CO6640056A1 - Fuente compacta autoresonante de rayos x - Google Patents
Fuente compacta autoresonante de rayos xInfo
- Publication number
- CO6640056A1 CO6640056A1 CO11112696A CO11112696A CO6640056A1 CO 6640056 A1 CO6640056 A1 CO 6640056A1 CO 11112696 A CO11112696 A CO 11112696A CO 11112696 A CO11112696 A CO 11112696A CO 6640056 A1 CO6640056 A1 CO 6640056A1
- Authority
- CO
- Colombia
- Prior art keywords
- cavity
- self
- electrons
- energy
- mode
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/12—Cooling non-rotary anodes
- H01J35/13—Active cooling, e.g. fluid flow, heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/14—Arrangements for concentrating, focusing, or directing the cathode ray
- H01J35/147—Spot size control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
- H05H13/005—Cyclotrons
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/04—Magnet systems, e.g. undulators, wigglers; Energisation thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/12—Cooling
- H01J2235/1204—Cooling of the anode
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Fluid Mechanics (AREA)
- X-Ray Techniques (AREA)
Abstract
La presente invención divulga un dispositivo compacto capaz de producir rayos X duros de energía mayores que 200 keV, de no menor intensidad que las fuentes de rayos X tradicionales. En la fuente propuesta, los electrones inyectados por un extremo de tina cavidad resonante metálica cilíndrica sometida al vacío se aceleran por microondas de un modo TE(p=1,2,3...) de polarización lineal o circular. Sin embargo, la sección transversal de la cavidad también puede ser elíptica, excitada con el modo TE(P=1,2,3,...), e incluso rectangular excitada con cualquier modo TE; donde p=1,2,3....Para mantener el régimen de auto resonancia a lo largo de las trayectorias helicoidales de electrones dentro de la cavidad, se genera un campo magnético estático no homogéneo cuya intensidad se aumenta principalmente en la dirección de propagación de los electrones con un perfil que depende de la energía de inyección del haz y la amplitud del campo de microondas. El haz de electrones se acelera de manera ciclotrónica auto resonante desde su inyección en la cavidad hasta que impacte sobre un blanco. La trayectoria del haz es helicoidal y su aceleración se produce en condiciones de auto resonancia. Por lo anterior, la efectividad de la utilización de la potencia de microondas es la máxima posible. Para una frecuencia dada, cuanto mayor es el subíndice p, mayor energía puede ser transferida a los electrones.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CO11112696A CO6640056A1 (es) | 2011-09-01 | 2011-09-01 | Fuente compacta autoresonante de rayos x |
US14/342,346 US9666403B2 (en) | 2011-09-01 | 2012-08-31 | Compact self-resonant X-ray source |
PCT/IB2012/054504 WO2013030804A2 (es) | 2011-09-01 | 2012-08-31 | Fuente compacta autoresonante de rayos x |
EP12829086.3A EP2753155B1 (en) | 2011-09-01 | 2012-08-31 | Compact self-resonant x-ray source |
JP2014527802A JP6134717B2 (ja) | 2011-09-01 | 2012-08-31 | 自己共鳴小型x線源 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CO11112696A CO6640056A1 (es) | 2011-09-01 | 2011-09-01 | Fuente compacta autoresonante de rayos x |
Publications (1)
Publication Number | Publication Date |
---|---|
CO6640056A1 true CO6640056A1 (es) | 2013-03-22 |
Family
ID=47756990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CO11112696A CO6640056A1 (es) | 2011-09-01 | 2011-09-01 | Fuente compacta autoresonante de rayos x |
Country Status (5)
Country | Link |
---|---|
US (1) | US9666403B2 (es) |
EP (1) | EP2753155B1 (es) |
JP (1) | JP6134717B2 (es) |
CO (1) | CO6640056A1 (es) |
WO (1) | WO2013030804A2 (es) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018072913A1 (en) * | 2016-10-20 | 2018-04-26 | Paul Scherrer Institut | A multi-undulator spiral compact light source |
RU2760284C1 (ru) * | 2020-11-20 | 2021-11-23 | Александр Викторович Коннов | Источник рентгеновского излучения с циклотронным авторезонансом |
CN114845460B (zh) * | 2022-03-04 | 2024-04-12 | 中国科学院上海光学精密机械研究所 | 一种基于密度激波结构的硬x射线源的增强系统 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3728217A (en) * | 1972-06-05 | 1973-04-17 | Atomic Energy Commission | Bumpy torus plasma confinement device |
US4165472A (en) * | 1978-05-12 | 1979-08-21 | Rockwell International Corporation | Rotating anode x-ray source and cooling technique therefor |
JPH02204952A (ja) * | 1989-02-03 | 1990-08-14 | Denki Kagaku Kogyo Kk | X線発生用熱陰極 |
EP0514832B1 (en) * | 1991-05-20 | 1996-09-04 | Sumitomo Heavy Industries, Ltd | Linear accelerator operable in TE11N mode |
US5323442A (en) | 1992-02-28 | 1994-06-21 | Ruxam, Inc. | Microwave X-ray source and methods of use |
US6327338B1 (en) * | 1992-08-25 | 2001-12-04 | Ruxan Inc. | Replaceable carbridge for an ECR x-ray source |
JP3191554B2 (ja) * | 1994-03-18 | 2001-07-23 | 株式会社日立製作所 | X線撮像装置 |
AU4896297A (en) * | 1996-10-18 | 1998-05-15 | Microwave Technologies Inc. | Rotating-wave electron beam accelerator |
US6617810B2 (en) | 2000-03-01 | 2003-09-09 | L-3 Communications Corporation | Multi-stage cavity cyclotron resonance accelerators |
AU2003270910A1 (en) * | 2002-09-27 | 2004-04-19 | Scantech Holdings, Llc | System for alternately pulsing energy of accelerated electrons bombarding a conversion target |
US8094784B2 (en) * | 2003-04-25 | 2012-01-10 | Rapiscan Systems, Inc. | X-ray sources |
US8472584B2 (en) * | 2003-10-07 | 2013-06-25 | Ray Fresh Foods, Inc. | Apparatus and method for killing pathogenic and non-pathogenic organisms using low-energy X-rays |
US7206379B2 (en) * | 2003-11-25 | 2007-04-17 | General Electric Company | RF accelerator for imaging applications |
US7558374B2 (en) * | 2004-10-29 | 2009-07-07 | General Electric Co. | System and method for generating X-rays |
JP2006283077A (ja) * | 2005-03-31 | 2006-10-19 | Ngk Insulators Ltd | 複合体 |
US8203289B2 (en) * | 2009-07-08 | 2012-06-19 | Accuray, Inc. | Interleaving multi-energy x-ray energy operation of a standing wave linear accelerator using electronic switches |
-
2011
- 2011-09-01 CO CO11112696A patent/CO6640056A1/es unknown
-
2012
- 2012-08-31 JP JP2014527802A patent/JP6134717B2/ja not_active Expired - Fee Related
- 2012-08-31 WO PCT/IB2012/054504 patent/WO2013030804A2/es active Application Filing
- 2012-08-31 US US14/342,346 patent/US9666403B2/en active Active
- 2012-08-31 EP EP12829086.3A patent/EP2753155B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
US9666403B2 (en) | 2017-05-30 |
EP2753155A2 (en) | 2014-07-09 |
JP6134717B2 (ja) | 2017-05-24 |
JP2014529866A (ja) | 2014-11-13 |
US20150043719A1 (en) | 2015-02-12 |
EP2753155A4 (en) | 2016-01-20 |
WO2013030804A2 (es) | 2013-03-07 |
EP2753155B1 (en) | 2021-11-10 |
WO2013030804A3 (es) | 2013-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AR086472A1 (es) | Aparato generador de haces de electrones y fotones-x convergentes | |
CO6640056A1 (es) | Fuente compacta autoresonante de rayos x | |
Wu et al. | Mode control in a high gain relativistic klystron amplifier with 3 GW output power | |
Marinelli et al. | Using the Relativistic Two-Stream Instability for the Generation of Soft-X-Ray<? format?> Attosecond Radiation Pulses | |
Hama et al. | Conceptual design of an isochronous ring to generate coherent terahertz synchrotron radiation | |
Afanas’ ev et al. | A high-power periodic nanosecond pulse source of coherent 8-cm electromagnetic radiation | |
Dudnikov et al. | Potential for improving of the compact surface plasma sources | |
Ostroumov et al. | Front end design of a multi-GeV H-minus linac | |
Loza et al. | Increase in the average radiation power of a plasma relativistic microwave generator | |
Xiao et al. | Frequency control of a klystron-type relativistic Cerenkov generator | |
Dudnikov et al. | Low energy beam transport system developments | |
Pasour et al. | Plasma wakefield klystron | |
RU2599388C1 (ru) | Релятивистский магнетрон с катодными концевыми экранами | |
KR20140066347A (ko) | 가속관과 같은 주파수의 펄스 전자빔을 방출하는 전자총을 포함하는 선형가속기 | |
Ginzburg et al. | Generation of high-power ultrashort electromagnetic pulses on the basis of effects of superradiance of electron bunches | |
Faus-Golfe | Monochromatization for Higgs production | |
Rinolfi et al. | The CLIC electron and positron polarized sources | |
Li et al. | A double-frequency rf gun for field emission | |
Fang et al. | Analysis of spurious oscillations in klystron due to backstreaming electrons from collector | |
Choi | Proton Linear Accelerator Development and Its Utilization Program in PEFP | |
Veselov et al. | GAS DISCHARGE BREAKDOWN THRESHOLD SUSTAINED BY POWERFUL RADIATION OF 1THZ GYROTRON | |
Nezhevenko et al. | High‐Power Millimeter‐and Centimeter‐Wave Magnicons for Particle Accelerator Application | |
Bulanov et al. | Laser-driven helium ion acceleration for hadron therapy | |
Dash et al. | Beam dynamics study of a 100 MeV RF electron linac | |
Jang et al. | Enhancement of Electron Beam Generation by Using a Steep Downward Density Gradient |