa pro seřizování kvantometrů, při provádění analýzy ohemlokého složení materiálů ve slévárnách litiny.BACKGROUND OF THE INVENTION The present invention relates to a cast iron alloy for the adjustment of quantometers when performing an analysis of the shallow composition of materials in cast iron foundries.

Stanovení chemického složení technických kovů v hutnictví a strojírenství je nejčaetějl prováděno automatickými analyzátory - kvantometry. Chemické složení je určováno z poměru signálu analyzovaného prvku a signálu matričního prvku. Pro zaručení spolehlivého chodu kvantometrů Je třeba splnit dvě podmínky správnost a stabilitu. Zatímco správnost zajišťují vhodně volené referenční materiály, je pro zajiětění stability potřeba tak zvaných nastavovacích vzorků. Nutným požadavkem na tyto vzorky je, aby koncentrace jednotlivých prvků byly blízko herní hranice rozsahu věech materiálů analýzováných na jeden program a zároveň, aby tyto vzorky byly maximálně homogenní. Velkou výhodou Je co nejmeněí počet těchto nastavovacích vzorků, nejlépe jen jeden.Determination of chemical composition of technical metals in metallurgy and mechanical engineering is mostly performed by automatic analyzers - quantometers. The chemical composition is determined from the ratio of the signal of the analyzed element and the signal of the matrix element. To ensure reliable operation of the quantometers Two conditions of accuracy and stability must be met. While appropriately selected reference materials ensure accuracy, so-called adjustment samples are required to ensure stability. A necessary requirement for these samples is that the concentrations of the individual elements are close to the game boundary of the range of all the materials analyzed for one program, and that these samples are as homogeneous as possible. A great advantage is that the number of these adjustment samples is as small as possible, preferably only one.

Pro kvantometrickou analýzu litiny bylo dosud velmi obtížné tyto podmínky splnit. Současně vysoké obsahy věech grafitizačních prvků, Jako například uhlíku, křemíku, fosforu apod., neumožňovaly vznik jemné bílé struktury, potřebné pro reprodukovatelnost signálu. Použití libovolného přídavku běžných karbidotvorných prvků bylo vyloučeno, neboť tyto jsou rovněž analyzovány.For quantitative analysis of cast iron, it has been very difficult to meet these conditions. At the same time, the high contents of all graphitizing elements, such as carbon, silicon, phosphorus and the like, did not give rise to the fine white structure required for signal reproducibility. The use of any addition of conventional carbide-forming elements has been ruled out since these are also analyzed.

196 485196 485

198 4BS198 4BS

Pro seřizování kvantometrů bylo dosud používáno různých nastavovacích vzorků, z nichž nejběžnějží jaou například o složení:So far, various adjusting samples have been used to adjust the quantometers, the most common of which are the composition of:

Vzorek 1 prvek uhlík mangan křemík fosfor síra mě3 nikl chrom molybden železoSample 1 element carbon manganese silicon phosphorus sulfur me3 nickel chromium molybdenum iron

Vzorek 2 prvek uhlík mangan křemík fosfor síra mě5 nikl chrom molybden titan vanan cín arsen železo % hmotnostníchSample 2 element carbon manganese silicon phosphorus sulfur me5 nickel chromium molybdenum titanium vanan tin arsenic iron% by weight

2,8 0,9 2,0 0,6 0,05 0,52.8 0.9 2.0 0.6 0.05 0.5

1,91.9

2,3 0,8 88,15 % hmotnostníoh2.3 0.8 88.15% w / w

3,3 0,43,3 0,4

1,9 0,16 0,08 0,16 0,27 0,2\1.9 0.16 0.08 0.16 0.27 0.2 \

0,230.23

0,10.1

0,20.2

0,10.1

0,060.06

92,8192.81

Výše uvedená nedostatky jaou odstraněny slitinou železa pro seřizování kvantometrů, podle vynálezu obsahující 3 až 4 % hmotnostních uhlíku, 0,6 až 2 % hmotnostních manganu,The above drawbacks are overcome by an iron alloy for adjusting the quantometers according to the invention containing 3-4% by weight of carbon, 0.6-2% by weight of manganese,

1,5 až 3 % hmotnostních křemíku, 0,1 až 0,9 % hmotnostních foeforu, 0,3 až 1,5 % hmotnostních ohromu, 0,2 až 1,5 % hmotnostních niklu, 0,1 až 1,3 % hmotnostních molybdenu, jehož podstata spočívá v tom, že dále obsahuje 4 až 15 % hmotnostníoh niobu, a zbytek železo·1.5 to 3% by weight of silicon, 0.1 to 0.9% by weight of phosphorous, 0.3 to 1.5% by weight of amazon, 0.2 to 1.5% by weight of nickel, 0.1 to 1.3% by weight % by weight of molybdenum, further comprising 4 to 15% by weight of niobium and the remainder iron;

198 485198 485

Niob ve slitině železa potlačuje mírně grafitizaci a umožňuje vznik jemné bílé struktury vzorku. Obsah niobu ve slitině snižuje obsah železa, a tím zvyěuje signál, bez faktického zvyšování obsahu analyzovaného prvku. Niob Je prakticky Jediný z metalurgicky obvyklých prvků, který ae v metalurgii litiny vůbec nepoužívá, proto lze jeho koncentraci volit libovolně.Niobium in the iron alloy suppresses slightly graphitization and allows the formation of a fine white sample structure. The niobium content of the alloy decreases the iron content, thereby increasing the signal, without actually increasing the content of the element analyzed. Niobium is practically the only one of the usual metallurgical elements that ae does not use cast iron at all, therefore its concentration can be chosen arbitrarily.

Jako příklady konkrétního provedení je slitina odlitá na masívní kokilu z elektrovodné mědi o složení v % hmotnostníchAs an example of a specific embodiment, the alloy is cast on a massive copper copper ingot mold with a composition in% by weight

Vzorek 1 Vzorek 2Sample 1 Sample 2

prvek element % hmotnostních % by weight % hmotnostních % by weight uhlík carbon 3,1 3.1 3,0 3.0 mangan manganese 13 13 1,* 1, * křemík silicon 3,4 3.4 2,2 2.2 nikl nickel 1,0 1.0 1,5 1.5 chrom chrome 0,9 0.9 0,5 0.5 molybden molybdenum 1,1 1.1 1,0 1.0 fosfor phosphorus 0,2 0.2 0,2 0.2 niob niob 6,0 6.0 14,0 14.0 železo iron 82,9 82.9 76,4 76.4

Získané vzorky dávají na kvantometru dostatečně vyaoký a reprodukovatelný signál pro nastavení kalibračních křivek.The samples obtained give a sufficiently high and reproducible signal on the quantometer to adjust the calibration curves.

Využití vynálezu přichází v úvahu zejména pro laboratoře provádějící analýzy chemického složení materiálů ve slévárnách litiny na optických emisně-spektroskopických analyzátorech, krátce nazývaných kvantometreoh.The use of the invention is particularly suitable for laboratories carrying out analyzes of the chemical composition of materials in cast iron foundries on optical emission spectroscopic analyzers, shortly called quantometreoh.

Claims (1)

Slitina železa seřizování kvantometrů obsahující 3 až 4 % hmotnostních uhlíku, 0,6 až 2 % hmotnostních manganu, 1,5 až 3 % hmotnostních křemíku, 0,1 až 0,9 % hmotnostních fosforu, 0,3 až 1,5 % hmotnostních ohromu, 0,2 až 1,5 % hmotnostních niklu, 0,1 až 1,3 % hmotnostních molybdenu, vyznačující se tím, že dále obsahuje 4 až 15 % hmotnostních niobu a zbytek železo.Iron alloy adjustment of quantometers containing 3 to 4% by weight carbon, 0.6 to 2% by weight manganese, 1.5 to 3% by weight silicon, 0.1 to 0.9% by weight phosphorus, 0.3 to 1.5% by weight 0.2 to 1.5% by weight of nickel, 0.1 to 1.3% by weight of molybdenum, characterized in that it further comprises 4 to 15% by weight of niobium and the remainder iron.
CS551078A 1978-08-24 1978-08-24 Ferrous alloy for quantometer adjusting CS196485B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS551078A CS196485B1 (en) 1978-08-24 1978-08-24 Ferrous alloy for quantometer adjusting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS551078A CS196485B1 (en) 1978-08-24 1978-08-24 Ferrous alloy for quantometer adjusting

Publications (1)

Publication Number Publication Date
CS196485B1 true CS196485B1 (en) 1980-03-31

Family

ID=5400109

Family Applications (1)

Application Number Title Priority Date Filing Date
CS551078A CS196485B1 (en) 1978-08-24 1978-08-24 Ferrous alloy for quantometer adjusting

Country Status (1)

Country Link
CS (1) CS196485B1 (en)

Similar Documents

Publication Publication Date Title
Ward et al. Analysis of metal alloys by inductively coupled argon plasma optical emission spectrometry
Jaycox Spectrochemical Procedure of General Applicability
CS196485B1 (en) Ferrous alloy for quantometer adjusting
CN112730385A (en) Detection method for determining contents of silicon and phosphorus elements in ferrochrome by utilizing ICP (inductively coupled plasma)
Gunčaga et al. Determination of chromium in feces by atomic absorption spectrophotometry
Jaycox Quantitative Spectrochemical Analysis of Ashes, Deposits, Liquids, and Miscellaneous Samples
SAEKI et al. Micro and state analysis as the basis for microalloying techniques
Duffy et al. Benefits of a dual-view ICP-OES for the determination of boron, phosphorus, and sulfur in low alloy steels
CN100516833C (en) Albronze spectral standard sample and manufacturing method thereof
Vincent et al. The spectrograph in the iron foundry for rapid and accurate control analysis
El-Kaddah et al. Equilibria in reactions of CO and CO2 with dissolved oxygen and carbon in liquid iron
Milner et al. The determination of titanium in uranium-titanium alloys by differential absorptiometry
Beroza Differential Multicomponent Spectrophotometry: Spectrophotometric Method for Determination of Benzyl Benzoate and N-Butyl Acetanilide in Clothing Impregnant M-1960
Ramírez-Muñoz An auxiliary table for concentration calculations in atomic-absorption flame photometry
Cobb et al. The determination of chromium in plain carbon steel and low-alloy iron and steel by atomic-absorption spectrophotometry
Berisha et al. Determination Method of High Content of Nickel in Ferronickel and Various Alloys Using Atomic Absorption Spectrometry
Jasim et al. Chemical analysis on the microgram scale. VI: The ultramicrogravimetric determination of technetium and rhenium
Meloche et al. Flame Spectrophotometric Determination of Gallium in Copper-Gallium Alloys
Frigge et al. Spectral interferences in the determination of traces of Pd in the presence of lead by atomic absorption spectroscopy
Scholes An evaluation of the formate method for the simultaneous polarographic determination of copper and lead in steel
US2517380A (en) Method of analysis and control of the composition of lead alloys
Hemsley The use of atomic absorption in water pollution control
Waggoner Determination of major constituents in alloy steels by spectrographic solution methods
Bosch-Reig et al. Substitution–dilution method to correct the matrix effect in multi-element quantitative analysis by X-ray fluorescence
Meermann On-line hyphenation of capillary electrophoresis with multicollector-ICP-MS (CE/MC-ICP-MS) for species-specific isotope ratio analysis of sulfur species