CN220913993U - Internally-coated silica gel type piezoresistor - Google Patents

Internally-coated silica gel type piezoresistor Download PDF

Info

Publication number
CN220913993U
CN220913993U CN202322201796.4U CN202322201796U CN220913993U CN 220913993 U CN220913993 U CN 220913993U CN 202322201796 U CN202322201796 U CN 202322201796U CN 220913993 U CN220913993 U CN 220913993U
Authority
CN
China
Prior art keywords
silica gel
ceramic chip
piezoresistor
coated silica
internally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202322201796.4U
Other languages
Chinese (zh)
Inventor
王鹏鹏
周荣林
袁海兵
朱莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Xianzheng Electronics Co ltd
Original Assignee
Nanjing Xianzheng Electronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Xianzheng Electronics Co ltd filed Critical Nanjing Xianzheng Electronics Co ltd
Priority to CN202322201796.4U priority Critical patent/CN220913993U/en
Application granted granted Critical
Publication of CN220913993U publication Critical patent/CN220913993U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

The utility model discloses an internally-coated silica gel type piezoresistor, which relates to the technical field of piezoresistor preparation and comprises a ceramic chip, wherein a silver electrode is attached to the side part of the ceramic chip, a tin soldering lug is arranged on the surface of the silver electrode, a lead is welded inside the tin soldering lug, epoxy resin is coated outside the lead, the epoxy resin is internally coated on the outer surface of the ceramic chip after the chip is welded, and internally-coated silica gel is arranged on the inner surface of the ceramic chip. According to the utility model, the piezoresistor is welded and then internally coated with the silica gel, so that the insulation effect can be effectively achieved, the reduction of the electrical performance of the piezoresistor caused by carbonization of epoxy resin is prevented, meanwhile, the internally coated silica gel has the characteristics of strong heat conduction capability and insulation and voltage resistance, the lightning surge resistance of the resistor can be improved, the service life of the resistor is prolonged, and under the double-layer protection of the internally coated silica gel and the epoxy resin, the piezoresistor has a stable working environment in a circuit, and the hidden trouble that the whole circuit is burnt out due to failure breakdown of a chip is avoided.

Description

Internally-coated silica gel type piezoresistor
Technical Field
The utility model relates to the technical field of piezoresistor preparation, in particular to an internal silica gel type piezoresistor.
Background
The piezoresistor is a voltage limiting type protection device. By utilizing the nonlinear characteristic of the piezoresistor, when the overvoltage occurs between two poles of the piezoresistor, the piezoresistor can clamp the voltage to a relatively fixed voltage value, so that the protection of a subsequent circuit is realized.
The common piezoresistor is a resistor body prepared by welding and encapsulating a chip, after the resistor is subjected to multiple lightning surge impacts in a circuit, the generated high temperature of the piezoresistor gradually carbonizes epoxy resin, the leakage current of the resistor gradually increases, a large amount of heat is generated during the work of the piezoresistor, and failure phenomena such as breakdown, burnout and the like are easy to occur.
Disclosure of utility model
(One) solving the technical problems
Aiming at the defects of the prior art, the utility model provides the internally-coated silica gel piezoresistor, which can solve the problems that after the conventional resistor is subjected to multiple lightning surge impacts in a circuit, the epoxy resin is carbonized gradually due to the high temperature generated by the piezoresistor, the leakage current of the resistor is increased gradually, a large amount of heat is generated during the working of the piezoresistor, the phenomena of breakdown, burnout and the like are easy to occur, and the stability and the reliability of the electrical performance of the piezoresistor can be improved.
(II) technical scheme
In order to achieve the above purpose, the utility model is realized by the following technical scheme:
An internally coated silica gel type piezoresistor comprises
The ceramic chip, the lateral part of ceramic chip adheres to the silver electrode, just the surface of silver electrode is equipped with the tin soldering lug, the inside welding of tin soldering lug has the lead wire, the outside cladding of lead wire has epoxy, just epoxy is the chip welding back internal coating at ceramic chip surface, ceramic chip internal surface sets up the internal coating silica gel.
Preferably, the lead is a tinned copper steel covered wire, and the tin soldering sheet is made of lead-free soldering tin.
Preferably, the ceramic chip is in a disc structure, and the diameter of the ceramic chip is 10mm-25mm.
The preparation method of the silica gel-coated piezoresistor comprises the following steps:
Step one: preparing a ceramic chip, pulping and grinding metal oxide in a ball milling tank, spraying and granulating, and sintering after molding to obtain the ceramic chip;
Step two: preparing a ceramic resistor chip, brushing silver on the outer part of the ceramic chip, then firing silver to form a silver electrode, and testing the electrical performance parameters such as voltage-sensitive voltage, leakage current, voltage ratio and the like of the resistor;
step three: preparing a piezoresistor, wherein the surface of the ceramic resistor chip is internally coated with silica gel through a soldering lug lead wire, and then the surface is coated with an epoxy resin encapsulation layer to form the piezoresistor;
Step four: and testing the piezoresistor, marking the outer surface of the piezoresistor after encapsulation and solidification by using laser, spraying and printing specification and model, retesting the voltage-sensitive voltage, leakage current, voltage ratio and other electrical performance parameters of the tested resistor, and selecting the appearance and cutting pins.
Preferably, the metal oxide is prepared by firing one or more oxides of zinc oxide, bismuth trioxide, nickel oxide, cobalt oxide, chromium oxide, manganese carbonate, antimony trioxide and the like.
Preferably, the sintering temperature is 1020-1180 ℃.
Preferably, the silver electrode is prepared by screen printing molecular silver paste, and reducing at 560-600 ℃ to make the ceramic chip compatible with the molecular silver layer.
Preferably, the internal coating silica gel is a polymer silicone rubber composite material, and has good heat conduction performance, flame retardance, moisture resistance, insulation and pressure resistance.
Preferably, the internal coating silica gel mainly comprises silicone resin and solvent, and comprises the following components in percentage by mass: the content of the silicon resin is 40-50%, and the balance is solvent.
(III) beneficial effects
According to the utility model, the silica gel is internally coated after the piezoresistor is welded, so that the insulation effect can be effectively achieved, the reduction of the electrical performance of the piezoresistor caused by carbonization of epoxy resin is prevented, meanwhile, the internally coated silica gel has the characteristics of strong heat conduction capacity and insulation and voltage resistance, the lightning surge resistance of the resistor can be improved, the service life of the resistor is prolonged, the failure rate of the product is reduced, and the reliability and stability of the product are improved. Under the double-layer protection of the internal coating silica gel and the epoxy resin, the piezoresistor has a stable working environment in the circuit, and the hidden trouble that the whole circuit is burnt out due to the failure breakdown of the chip is avoided.
Drawings
The foregoing description is only an overview of the present utility model, and is intended to provide a better understanding of the present utility model, as it is embodied in the following description, with reference to the preferred embodiments of the present utility model and the accompanying drawings.
FIG. 1 is a half-sectional view of a silica gel-coated varistor according to the present utility model.
Legend description: 1. internally coating silica gel; 2. a silver electrode; 3. a tin soldering lug; 4. an epoxy resin; 5. a lead wire; 6. and a ceramic chip.
Detailed Description
According to the embodiment of the application, the problem of high-temperature heat dissipation in the prior art is solved by providing the internally coated silica gel type piezoresistor, so that the piezoresistor has a stable working environment in a circuit under the double-layer protection of the internally coated silica gel and the epoxy resin, and the hidden trouble that the whole circuit is burnt out due to the failure breakdown of a chip is avoided.
Example 1
The technical scheme in the embodiment of the application aims to solve the problem of heat dissipation of the chip, and the overall thought is as follows:
aiming at the problems existing in the prior art, the utility model provides an internal coating silica gel type piezoresistor, which comprises
The ceramic chip 6, silver electrode 2 is attached to the lateral part of ceramic chip 6, just silver electrode 2's surface is equipped with tin soldering lug 3, tin soldering lug 3 is leadless soldering tin material, the inside welding of tin soldering lug 3 has lead 5, lead 5 is tinned copper steel wire.
The outside of the lead 5 is coated with epoxy resin 4, the epoxy resin 4 is internally coated on the outer surface of the ceramic chip 6 after chip welding, and the inner surface of the ceramic chip 6 is provided with internally coated silica gel 1. The ceramic chip 6 has a disc structure.
The preparation method of the silica gel-coated piezoresistor comprises the following steps:
Step one: preparing a ceramic chip 6, pulping and grinding metal oxide in a ball milling tank, spraying and granulating, and sintering after molding to obtain the ceramic chip 6;
Step two: preparing a ceramic resistor chip, brushing silver on the outer part of the ceramic chip 6, then firing silver to form a silver electrode 2, and testing the electrical performance parameters of the resistor, such as voltage-sensitive voltage, leakage current, voltage ratio and the like;
Step three: preparing a piezoresistor, namely coating silica gel on the surface of the ceramic resistor chip through a lead 5 of a tin soldering lug 3, and coating by using an epoxy resin encapsulation layer 4 to form the piezoresistor;
Step four: and testing the piezoresistor, marking the outer surface of the piezoresistor after encapsulation and solidification by using laser, spraying and printing specification and model, retesting the voltage-sensitive voltage, leakage current, voltage ratio and other electrical performance parameters of the tested resistor, and selecting the appearance and cutting pins.
The metal oxide is prepared by firing one or more of zinc oxide, bismuth trioxide, nickel oxide, cobalt oxide, chromium oxide, manganese carbonate, antimonous oxide and the like, wherein the sintering temperature is 1020-1180 ℃.
And (3) after the silica gel 1 is coated on the inner surface of the welded ceramic chip, encapsulating the epoxy resin 4, and then preserving the heat for 1-2 hours at the temperature of 150-160 ℃ for curing to obtain the ceramic chip.
The silver electrode 2 is prepared by screen printing molecular silver paste, and reducing at 560-600 ℃ to make the ceramic chip 6 compatible with the molecular silver layer.
The internal coating silica gel 1 is made of a high molecular silicon rubber composite material, and the internal coating silica gel 1 has good heat conduction performance, flame retardance, moisture resistance, insulation and pressure resistance.
The internally coated silica gel 1 mainly comprises silicon resin and a solvent, and comprises the following components in percentage by mass: the content of the silicon resin is 40-50%, and the balance is solvent.
The diameter of the ceramic chip 6 is 10mm-25mm, the diameter of the piezoresistor is 10mm, the voltage-sensitive voltage is 562V, the green epoxy resin encapsulation layer 4 is encapsulated, no silica gel is coated after the chip is welded, and the rest structure is unchanged.
Example 2
The diameter of the piezoresistor is 10mm, the voltage-sensitive voltage is 562V, the green epoxy resin encapsulation layer 4 encapsulates the piezoresistor, the chip is internally coated with silica gel after being welded, and the rest structure is unchanged.
Example 3
The diameter of the piezoresistor is 14mm, the voltage-sensitive voltage is 685V, the green epoxy resin encapsulation layer 4 is encapsulated, no silica gel is coated after the chip is welded, and the rest structure is unchanged.
Example 4
The diameter of the piezoresistor is 14mm, the voltage-sensitive voltage is 685V, the green epoxy resin encapsulation layer 4 is encapsulated, the chip is internally coated with silica gel after being welded, and the rest structure is unchanged.
The die-bonding of example 1 and example 3 was performed without internally coating silica gel 1, and the die-bonding of example 2 and example 4 was performed with a varistor internally coated with silica gel 1, and the lightning current impulse performance test results are shown in the following table:
According to the table, the varistor with the silica gel is coated can be enabled to have small leakage current change after lightning current surge, and in lightning current surge performance, the varistor has better performance than the common varistor encapsulated by epoxy resin.
It is apparent that the above examples are only illustrative of the present utility model and are not limiting of the embodiments. Other variations or modifications of the above teachings will be apparent to those of ordinary skill in the art. It is not necessary here nor is it exhaustive of all embodiments. And obvious variations or modifications thereof are contemplated as falling within the scope of the present utility model.

Claims (7)

1. An internally coated silica gel type piezoresistor is characterized in that: including ceramic chip (6), silver electrode (2) are attached to the lateral part of ceramic chip (6), just silver electrode (2)'s surface is equipped with tin soldering lug (3), tin soldering lug (3) inside welding has lead wire (5), the outside cladding of lead wire (5) has epoxy (4), just epoxy (4) are interior scribble at ceramic chip (6) surface after the chip welding, ceramic chip (6) internal surface sets up interior scribbles silica gel (1).
2. An internally coated silica gel varistor as claimed in claim 1, wherein: the ceramic chip (6) is of a disc structure, and the diameter of the ceramic chip (6) is 10mm-25mm.
3. An internally coated silica gel varistor as claimed in claim 1, wherein: the lead (5) is a tinned copper steel covered wire.
4. An internally coated silica gel varistor as claimed in claim 1, wherein: the tin soldering sheet (3) is made of lead-free tin soldering material.
5. An internally coated silica gel varistor as claimed in claim 1, wherein: the ceramic chip (6) is made of metal oxide, wherein the metal oxide comprises one or more of zinc oxide, bismuth trioxide, nickel oxide, cobalt oxide, chromium oxide, manganese carbonate and antimony trioxide, and the sintering temperature is 1020-1180 ℃.
6. An internally coated silica gel varistor as claimed in claim 2, wherein: the silver electrode (2) is prepared by screen printing molecular silver paste, and reducing at 560-600 ℃ to make the ceramic chip (6) compatible with the molecular silver layer.
7. An internally coated silica gel varistor as claimed in claim 5, wherein: the inner coated silica gel (1) is a polymer silicon rubber composite material.
CN202322201796.4U 2023-08-16 2023-08-16 Internally-coated silica gel type piezoresistor Active CN220913993U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202322201796.4U CN220913993U (en) 2023-08-16 2023-08-16 Internally-coated silica gel type piezoresistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202322201796.4U CN220913993U (en) 2023-08-16 2023-08-16 Internally-coated silica gel type piezoresistor

Publications (1)

Publication Number Publication Date
CN220913993U true CN220913993U (en) 2024-05-07

Family

ID=90911633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202322201796.4U Active CN220913993U (en) 2023-08-16 2023-08-16 Internally-coated silica gel type piezoresistor

Country Status (1)

Country Link
CN (1) CN220913993U (en)

Similar Documents

Publication Publication Date Title
US20180248055A1 (en) Aging resistant backside silver paste for crystalline silicon solar cells and preparation method thereof
US3905006A (en) Voltage dependent resistor
US4053864A (en) Thermistor with leads and method of making
US20030137393A1 (en) Brazing technique
CN108409306B (en) Zinc oxide pressure-sensitive ceramic material and preparation method thereof
CN111029071A (en) Preparation method of medium-voltage gradient zinc oxide piezoresistor MOV chip
CN109065305B (en) Voltage-sensitive resistor with double-temperature safety and preparation method thereof
EP3109868A1 (en) Preparation method for electronic components with an alloy electrode layer
CN220913993U (en) Internally-coated silica gel type piezoresistor
US3760318A (en) Process for making a voltage dependent resistor
CN112927876B (en) High-performance surge protector valve plate and manufacturing method thereof
CN116994845A (en) Internal silica gel-coated piezoresistor and preparation method thereof
CN103617852A (en) Paster type power thermistor element and manufacture method thereof
JP2016506079A (en) Zinc oxide based varistor and method for producing the same
CN104282778B (en) Back contact solar battery module
CN115954171A (en) Alumina ceramic packaged thermistor and preparation method thereof
CN114613529B (en) Lead-free thick film resistor paste
CN102403705A (en) Thermistor type over-current and over-voltage protection device
CN208580629U (en) A kind of surface attaching type varistor
CN101625918B (en) Current-voltage nonlinear resistor
CN109065307B (en) Small-sized large-through-current capacity piezoresistor and preparation method thereof
CN103910524A (en) Rare earth oxide-modified stannic oxide varistor material and preparation method thereof
CN111489871A (en) Piezoresistor with temperature fuse and preparation method thereof
CN110668808B (en) SnO with high nonlinearity, low residual voltage and large through-current capacity for power transmission of power system2Preparation method of piezoresistor
CN112662175B (en) Preparation method of pressure-sensitive composite material

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant