CN2881649Y - 微机械角加速度传感器 - Google Patents

微机械角加速度传感器 Download PDF

Info

Publication number
CN2881649Y
CN2881649Y CN 200520024986 CN200520024986U CN2881649Y CN 2881649 Y CN2881649 Y CN 2881649Y CN 200520024986 CN200520024986 CN 200520024986 CN 200520024986 U CN200520024986 U CN 200520024986U CN 2881649 Y CN2881649 Y CN 2881649Y
Authority
CN
China
Prior art keywords
acceleration sensor
mass
angle acceleration
pole plate
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200520024986
Other languages
English (en)
Inventor
李锦明
张文栋
刘俊
熊继军
秦丽
马游春
罗源源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN 200520024986 priority Critical patent/CN2881649Y/zh
Application granted granted Critical
Publication of CN2881649Y publication Critical patent/CN2881649Y/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

本实用新型涉及了微机械角加速度传感器,主要包括一个悬浮质量块,两根连接悬浮质量块与固定端的梁和两块与检测角加速度相关的检测极板,检测极板与固定端固定,质量块与检测极板为电容的两个极;在连接质量块的梁上施加一个旋转的角加速度时,质量块将发生偏转,导致质量块与检测极板之间的距离发生变化,最终导致检测极板与质量块之间的电容值发生变化,通过测试检测极板的电容变化量就可以判定被测角加速度的大小。具有结构简单,抗过载能力强,灵敏度和测量精度高的微机械角加速度传感器。

Description

微机械角加速度传感器
技术领域
本实用新型属于微电子技术领域,特别涉及一种用于测量运动体的姿态的角加速度传感器。
背景技术
目前,对于测量运动体的姿态,采用的是传统的速率陀螺仪,速率陀螺仪的工作原理是通过哥氏力来敏感角速率信号。MEMS最广泛的应用就是设计和制造微型传感器。使用传感器的机电部分产生敏感信息,而电子部分则对机电部份产生的信息进行处理。MEMS陀螺就是用于测量角速度的MEMS传感器。
目前,MEMS陀螺的最新技术,如《传感技术(Journal of TransducerTechnology)1998年第17卷第1期》“硅微机械音叉陀螺检测灵敏度与固有频率的关系”一文,以及美国专利号为US6837108B公开的“一种增大动态范围的微电子机械陀螺仪”(INCREASING THE DYNAMIC RANGE OF AMEMS GYROSCOPE)中所述,MEMS陀螺仪的结构是带有梳状电极的两块长方形单晶硅平板(质量块)均由挠性支臂并与单晶硅底座相连,并被支悬于底座上方,在底座上设置有电驱动的梳状电极和电容检测的一对平面电极。
在MEMS陀螺仪中,通过检测哥式力的大小来测量作用在振动质量块上的角速度。当质量块沿x轴(驱动轴)振动时,就可以检测绕z轴输入的角速度的大小。当绕z轴方向有角速度输入时,将会在y轴方向产生哥式加速度,在哥式加速度的作用下会迫使质量块在y方向按照一定的频率振动,该振动的幅值与输入角速度的大小呈一定的比例关系。因此,可以根据振动幅值的大小确定输入角速度的值。
MEMS陀螺在为扩大动态范围大和提高检测灵敏度、测量精度的同时也带来相应的不足与缺点,其梳状结构较为复杂,使得抗过载能力较差,因而影响使用寿命,并且难以适应角加速度变化很大等恶劣环境下测量。
发明内容
本实用新型不同于以上MEMS陀螺的工作原理。利用角加速度与加速度的工作原理,设计了可以感知角加速度信号的传感器和相关的角加速度信号调制与解调处理检测电路,并具有结构简单,抗过载能力强,灵敏度和测量精度高的微机械角加速度传感器。
本实用新型提供的微机械角加速度传感器,包括一个悬浮质量块,两根连接质量块与固定端的梁,特点是还包括两块与检测角加速度相关的检测极板;检测极板与固定端固定,质量块与检测极板为电容的两个极。在连接质量块梁上施加一个旋转的角加速度时,质量块将发生偏转,导致质量块与检测极板之间的距离发生变化,最终导致检测极板与质量块之间的电容值发生变化,通过测试检测极板的电容变化量就可以判定被测角加速度的大小。
本实用新型提供的微机械角加速度传感器,它可有差分解调信号检测电路;其电路为:质量块与两块检测极板构成两个电容C1、C2,电容C1、C2分别连接的两个运放电路,共同连接的差分放大器,然后再依次连接全波整流器、可将低频角加速度信号从高频载波上解调出来的低通滤波器后,最后,再连接一个输出所检测的角加速度电压信号的放大器。
本实用新型提供的微机械角加速度传感器,它可有自振荡信号检测电路;其电路为:质量块与检测极板组成两个电极C1、C2;其中一个电极作为用来测试由角加速度引起的电容变化信号的检测电极,检测电极连接电容/电压C/V转换器,再连接全波整流器、低通滤波器后,再连接一个将信号再次放大并输出所检测的角加速度电压信号的放大器;另一个电极作为驱动电极,驱动电极接固定的参加电压VREF,并连接相移器和限幅电路,再连接电容/电压C/V转换器的输出端,由检测电极到驱动电极构成了闭环振荡电路。通过作用在该电极上的电压作为静电驱动力,让质量块围绕中间的轴摆动起来,作用在该电极上的电压包括驱动直流电压和驱动交流电压,驱动直流电压由固定的参加电压VREF提供,驱动交流电压是由C/V转换后并经过相移器和限幅电路的相移和限幅后产生的。自振荡的频率作为角加速信号的载波频率。
本实用新型提供的微机械角加速度传感器具有突出的优点和显著的进步是:
1、微机械角加速度传感器与传统的角速率传感器工作原理不同。传统的角速率传感器是通过哥氏力来敏感角速率信号,而微机械角加速度传感器则是敏感角加速度信号,角加速度信号通过积分后可得到角速率信号,解决了传统的角速率传感器易受加速度干扰的难题。
2、微机械角加速度传感器具有较强的抗过载能力,检测灵敏度高和测量精度高。
3、微机械角加速度传感器体积小,结构简单,动态范围大,使用寿命长。特别适合于角加速度变化很大等恶劣环境下的姿态测量。
附图说明
图1为微机械角加速度传感器平板结构的主视图;
图2为微机械角加速度传感器平板结构的侧视图;
图3为微机械角加速度传感器平板结构的俯视图;
图4为当给梁施加一个角加速度时,质量块与检测极板间距变化的结构示意图;
图5为微机械角加速度传感器叉齿结构的主视图;
图6为微机械角加速度传感器叉齿结构的A-A剖视图;
图7为微机械角加速传感器的差分解调信号检测电路原理图;
图8为微机械角加速度传感器的自振荡信号检测电路原理图。
具体实施方式
以下结合附图详细说明本实用新型的具体实施方式。
图1、图2、图3和图4所示,微机械角加速度传感器的基本结构,包括一个悬浮质量块1,两根连接悬浮质量块与固定端的梁2,以及两块与检测角加速度相关的检测极板3,检测极板与固定端4固定,质量块与检测极板为电容的两个电极;在连接质量块的梁上施加一个旋转的角加速度时,质量块将发生偏转,导致质量块与检测极板之间的距离发生变化,最终导致检测极板的电容值发生变化,通过测试检测极板的电容变化量就可以判定被测角加速度的大小。微机械角加速度传感器的工作原理如下:
质量块相对于梁呈均匀对称的,梁具有扭转弹簧特性,当给梁上施加一个角加速度ε,其中 ϵ = dω dt · r , 质量块由于受到大小相等、方向相反的两个力F1和F2,而发生偏转,偏转角度为θ。
F 1 = m · ϵ = m · ( dω dt ) · r
F 2 = - m · ϵ = m · ( dω dt ) · r
那么,质量块受到合力的大小为:
F = F 1 - F 2 = 2 m · ( dω dt ) · r
由于质量块的偏转,引起质量块与检测极板之间的距离发生变化,使得检测电容值发生变化。
在未发生偏转之前,质量块与检测极板之间的电容值为:
C 1 = C 2 = C 0 = ϵ r · ϵ 0 · A d
其中,A为质量块的面积;d为质量块与检测极板之间的距离。
当质量块偏转θ角后,质量块与检测极板之间的电容值C1、C2一个增大,一个减小。
图5和图6所示,为微机械角加速度传感器的叉齿结构。微机械角加速度传感器的质量块上设有若干个方孔101,对应于质量块上所设的方孔,检测极板上设有若干个叉齿201,叉齿插入质量块上的方孔中间,增加了检测极板与质量块之间的电容值和电容变化量ΔC,提高了传感器的灵敏度。该结构是在平板结构的基础上进行的改进,其工作原理和平板结构角加速度传感器的工作原理相同。
图7所示,为微机械角加速度传感器的信号检测电路。微机械角加速度传感器的质量块与两块检测极板构成两个电容C1、C2,电容两边加一高频电压VAC作为调制信号,将低频变化的角加速度机械振动信号通过幅度调制为高频电压信号,并将检测到的高频电压信号分别通过所连接的两个运放电路放大后变为电压信号V1、V2,该电压信号V1、V2通过连接的差分放大器、全波整流器、低通滤波器后,可将低频角加速度信号从高频载波上解调出来。
当C1、C2检测的信号通过运放后,电压V1、V2分别为:
V 1 = V AC · C 1 C F
V 2 = V AC · C 2 C F
当V1、V2通过差分放大后,可得:
V = V AC · ( C 2 C F - C 1 C F ) = V AC · C 2 - C 1 C F = V AC · ΔC C F
再由放大器将信号再次放大并输出所检测的角加速度的电压信号。
其中,以上所述的两个运放电路分别由放大集成电路、并联的电容C和电阻R构成,并分别由直流电源VT1、VT2供电,调整VT1、VT2电压值,可用于调节输出角加速度的偏置和灵敏度。
图8所示,为微机械角加速度传感器的自振荡信号检测电路。微机械角加速度传感器的质量块与检测极板组成两个电极;其中一个电极作为检测电极,用来测试由角加速度引起的电容变化信号,将该信号经过所连接电容/电压(C/V)转换为电压信号,再经所连接全波整流器、低通滤波器的整流及滤波后,由放大器将信号再次放大并输出所检测的角加速度的电压信号;另一个电极作为驱动电极,通过作用在该电极上的电压作为静电驱动力,让质量块围绕中间的轴摆动起来,作用在该电极上的电压包括驱动直流电压和驱动交流电压,驱动直流电压由固定的参加电压VREF提供,驱动交流电压是由C/V转换后连接并经过相移器和限幅电路的相移和限幅后产生的。从检测电极到驱动电极构成了闭环振荡电路,自振荡的频率作为角加速信号的载波频率。
其中,以上所述的放大器C/V由放大集成电路、并联的电容C和电阻R构成,并由直流电源VT3供电,调整VT3电压值,可用于调节输出角加速度的偏置和灵敏度。

Claims (6)

1、微机械角加速度传感器,包括一个悬浮质量块,两根连接悬浮质量块与固定端的梁,其特征在于:还包括两块与检测角加速度相关的检测极板;检测极板与固定端固定,质量块与检测极板为电容的两个极。
2、根据权利要求1所述的微机械角加速度传感器,其特征在于:所述的一个质量块上设有若干个方孔,对应于质量块上所设的方孔,检测极板上设有若干个叉齿,叉齿插入质量块上的方孔中间。
3、根据权利要求1所述的微机械角加速度传感器,其特征在于:它有差分解调信号检测电路;其电路为:质量块与两块检测极板构成两个电容C1、C2,电容C1、C2分别连接的两个运放电路,并同连接到差分放大器,然后再依次连接全波整流器、可将低频角加速度信号从高频载波上解调出来的低通滤波器后,最后,再连接一个输出所检测的角加速度电压信号的放大器。
4、根据权利要求1所述的微机械角加速度传感器,其特征在于:它有自振荡信号检测电路;其电路为:质量块与检测极板组成两个电极C1、C2;其中一个电极作为用来测试由角加速度引起的电容变化信号的检测电极,检测电极连接电容/电压C/V转换器,再连接全波整流器、低通滤波器后,再连接一个将信号再次放大并输出所检测的角加速度电压信号的放大器;另一个电极作为驱动电极,驱动电极接固定的参加电压VREF,并连接相移器和限幅电路,再连接电容/电压C/V转换器的输出端,由检测电极到驱动电极构成了闭环振荡电路。
5、根据权利要求3所述的微机械角加速度传感器,其特征在于:所述的两个运放电路分别由放大集成电路、并联的电容C和电阻R构成,并分别由直流电源VT1、VT2供电。
6、根据权利要求4所述的微机械角加速度传感器,其特征在于:所述的放大器C/V由放大集成电路、并联的电容C和电阻R构成,由直流电源VT3供电。
CN 200520024986 2005-09-30 2005-09-30 微机械角加速度传感器 Expired - Fee Related CN2881649Y (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200520024986 CN2881649Y (zh) 2005-09-30 2005-09-30 微机械角加速度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200520024986 CN2881649Y (zh) 2005-09-30 2005-09-30 微机械角加速度传感器

Publications (1)

Publication Number Publication Date
CN2881649Y true CN2881649Y (zh) 2007-03-21

Family

ID=37881493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200520024986 Expired - Fee Related CN2881649Y (zh) 2005-09-30 2005-09-30 微机械角加速度传感器

Country Status (1)

Country Link
CN (1) CN2881649Y (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405067C (zh) * 2005-09-30 2008-07-23 中北大学 微机械角加速度传感器
CN102778585A (zh) * 2011-05-09 2012-11-14 立积电子股份有限公司 传感装置
CN102818518A (zh) * 2012-08-15 2012-12-12 高玉琴 一种转角测量装置
CN104797943A (zh) * 2012-11-19 2015-07-22 株式会社村田制作所 角加速度传感器
CN106324281A (zh) * 2015-07-02 2017-01-11 北京自动化控制设备研究所 一种分子电子型角加速度计动电转换单元
CN107247159A (zh) * 2017-07-25 2017-10-13 中国地震局工程力学研究所 Mems转动加速度传感器及转动加速度测量装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405067C (zh) * 2005-09-30 2008-07-23 中北大学 微机械角加速度传感器
CN102778585A (zh) * 2011-05-09 2012-11-14 立积电子股份有限公司 传感装置
CN102778585B (zh) * 2011-05-09 2015-04-08 立积电子股份有限公司 传感装置
CN102818518A (zh) * 2012-08-15 2012-12-12 高玉琴 一种转角测量装置
CN102818518B (zh) * 2012-08-15 2014-09-03 高玉琴 一种转角测量装置
CN104797943A (zh) * 2012-11-19 2015-07-22 株式会社村田制作所 角加速度传感器
CN106324281A (zh) * 2015-07-02 2017-01-11 北京自动化控制设备研究所 一种分子电子型角加速度计动电转换单元
CN107247159A (zh) * 2017-07-25 2017-10-13 中国地震局工程力学研究所 Mems转动加速度传感器及转动加速度测量装置
CN107247159B (zh) * 2017-07-25 2023-04-18 中国地震局工程力学研究所 Mems转动加速度传感器及转动加速度测量装置

Similar Documents

Publication Publication Date Title
CN2881649Y (zh) 微机械角加速度传感器
CN108375371B (zh) 一种基于模态局部化效应的四自由度弱耦合谐振式加速度计
CN101303365B (zh) 谐振式微加速度计
CN1766528B (zh) 具有较高灵敏度和带宽的差分式微机械陀螺
CN100405067C (zh) 微机械角加速度传感器
CN100498343C (zh) 电调谐谐振式差频加速度计
CN100392353C (zh) 调谐式微机电陀螺
CN110221098A (zh) 硅微谐振式加速度计及其自测试方法
CN113155664B (zh) 一种高灵敏度的微弱气体检测装置及其检测方法
CN1273835C (zh) 一种高灵敏度谐振加速度计芯片
CN113514666B (zh) 一种基于pt对称谐振器的微机械加速度计及其检测方法
CN110531443B (zh) 一种地震烈度仪的标定装置
CN1979175A (zh) 微机械硅谐振梁加速度计
CN1764823A (zh) 物理量测定装置
CN101514897A (zh) 改进型音叉式微机械陀螺
CN116754107B (zh) 具有放大结构的高灵敏度谐振压力传感器及信号调理方法
CN2397473Y (zh) 栅型结构电容式微机械谐振陀螺
CN108225544B (zh) 一种双层复用型三角形折叠梁质量块谐振系统及其痕量检测方法
CN107655453A (zh) 一种全量程多方向硅微谐振式倾角传感器
CN201605163U (zh) 一种带有梳形阻尼孔的大电容微惯性传感器
CN113340986B (zh) 一种参数激励与同步共振协同调控的高分辨率传感器及方法
CN112697239B (zh) 一种基于内共振的微量物质和驱动力同步传感器及方法
CN100371717C (zh) 微机械数字式差频加速度计
CN2729731Y (zh) 微机械数字式差频加速度计
CN112924015B (zh) 一种基于声子频率梳的低频信号检测系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee