CN2379915Y - Antimony-indium series compound semiconductor magnetic resistance type current sensor - Google Patents
Antimony-indium series compound semiconductor magnetic resistance type current sensor Download PDFInfo
- Publication number
- CN2379915Y CN2379915Y CN99236150.8U CN99236150U CN2379915Y CN 2379915 Y CN2379915 Y CN 2379915Y CN 99236150 U CN99236150 U CN 99236150U CN 2379915 Y CN2379915 Y CN 2379915Y
- Authority
- CN
- China
- Prior art keywords
- magnetoresistive
- antimony
- chip
- compound semiconductor
- current sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 28
- 230000005291 magnetic effect Effects 0.000 title claims description 17
- -1 Antimony-indium series compound Chemical class 0.000 title 1
- 239000004020 conductor Substances 0.000 claims abstract description 30
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract 2
- 239000000463 material Substances 0.000 claims description 9
- 239000003302 ferromagnetic material Substances 0.000 claims description 7
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 4
- 230000004907 flux Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 229910000673 Indium arsenide Inorganic materials 0.000 description 3
- XSKUQABTDMBZCN-UHFFFAOYSA-N [Sb].[As].[In] Chemical compound [Sb].[As].[In] XSKUQABTDMBZCN-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- KPHMZPZFNOFDPH-UHFFFAOYSA-N [Co].[Ni].[Fe].[Ni] Chemical compound [Co].[Ni].[Fe].[Ni] KPHMZPZFNOFDPH-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical group [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000012887 quadratic function Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Landscapes
- Hall/Mr Elements (AREA)
Abstract
本实用新型是锑-铟系化合物半导体磁阻式电流传感器。它由磁阻芯片、导体、永磁体、铁磁性薄片、基片连接构成,其连结关系为芯片粘固于基片上,基片与铁磁薄片粘结,铁磁性薄片与永磁体粘结,导体一根横跨芯片与其它绕过磁阻元件导体并联。本实用新型尤其适用弱小电流场合,灵敏度高,稳定性好、易于制造。
The utility model is an antimony-indium compound semiconductor magnetoresistive current sensor. It consists of a magnetoresistive chip, a conductor, a permanent magnet, a ferromagnetic sheet, and a substrate connection. One across the chip is connected in parallel with the other conductors bypassing the magnetoresistive element. The utility model is especially suitable for weak and small current occasions, has high sensitivity, good stability and is easy to manufacture.
Description
本实用新型是锑-铟系化合物半导体磁阻式电流传感器,属电子器件技术,特别涉及传感器制作技术。The utility model relates to an antimony-indium compound semiconductor magnetoresistive current sensor, which belongs to the electronic device technology, and particularly relates to the sensor manufacturing technology.
现在市售的用磁阻芯片制造的电流传感器是采用镍铁-镍钴合金薄膜磁阻芯片的。由于这种磁阻芯片的灵敏度比较低,而且还有当磁场增大到一定程度时,磁阻效应易出现饱和等的缺点,这样既需要比较强的电流才能感应出一定的输出电压,而又需要防止电流太大时出现饱和。它通常测量的只是1A以上至20A的大电流,而在实际应用中,往往要监测1A以下甚至0.1A以下的弱电流,因此,小电流场合并不实用。而且这种传感器的结构中如果要加偏磁的话,在装配时应使磁力线平行于磁阻芯片表面,这给制造过程中装配偏磁磁体带来一定困难。Current sensors made of magnetoresistive chips currently available on the market use nickel-iron-nickel-cobalt alloy thin-film magnetoresistive chips. Because the sensitivity of this kind of magnetoresistive chip is relatively low, and when the magnetic field increases to a certain extent, the magnetoresistance effect is prone to saturation and other shortcomings, so it needs a relatively strong current to induce a certain output voltage, and Need to prevent saturation when the current is too high. It usually only measures large currents above 1A to 20A, but in practical applications, it is often necessary to monitor weak currents below 1A or even below 0.1A, so it is not practical for small current applications. Moreover, if bias magnetization is to be added in the structure of this sensor, the magnetic lines of force should be parallel to the surface of the magnetoresistive chip during assembly, which brings certain difficulties to the assembly of the bias magnet in the manufacturing process.
本实用新型的目的就是为了克服和解决现有的磁阻电流传感器存在灵敏度低、易饱和、使得既需较大电流才能感应出一定电压、又需防止过大电流出现饱和、小电流场合并不实用、且制造中装配偏磁较困难等的缺点和问题,研究、设计一种灵敏度高、磁阻效应明显、不易饱和、适于微弱电流场合使用、更适用于检测小于1A电流的体积小、重量轻、结构牢固紧凑、使用寿命长的锑-铟系化合物半导体磁阻式传感器。The purpose of this utility model is to overcome and solve the low sensitivity and easy saturation of the existing magnetoresistive current sensor, so that a large current is required to induce a certain voltage, and it is necessary to prevent saturation from excessive current, which is not suitable for small current occasions. Due to the shortcomings and problems of practicality and difficulty in assembling bias magnetism in manufacturing, research and design a small volume, high sensitivity, obvious magnetoresistance effect, not easy to saturate, suitable for weak current applications, and more suitable for detecting currents less than 1A. Antimony-indium compound semiconductor magnetoresistive sensor with light weight, firm and compact structure and long service life.
本实用新型是通过下述技术方案来实现的:锑-铟系化合物半导体磁阻式电流传感器的内部结构示意图如图1和图2所示,电流传感作用原理图如图3所示。本电流传感器由锑-铟系化合物半导体磁阻芯片1、导体2、永磁体3、铁磁性物质薄片4、用来支承磁阻芯片的基片5共同相互联结构成,其相互联结关系为:磁阻芯片1通过粘结剂或常规真空蒸镀、溅射方法固定在基片5上(合称为磁阻元件),基片5通过粘结剂与铁磁性物质薄片4粘合,铁磁性物质薄片4通过粘结剂与永磁体3粘合,导体2整根横跨磁阻芯片1,即整根横跨于并平行于磁阻芯片1表面或背面,并可二根导体或多根导体并联,且只其中一根导体横跨磁阻芯片,其余可绕过磁阻芯片。为了增大电流传感器的检测范围,可以增加一条一定粗细的导体6,它是与导体2并联的,但并不横跨磁阻芯片1,如图2所示。这样可使外电路的被检测电流一部分流过导体2,另一部分流过导体6,它们二者的电流强度是与导体2、6的横截面积有关的。比如导体6的横截面积是导体2的横截面积的9倍时,可以使检测量程扩展到10倍。在实际应用中,导体6是一根或多根导体。其作用原理为:锑-铟系化合物半导体的磁阻特性曲线如图3所示的抛物线曲线。图3中RB和R0分别是有磁场和无磁场时磁阻元件的电阻值,B(T)为外加磁场。由图3可见,RB/R0的值是随B(T)值的变化呈抛物线规律而变化的。一般认为,B(T)增大到一定值时,RB/R0与B(T)呈一次函数关系。本实用新型的关键是选取引起RB/R0与B(T)的关系由二次函数关系向一次函数关系渐变的那个范围内的B(T)值作为电流传感器的工作点,这个工作点是由永磁体3提供一个偏磁场而实现的,假设在图3的B1点。当外加电压稳定时,输出信号(电压或电流)也是稳定的,如果在输入端施加一个信号A,随之会在输出端获得输出信号B。把图1中导体2与外部被测电路联接且被测电流流过导体2时,该电流会在导体的周围空间产生磁场,这个磁场与永磁体3提供的偏磁场相迭加或相减,使工作点改变,输出电压或电流也随之改变,假设由B1向B2处移动,由于抛物线在①点和②点的斜率是不同的,处于由二次函数向一次函数渐变阶段,对相应于与A相等的输入信号C,其相应输出信号D与原先的输出信号B不同,当新的工作点落在抛物线的上升段时,②点的斜率远大于①点的斜率,因此,输出信号增强;可见,在有偏磁场存在时,只要导体2中电流有变化,在磁阻元件的输出端就会有一个变化的信号;实验结果和理论分析都可证实,只要工作点选择恰当,对于各种形状的锑-铟系化合物半导体磁阻芯片和各种粗细的导体2,从磁阻元件输出端获得的输出电压或电流总是与流过导体2的电流基本成正比例近线性关系。锑-铟系化合物半导体的分子表达式为InSb1-xAsx(x=0~1),其两种极端情况是:当x=0时,则为锑化铟(InSb);当x=1时,则为砷化铟(InAs),其它情况则是三元的锑砷化铟(In-Sb-As化合物)。由于锑-铟系化合物半导体的磁阻效应比镍铁-镍钴材料磁阻效应高出许多倍,可以选择合适的锑-铟系化合物半导体材料制作磁阻元件。因此,本实用新型可以制成能检测导体2中流过的、也即是外部被测电路中的毫安级以上的弱小电流,这样就扩展了这类传感器应用场合。The utility model is realized through the following technical solutions: the internal structure diagrams of antimony-indium compound semiconductor magnetoresistive current sensors are shown in Figures 1 and 2, and the principle diagram of current sensing is shown in Figure 3. The current sensor is composed of an antimony-indium compound semiconductor magnetoresistive chip 1, a
本实用新型与现有磁阻电流传感器相比有如下的优点和有益效果:(1)用本实用新型可以检测被测电路中的毫安级以上的弱小电流,是灵敏度较高的半导体磁阻式电流传感器,可以大大扩展此类电流传感器的应用场合;(2)本实用新型是体积小、重量轻、结构牢固紧凑、使用寿命长的半导体磁阻式电流传感器;(3)由于锑-铟系化合物半导体的特性有所不同,或者有较高的载流子迁移率,或者有较高的温度稳定性,或者在制作时易于获得较完美的晶体,因此,制作本磁阻式电流传感器时都可以按使用要求而适当选取;(4)本半导体磁阻式电流传感器,只要用常规的方法便能容易地制造,且本半导体磁阻式电流传感器的结构特征具有缩小面积和装配容易等优点。Compared with the existing magnetoresistive current sensor, the utility model has the following advantages and beneficial effects: (1) the utility model can detect weak currents above the milliampere level in the circuit to be tested, and is a semiconductor magnetoresistor with higher sensitivity (2) the utility model is a semiconductor magnetoresistive current sensor with small size, light weight, firm and compact structure and long service life; (3) due to antimony-indium The characteristics of compound semiconductors are different, or they have higher carrier mobility, or higher temperature stability, or it is easy to obtain a more perfect crystal during fabrication. Therefore, when making this magnetoresistive current sensor All can be properly selected according to the requirements of use; (4) the semiconductor magnetoresistive current sensor can be easily manufactured as long as the conventional method is used, and the structural characteristics of the semiconductor magnetoresistive current sensor have advantages such as reduced area and easy assembly .
下面对说明书附图进一步说明如下:图1为锑-铟系化合物半导体磁阻式电流传感器内部结构示意图,图2为增加并联导体扩大检测范围的锑-铟系化合物半导体磁阻式电流传感器的内部结构示意图,图3为锑-铟系化合物半导体磁阻式电流传感作用原理图。The accompanying drawings of the description are further described as follows: Fig. 1 is a schematic diagram of the internal structure of an antimony-indium compound semiconductor magnetoresistive current sensor, and Fig. 2 is a schematic diagram of an antimony-indium compound semiconductor magnetoresistive current sensor that increases the detection range by adding parallel conductors Schematic diagram of the internal structure, Figure 3 is a schematic diagram of the antimony-indium compound semiconductor magnetoresistive current sensing function.
本半导体磁阻式电流传感器的实施方式可为如下:按图1~图2所示,并按上面说明书所述的连结关系进行设计、选材、制造、连结装配本电流传感器:(1)基片5上的磁阻芯片1是薄膜型或单晶型,薄膜型芯片1可以用常规使用的真空热蒸镀和各种溅射的可行方法制成,而单晶型可用常用的研磨减薄方法制成,但用薄膜型磁阻芯片有更高的灵敏度;磁阻芯片可按不同使用要求而制成各种不同形状并可构成多端型输出形式,磁阻芯片可选用如锑化铟、砷化铟等锑-铟系二元化合物以及如锑砷化铟的锑-铟系三元化合物半导体材料,或如镓铟砷四元锑-铟系化合物半导体材料来制造;(2)永磁体3是为了给磁阻芯片提供一个偏磁场,因此它的形体和材料可为各种形体和不同材料,只需用传统烧结加工方法加工制造。装配时要求永磁体3装置于磁阻芯片1与基片5组合的磁阻元件的正下方或正上方,并用S极或N极面向磁阻元件都可以,只是要求它的磁力线尽可能垂直地穿过磁阻芯片表面;(3)夹在基片5与永磁体3之间的铁磁性物质薄片4起到调整由永磁体3提供的偏磁场强度的作用,实际上它调整了磁阻元件的工作点,而且对导体2产生的空间磁场起到聚集的作用。铁磁性物质薄片4也只需用传统的压制加工方法加工制造;(4)基片5可用硅片、微晶玻璃片、云母片等单晶或多晶材料;(5)按上面说明书所述的各部件相互连结关系进行联结粘牢,再套入其外壳中,并注入环氧树脂以增加牢固度和防潮性能,就能较好地实施本发明。The embodiment of this semiconductor magnetoresistive current sensor can be as follows: as shown in Fig. 1~Fig. 2, and carry out design, material selection, manufacture, connection and assembly according to the connection relationship described in the above specification. This current sensor: (1) Substrate The magnetoresistive chip 1 on 5 is thin-film type or single-crystal type, and the thin-film type chip 1 can be made by conventionally used vacuum thermal evaporation and various sputtering feasible methods, while the single-crystal type can be made by commonly used grinding and thinning methods However, the thin-film magnetoresistive chip has higher sensitivity; the magnetoresistive chip can be made into various shapes according to different application requirements and can form a multi-terminal output form, and the magnetoresistive chip can be selected such as indium antimonide, arsenic Antimony-indium binary compounds such as indium and antimony-indium ternary compound semiconductor materials such as antimony indium arsenide, or quaternary antimony-indium compound semiconductor materials such as gallium indium arsenide; (2) permanent magnets 3 The purpose is to provide a bias magnetic field for the magnetoresistive chip, so its shape and material can be various shapes and different materials, and only need to be processed and manufactured by traditional sintering processing methods. During assembly, it is required that the permanent magnet 3 be installed directly below or directly above the magnetoresistive element combined with the magnetoresistive chip 1 and the substrate 5, and it is acceptable to use the S pole or the N pole to face the magnetoresistive element, but it is required that its magnetic force lines be as vertical as possible Through the surface of the magnetoresistive chip; (3) The ferromagnetic material sheet 4 sandwiched between the substrate 5 and the permanent magnet 3 plays the role of adjusting the bias magnetic field strength provided by the permanent magnet 3. In fact, it adjusts the magnetic resistance element The working point, and play a role in concentrating the spatial magnetic field generated by
发明人经长期的研究和试验,已用锑化铟、砷化铟二元化合物和锑砷铟三元化合物以及镓铟砷锑四元化合物半导体磁阻元件制成了本磁阻式电流传感器,结果表明其制造容易、灵敏度高、稳定性好、效果显著。下面仅选几个实例表示于表1。表1: After long-term research and experiments, the inventor has made this magnetoresistive current sensor with indium antimonide, indium arsenide binary compound, antimony arsenic indium ternary compound and gallium indium arsenic antimony quaternary compound semiconductor magnetoresistive element. The results show that it is easy to manufacture, high in sensitivity, good in stability and remarkable in effect. Only a few examples are selected below and shown in Table 1. Table 1:
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN99236150.8U CN2379915Y (en) | 1999-05-26 | 1999-05-26 | Antimony-indium series compound semiconductor magnetic resistance type current sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN99236150.8U CN2379915Y (en) | 1999-05-26 | 1999-05-26 | Antimony-indium series compound semiconductor magnetic resistance type current sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN2379915Y true CN2379915Y (en) | 2000-05-24 |
Family
ID=34024002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN99236150.8U Expired - Fee Related CN2379915Y (en) | 1999-05-26 | 1999-05-26 | Antimony-indium series compound semiconductor magnetic resistance type current sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN2379915Y (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109669064A (en) * | 2017-10-17 | 2019-04-23 | 维洛西门子新能源汽车法国简式股份公司 | For measuring the sensor of the output electric current of electrical system and including its sub-assembly |
-
1999
- 1999-05-26 CN CN99236150.8U patent/CN2379915Y/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109669064A (en) * | 2017-10-17 | 2019-04-23 | 维洛西门子新能源汽车法国简式股份公司 | For measuring the sensor of the output electric current of electrical system and including its sub-assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10126378B2 (en) | Single-chip Z-axis linear magnetic resistance sensor | |
EP2667213B1 (en) | A single-package bridge-type magnetic field sensor | |
US9722175B2 (en) | Single-chip bridge-type magnetic field sensor and preparation method thereof | |
US9664754B2 (en) | Single chip push-pull bridge-type magnetic field sensor | |
US9678178B2 (en) | Magnetoresistive magnetic field gradient sensor | |
EP3467530B1 (en) | Magnetoresistive sensor having compensating coil | |
US9739850B2 (en) | Push-pull flipped-die half-bridge magnetoresistive switch | |
EP3062119B1 (en) | Push-pull bridge-type magnetic sensor for high-intensity magnetic fields | |
WO2012139494A1 (en) | Magnetoresistive device having semiconductor substrate and preparation method therefor | |
CN111044953A (en) | Single-chip full-bridge TMR magnetic field sensor | |
CN114937736B (en) | Wide-range TMR sensor tunnel junction and sensor | |
CN2379915Y (en) | Antimony-indium series compound semiconductor magnetic resistance type current sensor | |
CN212008887U (en) | Single-chip full-bridge TMR magnetic field sensor | |
JPH11261130A (en) | Magnetic sensor | |
CN1235276A (en) | Semiconductor magnetic resistance current sensor with antimony-indium compounds and method therefor | |
CN115166334A (en) | Current sensor and preparation method of current sensor | |
Blanchard et al. | Cylindrical Hall device | |
CN113884956B (en) | Antimony-indium compound semiconductor magneto-resistive continuous current sensor and method for manufacturing same | |
US5637906A (en) | Multi layer thin film magnetic sensor | |
CN115825826B (en) | Three-axis full-bridge circuit transformation type linear magnetic field sensor | |
CN119689341A (en) | Magnetic field sensor chip and manufacturing method thereof | |
CN2597948Y (en) | Compound semiconductor magnetoresistive photoelectric sensor | |
JP2005056950A (en) | Magnetoresistive element and magnetic sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |