New! View global litigation for patent families

CN2514538Y - Automatic power servo unit for solar battery - Google Patents

Automatic power servo unit for solar battery Download PDF

Info

Publication number
CN2514538Y
CN2514538Y CN 01252415 CN01252415U CN2514538Y CN 2514538 Y CN2514538 Y CN 2514538Y CN 01252415 CN01252415 CN 01252415 CN 01252415 U CN01252415 U CN 01252415U CN 2514538 Y CN2514538 Y CN 2514538Y
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
circuit
power
current
control
solar
Prior art date
Application number
CN 01252415
Other languages
Chinese (zh)
Inventor
赵日新
Original Assignee
武汉加伟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

The utility model relates to a solar cell automatic power servo device. A power conversion circuit transforms the direct current output by the solar cell into a finite voltage to supply power to loads under the control of a pulse-wide modulation PWM circuit. The current of a loading return circuit is sampled, the fall of the loading current identifies that the current finely adjusts the duty cycle of a power transformer through a voltage adjustment circuit and the PWM circuit when the loading current falls, thereby ensuring that the power transformer always works at the maximum power output point of the solar cell. The utility model is characterized in that the circuit control has no quantity operation, the processing procedures are less, the circuit errors have no influences to the control results, and the control is accurate and fine, additionally the circuit structure is simple and the cost is low.

Description

一种太阳能电池自动功率伺服装置 A solar cell automatic power servo means

技术领域 FIELD

本实用新型涉及太阳能电池,特别是能在各种光照、温度条件下自动地以最大功率给负载提供电能的太阳能电池自动控制装置。 The present invention relates to a solar cell, in particular at the maximum power can automatically to provide automatic control device of the solar cell electric power load in a variety of lighting, temperature conditions.

技术背景目前,人类对太阳能利用方面的研究十分活跃,尤其是在太阳能电池方面技术日趋成熟,应用领域也越来越广泛。 Background Currently, the study of human use of solar energy is very active, especially in terms of solar cell technology matures, applications are increasingly widespread. 在以太阳能电池为能源的供电系统中,常规的电源电路因是以固定电压、电流工作,实际电能利用率不高。 In the solar cell of the energy supply system, due to the conventional power supply circuit is a fixed voltage, current work, the actual energy utilization is not high. 现有技术中也有一些太阳能电池功率跟踪电路,它们工作在固定的电压值辅以温度或照度补偿。 There are also some prior art solar power tracking circuit which operates at a fixed temperature or voltage value supplemented illumination compensation. 然而在不同的照度和温度条件下,太阳能电池最佳放电电压是不定的,以上电路系统无法进行精确补偿、跟踪。 However, under different illumination and temperature conditions, the optimum discharge voltage of the solar cell is uncertain, the above circuitry can not be accurately compensated tracking.

已知中国专利公开号CN1171650A所公开的一种电源设备,其工作原理是检测太阳能电池的输出电压和电流,并将该电压和电流值在所述乘法器中相乘得到输出功率值,并通过所述最大功率点检测装置对输出开关电路进行一系列调整,用以跟踪最大功率输出点。 Chinese Patent Publication No. CN1171650A known as disclosed in a power supply apparatus which working principle is the detection output of the solar cell voltage and current, and the voltage and current values ​​obtained by multiplying the output value of the power multiplier, and by detecting the maximum power point of the output switching circuit means a series of adjustments to track the maximum power output point. 但是所述电流、电压检测电路、乘法器及最大功率检测装置等电路处理环节过多,各环节电路的精度误差将在很大程度上影响到最终结果,造成实际工作点与最大功率输出点偏移。 However, part of the current processing circuit, voltage detection circuit, a multiplier, and a maximum power detecting apparatus or the like is too large, the accuracy error of each link circuit will largely affect the final result, cause the actual operating point to the maximum power output point bias shift. 另外由于所述电源设备电路结构过于复杂,应用成本偏高。 In addition, as the power supply circuit device structure is too complicated, high cost applications.

发明内容 SUMMARY

本实用新型所要解决的技术问题是:提供一种数据处理环节少、电路结构简单、成本低的,在不同光照、温度条件下,总是能精确地工作于最大功率点,从而提高太阳能电池的利用率的太阳能电池自动功率伺服装置。 The present invention is to solve the technical problem is to: provide a data processing part at least, a simple circuit structure and low cost, in different light and temperature conditions, always operate accurately at the maximum power point, thereby improving the solar cell the utilization of solar power automatic servo means.

本实用新型解决上述技术问题所采用的技术方案是:它的输入端与太阳能电池连接,它包括将太阳能电池输出的直流电变换成适合负载使用的电压的功率变换器;接在功率变换器输出端的负载;对功率变换器进行脉宽控制的PWM电路;对太阳能电池输出工作电压进行取样和对工作电压范围进行初步调节的电压取样调节电路;对太阳能电池输出工作电压进行精确调整的电压调整电路;对负载的回路电流进行取样的负载电流取样电路;对所述负载电流进行时差比较以产生负载电流下降脉冲信号的负载电流下降判别电路。 Aspect of the present invention to solve the above technical problem is that: its input terminal connected to the solar cell, a solar cell comprising the DC output is converted into a voltage suitable for the power converter and load; connected to the output of the power converter load; power converter is PWM pulse width control circuit; the operating voltage of the solar cell output voltage and the sampled operating voltage range for adjusting the initial sample adjustment circuit; output voltage of the solar cell operating voltage precise adjustment of the adjusting circuit; of the load circuit current load current sampling circuit for sampling; the load current difference comparing the load current drops to generate the pulse signal discrimination circuit load current decreases.

本实用新型太阳能电池自动功率伺服装置,让太阳能电池先以一定的固定电压工作,然后根据输出回路电流微调装置的工作电压,当输出回路电流最大时,装置从太阳能电池得到的功率最大,此时对应的工作电压为当前条件下的最佳工作电压,其结果是在各种光照、温度条件下,太阳能电池总是工作在最大功率输出点。 The solar cell of the present invention, automatic power servo means, so that the solar cell to work at a certain fixed voltage, and a voltage output circuit according to the operating current of the adjustment device, when the maximum loop current output, means to obtain the maximum power from the solar cell, this time the operating voltage corresponding to optimum operating voltage under current conditions, which result in a variety of lighting, temperature conditions, the solar cell is always operating at maximum output power point.

本实用新型只是在所述的电流时差比较器中对输出负载电流进行上升或下降的变化趋势进行判别,从而对工作电压的高低进行精密调节,始终没有物理量数值方面的运算,因此各个电路组成部分的精度对控制的最终结果没有影响,可以达到很高的控制精度。 The present invention only difference in the current comparator to the output load current rising or falling trend discriminate, thus the level of the operating voltage for precision adjustment, has not a physical quantity calculation value terms, and therefore the various components of the circuit no effect on the accuracy of the final results of control, can achieve high control accuracy. 另外,本实用新型电路结构简单、成本低。 Further, the present invention is a simple circuit structure and low cost.

附图说明 BRIEF DESCRIPTION

图1是本实用新型实施例的电路结构图图2是图1所述负载电流下降判别电路6和电压调整电路5的结构图图3是本实用新型实施例工作流程图图4是实施例中负载电流下降判别电路的工作时序图图5是太阳能电池的输出特性曲线图6是不同条件下太阳能电池的输出I/V曲线具体实施方案如图1所示的本实用新型实施例的电路结构图,它的输入端与太阳能电池1连接,输出端与蓄电池负载7连接,它包括将太阳能电池1输出的直流电压Vin转化成适合负载使用的输出电压Vout的功率变换器2;对功率变换器2进行脉宽调制控制的PWM电路3;由串接在蓄电池负载7输出回路中的电阻Ro构成的负载电流取样电路8;对负载电流取样电路8所产生的取样电流进行放大、处理,在负载电流下降时产生一个负载电流下降脉冲信号的负载电流下降判别电路6;可以被负载电流下降判别电路6输出的 FIG FIG 1 is a circuit configuration diagram of an embodiment of the present invention FIG. 2 is a load current decreases the voltage discriminating circuit 6 and the adjustment circuit configuration of FIG. 5 FIG. 3 is a working embodiment of the present invention FIG. 4 is a flowchart of an embodiment the load current drops discrimination circuit operation timing diagram FIG. 5 is an output characteristic curve of the solar cell of FIG. 6 is a circuit configuration diagram of an embodiment of the present invention under different conditions of the solar cell output I / V curve of the specific embodiment shown in FIG. 1 , its input terminal connected to the solar cell 1, the output terminal of the battery 7 is connected to a load, which comprises a DC voltage Vin outputted from the solar cell 1 is converted into the output voltage Vout for the load using the power converter 2; 2 to the power converter the PWM pulse width modulation control circuit 3; load a load in series with the battery current sampling resistor Ro 7 circuit configuration of the output circuit 8; sampled load current generated by the current sampling circuit 8 is amplified, processed, the load current generating a pulse signal of the load current drops when the load current drops fall discrimination circuit 6; may be lowered output load current determination circuit 6 载电流下降脉冲信号触发并能对调整电容C3进行精确的充放电操作,用来精确控制脉宽调制器PWM3的输出脉宽的电压调整电路5;给PWM电路3提供电压控制信号,并确定太阳能电池1输出工作电压范围的由电位器W和电阻R1组成的电压取样调节电路4。 Load current falling pulse signal to trigger the adjustment capacitor C3 and to perform accurate charging and discharging operations, a pulse width modulator for precise control of the voltage regulating circuit 5 outputs a pulse width of PWM3; providing a voltage control signal to the PWM circuit 3, and determines the solar voltage generated by a potentiometer consisting of a resistor R1 and W of the battery 1 output voltage range of the sampling control circuit 4. 功率变换器2输出端与负载7连接。 Output of the power converter 2 connected to the load 7.

功率变换器2由串接在太阳能电池1和输出电感L之间受PWM电路3输出端控制的开关元件T、输出电感L、接在输出电压Vout端的输出电容C2、开关二极管D所构成。 The power converter 2 by the solar cell 1 is connected between output inductor L and the switching element T PWM circuit receiving the output terminal 3 of the control, the output inductor L, then the output voltage Vout terminal constituting an output capacitor C2, a diode switch D. 功率变换器2在PWM电路3的控制下,将太阳能电池1所产生的直流电压Vin转换成适合蓄电池负载7的直流电压Vout,给蓄电池负载7充电。 The power converter 2 under the PWM control circuit 3, the solar cell generated DC voltage Vin into DC voltage Vout of the load for the battery 7, the load to the battery 7 charging. 电容器C1、C2分别是输入、输出滤波电容。 Capacitors C1, C2 are the input, output filter capacitor.

如图2所示的负载电流下降判别电路6和电压调整电路5,负载电流下降判别电路6包括:将负载电流取样电路8所提供的负载电流信号Ii进行放大的由运放U1组成的取样电流放大器9;将经模拟开关SW1保存在C4上的先前时刻电流信号与即时时刻电流信号进行比较的由运放U2组成的电流时差比较器10;经模拟开关SW2在即时时刻将电流时差比较器10输出的负载电流下降信号进行整形并输出一个负载电流下降脉冲信号的由运放U3组成的电流下降脉冲形成电路11;产生时钟信号S1、S2控制模拟开关SW1、SW2,以配合电流时差比较器10和电流下降脉冲形成电路11按要求时序工作的时钟路12。 Load current sample current signal Ii load current sampling circuit 8 amplifying a discharge provided by the U1 op composed of: the load current is decreased as shown in FIG. 2 discriminating circuit 6 and the voltage adjustment circuit 5, the load current drops discriminating circuit 6 comprising amplifier 9; previous time instant a current signal via the analog switch SW1 stored in C4 of the time instant the current signal is compared by the operational amplifier U2 consisting of the current time difference comparator 10; via the analog switch SW2 at time instant, the current difference comparator 10 load current output down signal shaping and outputting a load current decreases the pulse signal from the operational current amplification U3 composition falling pulse forming circuit 11; generating a clock signal S1, S2 controlled analog switches SW1, SW2, to match the current time difference comparator 10 and the current falling clock pulse forming circuit 11 by way of timing as in claim 12.

电压调整电路5包括:可以被负载电流下降判别电路6所输出的负载电流下降脉冲信号触发的双稳电路13;由双稳电路13的正相输出端Q控制、在Q的高电平状态给调整电容C3充电的充电恒流源14;由双稳电路13的反相输出端Q控制,在Q的高电平状态给调整电容C3放电的放电恒流源15。 5 voltage adjustment circuit comprising: a load current can be decreased discrimination circuit 6 outputs the load current decreases the bistable trigger circuit 13 is a pulse signal; a bistable circuit the positive-phase output Q of the control 13, the high state to Q adjusting a charging capacitor C3 is a constant current source 14; a bistable inverting output terminal Q of the control circuit 13, the high state to the Q adjustment discharging constant current source 15 discharges the capacitor C3.

本实用新型实施例将太阳能电池1的输出电压Vin经过一个由常规的开关电源电路组成的功率变换器2,转换成适合于蓄电池负载7充电的输出电压Vout给蓄电池负载7充电,因此太阳能电池1的输出电压Vin与功率变换器2的输出电压Vout之间,存在以下数值关系:Vout=Vin*D式中D表示功率变换器2工作的占空比,即PWM电路3的输出控制信号的脉宽TON与工作周期T的比值。 Example embodiment of the present invention the output voltage Vin of the solar cell 1 through the power converter of a conventional switching power supply circuit 2, converted into a suitable load to the battery 7 charging the battery output voltage Vout to the load 7 charged, so the solar cell 1 between the output voltage Vout is Vin and the output voltage of the power converter 2, the following numerical relationship: Vout = Vin * D where D is the duty ratio of the power converter 2 is operated, i.e., the output pulse signal of a PWM control circuit 3 ratio of width TON and the work period T.

因为蓄电池负载7两端的端电压即功率变换器2的输出电压Vout相对固定,故太阳能电池1的输出电压Vin将随占空比D的变化而变化。 7 because the battery voltage across the load i.e. the power converter output voltage Vout 2 is relatively fixed, so that the solar cell output voltage Vin 1 will vary with the duty ratio D. 因此,我们可以通过调整功率变换器的占空比D将太阳能电池1的输出电压Vin调到与最佳工作电压Um一致,如图5中,此时太阳能电池1的输出电流正好是最大输出点Pm所对应的输出电流Im,这时太阳能电池1工作在最大功率点Pm。 Thus, we can adjust the duty ratio D of the power converter output voltage of the solar cell 1 is consistent with Vin transferred to the Um optimum operating voltage, as shown in FIG. 5, when the output current of the solar cell 1 is just the maximum output point Pm corresponding output current Im, a working time of the solar cell maximum power point Pm.

如图6所示,图中箭头所指范围为Vin跟踪范围,由于太阳能电池1的输出电压Vin在不同的照度温度条件下是变化的,故最佳输出工作电压Um也是变化的。 6, the arrow of FIG Vin range tracking range, since the output voltage Vin of the solar cell 1 at different temperature conditions of illumination is changed, so that the optimum operating voltage Um output also varies. 因此在实施例中,通过对PWM电路的脉宽即占空比进行精确调整,使太阳能电池1的输出电压Vin始终工作在最佳工作电压点,如图6中的u1或u2或u3,使太阳能电池1的输出功率最大。 Therefore, in an embodiment, be accurately adjusted by pulse width duty cycle of the PWM circuit, i.e., the solar cell output voltage Vin 1 is always at the optimal operating voltage point of FIG. 6 u1 or u2 or u3, so a solar cell output power maximum.

在图1中,如果不考虑电路损耗,太阳能电池1的输出功率Pin、功率变换器2的输出功率Pout、输出电压Vout及输出回路电流Iout之间有以下关系式:Pin=Pout=Vout*Iout因为Vout基本不变,故而太阳能电池1输出功率Pin的变化将直接反映到输出回路电流的变化,也就是说Pin增大,Iout也增大;Pin减小,Iout也减小。 In Figure 1, there is the following relationship between the circuit without considering the loss, the solar cell output Pin 1, the output power Pout of the power converter, the output voltage Vout and the output of the loop current Iout 2: Pin = Pout = Vout * Iout because Vout substantially constant, therefore a change in the solar cell output power Pin will be directly reflected to the change in the output current loop, i.e. Pin is increased, lout also increases; Pin decreases, lout is also reduced. 因此可以通过对输出回路电流Iout的检测,而得知Pin的变化趋势。 Thus by detecting the output current Iout of the circuit, and that the trend of Pin.

在图2中的负载电流下降判别电路6中,由运放U1、R4、R3组成的取样电流放大器9对负载回路电流取样信号进行放大,并将电流信号输入到比较器U2与先前时刻保存在电容C4上的先前时刻电流信号进行比较,当即时时刻的电流信号小于先前时刻电流信号时,在比较器U2的输出端得到一个高电平的负载电流下降信号,利用时钟电路12产生的时钟信号S2的高电平在即时时刻接通模拟开关SW2,从而在由运放U3组成的电流下降脉冲形成电路11的输出端得到一个负载电流下降脉冲信号。 In FIG. 2 the load current drops discriminating circuit 6, op amp U1, R4, R3 sampled current amplifier 9 composed of the load circuit current sampling signal is amplified, and the current signal input to the comparator U2 is stored in the previous time previous time current signal on capacitor C4 comparison, when the current signal is less than the previous time instant in time the current signal, to obtain a high level of the load current decrease signal at an output of the comparator U2, the clock signal generated by the clock circuit 12 S2 is turned high at the time instant, the analog switch SW2, so as to decrease the output of pulse forming circuit 11 is lowered to obtain a load current of the current pulse signals by the operational amplifier U3 thereof.

如图4所示,在0-t1期间,S1输出高电平,模拟开关SW1导通,将这一时刻取样电流放大器9输出的电流信号保存在电容C4中;在t1-t2期间,S1输出低电平,模拟开关SW1断开,此时的电流信号与0-t1期间保存在电容C4中的电流信号一同加在运放U2的两个输入端进行比较,当t1-t2期间负载电流比0-t1期间负载电流小时,运放U2输出为高电平;反之,运放U2输出为低电平。 As shown, during 0-t1, S1 output high, the analog switch SW1 is turned on, the current signal output from the amplifier 9 a current sampling time stored in the capacitor C4 4; during t1-t2, S1 output the low level, the analog switch SW1 is turned off, current stored in the capacitor C4 in this time period 0-t1 the signal with a current signal applied to the operational amplifier the two inputs of U2 is compared, during the t1-t2 when the load current ratio 0-t1 during the load current is small, the output of op-amp U2 is high; conversely, the amplifier U2 outputs a low level. 在t1-t2期间,S2的输出为高电平,模拟开关SW2导通,由运放U3组成的电流下降脉冲形成电路11的输出电平取决于运放U2的输出电平。 During t1-t2, the output S2 is high level, the analog switch SW2 is turned on, current from the operational amplifier U3 composition falling pulse forming circuit output level of operational amplifier 11 depends on the output level of U2. 当运放U2的输出为高电平时,经运放U3整形输出一个高电平的负载电流下降脉冲信号。 When the output of op amp U2 is high, the operational amplifier U3 by shaping a high output load current falling pulse signal. 因此,只有在负载电流下降时,负载电流下降判别电路6才会输出一个负载电流下降脉冲信号。 Therefore, only when the load current decreases, the load current will drop determination circuit 6 outputs a pulse signal of the load current decreases.

在图2中的电压调整电路5中,经所述负载电流下降脉冲信号的触发,双稳电路13的输出状态发生翻转,也就是说,如果先前时刻调整电容C3在放电,那么即时时刻改为充电状态;如果先前时刻调整电容C3在充电,那么即时时刻改为放电状态。 In FIG. 2, the voltage adjustment circuit 5, the pulse trigger signal to the current drop load, the output state of the flip-flop circuit 13 inversion occurs, i.e., if the previous time adjustment capacitor C3 is discharged, and the time instant to charging state; if the previous time adjustment capacitor C3 is charged, then discharge state to an instant in time. 由于双稳电路13每一时刻只能有一种稳定状态,所以调整电容C3每一时刻只能处于一种工作状态,要么是充电,要么是放电。 Since the flip-flop circuit 13 each time only a steady state, the adjustment capacitor C3 in each moment only one operating state, either charging or discharging is. 通过对调整电容C3两端的电压进行精密控制,并通过R2精密调整PWM电路3的输出脉宽,实现对太阳能电池1的输出功率的精密控制。 Precisely controlled by adjusting the voltage of both ends of the capacitor C3, and R2 through fine adjustment of the PWM circuit 3 output pulse width to achieve precise control of the output power of the solar cell 1.

在图1中,由电位器W和电阻R1组成的电压取样调整电路4通过PWM电路3给出一个固定的占空比,此时太阳能电池1的输出工作电压Vin是一相应的固定值,比如图5中的u2,此时蓄电池负载开始充电。 In Figure 1, the voltage generated by a potentiometer consisting of a resistor R1 and W sample adjustment circuit 4 by a fixed duty ratio of the PWM circuit 3 is given, the output of the solar cell operating voltage Vin at this time is a fixed value corresponding to a, for example Figure 5 u2, this time to start charging the battery load. 由于电压调整电路5时刻在对调整电容C3进行充放电操作,因而调整电容C3的端电压uc3时刻处在上升或下降过程中,与之对应,PWM电路3的脉宽、太阳能电池1的输出电压Vin、负载回路电流Iout也在上升或下降过程中,整个电路装置将进行处理过程如图3,不断进行上述检测、触发、调整,使太阳能电池1的输出功率始终工作在最大功率点上。 Since the voltage adjustment circuit 5 at the time of the adjustment operation of charging and discharging the capacitor C3, thereby adjusting the voltage across the capacitor C3 uc3 rise or fall time in the process, the corresponding pulse width of the PWM circuit 3, the output voltage of the solar cell 1 VIN, load circuit current Iout is rising or lowering, the entire apparatus executes processing circuit 3, the detection continuous, trigger adjustment, the output power of the solar cell 1 is always works at the maximum power point.

综上所述,根据本实用新型太阳能电池自动功率伺服装置,通过对电压相对固定的负载电流强度取样,将一定期间的先前电流和即时电流进行比较,可以检测到太阳能电池1输出功率的变化趋势,通过对功率变换器2占空比的调节,使太阳能电池1精确地工作在最大功率点,不受光照度和温度的影响,而且电路结构简单、成本低。 In summary, the present invention is a solar cell according to an automatic power servo means, by a relatively fixed voltage load amperage sampling current and previous instant by comparing a current predetermined period, the change trend may be detected output power of the solar cell 1 , by adjusting the duty cycle of the power converter 2, the solar cell 1 operates in exactly the maximum power point, the influence from light and temperature, but also a simple circuit structure and low cost.

Claims (3)

1.一种太阳能电池自动功率伺服装置,它的输入端与太阳能电池(1)连接,输出端与负载(7)连接,其特征在于:它包括将太阳能电池(1)输出的直流电变换成适合负载使用的电压的功率变换器(2)、对功率变换器(2)进行脉宽控制的PWM电路(3)、对太阳能电池(1)输出工作电压进行取样和对工作电压范围进行初步调节的电压取样调节电路(4)、对太阳能电池(1)输出工作电压进行精确调整的电压调整电路(5)、对负载(7)的回路电流进行取样的负载电流取样电路(8)、对所述负载电流进行时差比较以产生负载电流下降脉冲信号的负载电流下降判别电路(6);功率变换器(2)输出端与负载(7)连接。 An automatic solar cell power servo means, which input terminal of the solar cell (1) is connected to the output terminal of the load (7) is connected, characterized in that: it comprises a direct current of the solar cell (1) into a suitable output load voltage of the power converter used in (2), power converter (2) for the PWM circuit (3) controls the pulse width of the solar cell (1) output and the sampled operating voltage range of the operating voltage of the initial adjustment sampling the voltage regulating circuit (4), the solar cell (1) output voltage fine adjustment of the working voltage adjustment circuit (5), the load (7) of the loop current sampling circuit for sampling the load current (8), the comparing the load current to produce a time difference pulse signal of the load current drops the load current drops discriminating circuit (6); a power converter (2) output terminal of the load (7) is connected.
2.如权利要求1所述的太阳能电池自动功率伺服装置,其特征在于:负载电流下降判别电路(6)包括:将负载电流取样信号进行放大并输出对应于输出电流的电流信号的取样电流放大器(9);将先前时刻电流信号与即时时刻电流信号进行比较,当即时时刻电流信号所对应的电压低时,产生一个负载电流下降信号的电流时差比较器(10);将负载电流下降信号在即时时刻整形输出一个负载电流下降脉冲信号的电流下降脉冲形成电路(11);以及输出时钟信号用于控制所述电流时差比较器(10)和电流下降脉冲形成电路(11)工作的时钟电路(12)。 The solar cell according to an automatic power servo system as claimed in claim 1, wherein: the load current drops discriminating circuit (6) comprising: sampling a load current output sample signal is amplified by the current amplifier and a current signal corresponding to the output current (9); previous time current signal is compared with the time instant the current signal, when the low time instant a current signal corresponding to the voltage, generating a load current falling signal current difference comparator (10); the load current decreases signal a clock signal and an output clock circuit for controlling the current difference comparator (10) and the current falling pulse forming circuit (11) of the work (; instants shaped output current of a load current falling pulse falling pulse signal forming circuit (11) 12).
3.如权利要求2所述的太阳能电池自动功率伺服装置,其特征在于:电压调整电路(5)包括:在负载下降脉冲信号触发下,使输出电平状态发生翻转的双稳电路(13):被双稳电路(13)输出端控制,能在双稳电路(13)第一稳态时对调整电容充电的充电恒流源(14);以及被双稳电路(13)输出端控制,能在双稳电路(13)第二稳态时对调整电容放电的放电恒流源(15)。 The solar cell according to the automatic power servo device as claimed in claim 2, wherein: a voltage adjusting circuit (5) comprising: a load shedding at the trigger pulse, the output level state of the bistable flip generating circuit (13) : a bistable circuit (13) output control, the steady state can be adjusted when the first charging constant current source (14) for charging the capacitor in the bistable circuit (13); and a bistable circuit (13) output control, capable of adjusting a discharging constant current source discharges the capacitor when the second stable state of the bistable circuit (13) (15).
CN 01252415 2001-11-12 2001-11-12 Automatic power servo unit for solar battery CN2514538Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 01252415 CN2514538Y (en) 2001-11-12 2001-11-12 Automatic power servo unit for solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 01252415 CN2514538Y (en) 2001-11-12 2001-11-12 Automatic power servo unit for solar battery

Publications (1)

Publication Number Publication Date
CN2514538Y true CN2514538Y (en) 2002-10-02

Family

ID=33662134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 01252415 CN2514538Y (en) 2001-11-12 2001-11-12 Automatic power servo unit for solar battery

Country Status (1)

Country Link
CN (1) CN2514538Y (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101951717A (en) * 2010-06-11 2011-01-19 苏州英诺华微电子有限公司 Environment-adaptive solar LED (light-emitting diode) driving circuit and control method
CN101211192B (en) 2006-12-31 2011-08-24 立锜科技股份有限公司 Simulated optical energy circuit
CN102270865A (en) * 2010-06-02 2011-12-07 通用汽车环球科技运作有限责任公司 Method and apparatus for optimizing the use of solar power for
CN102667659A (en) * 2009-12-14 2012-09-12 三菱电机株式会社 Method for obtaining information enabling the determination of a characteristic of a power source
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9935458B2 (en) 2016-03-22 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
CN101211192B (en) 2006-12-31 2011-08-24 立锜科技股份有限公司 Simulated optical energy circuit
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
CN102667659A (en) * 2009-12-14 2012-09-12 三菱电机株式会社 Method for obtaining information enabling the determination of a characteristic of a power source
CN102667659B (en) * 2009-12-14 2015-10-14 三菱电机研发中心欧洲有限公司 A method for acquiring characteristic to enable power determination information
CN102270865B (en) 2010-06-02 2014-08-06 通用汽车环球科技运作有限责任公司 Method and device for optimizing the use of solar electrical power
CN102270865A (en) * 2010-06-02 2011-12-07 通用汽车环球科技运作有限责任公司 Method and apparatus for optimizing the use of solar power for
CN101951717A (en) * 2010-06-11 2011-01-19 苏州英诺华微电子有限公司 Environment-adaptive solar LED (light-emitting diode) driving circuit and control method
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9935458B2 (en) 2016-03-22 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power

Similar Documents

Publication Publication Date Title
Irving et al. Analysis, design, and performance evaluation of droop current-sharing method
US7091707B2 (en) Method and apparatus for controlling power drawn from an energy converter
US6307361B1 (en) Method and apparatus for regulating the input impedance of PWM converters
US5406468A (en) Method for minimizing output transient responses in a power supply
US6894466B2 (en) Active current sharing circuit
US20090230930A1 (en) Adaptive Power Supply and Related Circuitry
US6744241B2 (en) Method for driving a switch in a switch-mode converter, and a drive circuit for driving a switch
US5367247A (en) Critically continuous boost converter
US20040183380A1 (en) Switching constant-current power supply system
US4375662A (en) Method of and apparatus for enabling output power of solar panel to be maximized
US7132818B2 (en) Switching power supply control device and switching power supply
US4672518A (en) Current mode control arrangement with load dependent ramp signal added to sensed current waveform
US20080164859A1 (en) Digital Current Mode Controller
US6844739B2 (en) Maximum power point tracking method and device
US20070252567A1 (en) Switching regulator circuits
US20060113974A1 (en) Method of forming a power supply control and device therefor
US20070057720A1 (en) Systems and methods for load detection and correction in a digital amplifier
US20060164065A1 (en) System and method for tracking a variable characteristic through a range of operation
US5932994A (en) Solar cell power source device
US20080094047A1 (en) Primary side constant output voltage controller
US20130223108A1 (en) Constant voltage constant current controller and control method thereof
US6084784A (en) Switched mode power supply with reduced reflected power
US20070296389A1 (en) Switching regulators
US20060202669A1 (en) Control circuit and control method of current mode control type DC-DC converter
JPH11155281A (en) Switching regulator

Legal Events

Date Code Title Description
C14 Granted
C19 Lapse of patent right due to non-payment of the annual fee