CN220821575U - Battery structure and photovoltaic module - Google Patents

Battery structure and photovoltaic module Download PDF

Info

Publication number
CN220821575U
CN220821575U CN202322678827.5U CN202322678827U CN220821575U CN 220821575 U CN220821575 U CN 220821575U CN 202322678827 U CN202322678827 U CN 202322678827U CN 220821575 U CN220821575 U CN 220821575U
Authority
CN
China
Prior art keywords
layer
silicon nitride
passivation layer
passivation
battery structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202322678827.5U
Other languages
Chinese (zh)
Inventor
张�浩
裴东东
黄济民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jinko Solar Co Ltd
Original Assignee
Anhui Jinko Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jinko Solar Co Ltd filed Critical Anhui Jinko Solar Co Ltd
Priority to CN202322678827.5U priority Critical patent/CN220821575U/en
Application granted granted Critical
Publication of CN220821575U publication Critical patent/CN220821575U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本新型涉及一种电池结构及光伏组件,电池结构,包括:硅基底,硅基底包括正面和背面;隧穿层,隧穿层覆盖硅基底的背面;第一半导体掺杂层,第一半导体掺杂层覆盖隧穿层的底面;第一钝化层,第一钝化层覆盖第一半导体掺杂层的底面,第一钝化层包括氧化硅层;第一减反射层,第一减反射层覆盖第一钝化层的底面,第一减反射层包括至少一层氮化硅层,如此,既能满足电池结构对透光性的要求,还能进一步提升电池结构背面的钝化效果。

The present invention relates to a battery structure and a photovoltaic module. The battery structure comprises: a silicon substrate, which comprises a front side and a back side; a tunneling layer, which covers the back side of the silicon substrate; a first semiconductor doping layer, which covers the bottom side of the tunneling layer; a first passivation layer, which covers the bottom side of the first semiconductor doping layer, and comprises a silicon oxide layer; a first anti-reflection layer, which covers the bottom side of the first passivation layer, and comprises at least one silicon nitride layer. In this way, the requirements of the battery structure for light transmittance can be met, and the passivation effect of the back side of the battery structure can be further improved.

Description

电池结构及光伏组件Battery structure and photovoltaic modules

技术领域Technical Field

本申请涉及太阳能电池技术领域,特别是涉及一种电池结构及光伏组件。The present application relates to the technical field of solar cells, and in particular to a cell structure and a photovoltaic module.

背景技术Background technique

目前,为了提升太阳能电池的性能,在太阳能电池的正面和背面形成具有不同形成的镀层,比如,在电池的正面和背面形成钝化层,以减小复合速率,提高载流子寿命。At present, in order to improve the performance of solar cells, coatings with different structures are formed on the front and back of the solar cell. For example, a passivation layer is formed on the front and back of the cell to reduce the recombination rate and increase the carrier lifetime.

为了保证太阳能电池的光电转换效率,通常选用氮化硅作为太阳能电池的背面钝化层,然而,氮化硅的表面钝化效果、成膜质量和高温稳定性相对较差,如何提高太阳能电池的背面钝化层的钝化效果,成为了亟待解决的问题。In order to ensure the photoelectric conversion efficiency of solar cells, silicon nitride is usually used as the back passivation layer of solar cells. However, the surface passivation effect, film quality and high-temperature stability of silicon nitride are relatively poor. How to improve the passivation effect of the back passivation layer of solar cells has become an urgent problem to be solved.

发明内容Summary of the invention

基于此,有必要针对现有技术中的太阳能电池的背面钝化层的表面钝化效果、成膜质量和高温稳定性相对较差的问题提供一种电池结构及光伏组件。Based on this, it is necessary to provide a cell structure and a photovoltaic module to address the problems of relatively poor surface passivation effect, film forming quality and high temperature stability of the back passivation layer of solar cells in the prior art.

为了实现上述目的,第一方面,本新型提供了一种电池结构,包括:In order to achieve the above objectives, in a first aspect, the present invention provides a battery structure, comprising:

硅基底,所述硅基底包括正面和背面;A silicon substrate, wherein the silicon substrate comprises a front side and a back side;

隧穿层,所述隧穿层覆盖所述硅基底的背面;A tunneling layer, wherein the tunneling layer covers the back side of the silicon substrate;

第一半导体掺杂层,所述第一半导体掺杂层覆盖所述隧穿层的底面;A first semiconductor doping layer, wherein the first semiconductor doping layer covers a bottom surface of the tunneling layer;

第一钝化层,所述第一钝化层覆盖所述第一半导体掺杂层的底面,所述第一钝化层包括氧化硅层;a first passivation layer, the first passivation layer covering a bottom surface of the first semiconductor doping layer, the first passivation layer comprising a silicon oxide layer;

第一减反射层,所述第一减反射层覆盖所述第一钝化层的底面,所述第一减反射层包括至少一层氮化硅层。A first anti-reflection layer covers a bottom surface of the first passivation layer, and the first anti-reflection layer includes at least one silicon nitride layer.

在其中一个实施例中,所述第一减反射层的折射率大于所述第一钝化层的折射率。In one embodiment, the refractive index of the first anti-reflection layer is greater than the refractive index of the first passivation layer.

在其中一个实施例中,沿远离所述第一钝化层的方向,至少一层所述氮化硅层的折射率逐渐降低。In one embodiment, the refractive index of at least one silicon nitride layer gradually decreases in a direction away from the first passivation layer.

在其中一个实施例中,至少一层所述氮化硅层中掺杂有氢离子,沿远离所述第一钝化层的方向,至少一层所述氮化硅层中氢离子的掺杂浓度逐渐降低。In one of the embodiments, at least one layer of the silicon nitride layer is doped with hydrogen ions, and the doping concentration of the hydrogen ions in the at least one layer of the silicon nitride layer gradually decreases in a direction away from the first passivation layer.

在其中一个实施例中,所述第一减反射层包括层叠设置在所述第一钝化层的底面的第一氮化硅层、第二氮化硅层和第三氮化硅层。In one embodiment, the first anti-reflection layer includes a first silicon nitride layer, a second silicon nitride layer, and a third silicon nitride layer stacked on the bottom surface of the first passivation layer.

在其中一个实施例中,所述第一钝化层的厚度为3nm-4nm。In one embodiment, the thickness of the first passivation layer is 3nm-4nm.

在其中一个实施例中,所述电池结构还包括:In one embodiment, the battery structure further comprises:

发射极,所述发射极位于所述硅基底的正面;An emitter, the emitter being located on the front side of the silicon substrate;

第二钝化层,所述第二钝化层覆盖所述发射极的顶面,所述第二钝化层和所述发射极的接触面形成欧姆接触。A second passivation layer, wherein the second passivation layer covers a top surface of the emitter, and an ohmic contact is formed between the second passivation layer and a contact surface of the emitter.

在其中一个实施例中,所述第二钝化层至少包括设置在所述发射极的顶面上和所述发射极的顶面相连的氧化铝层。In one of the embodiments, the second passivation layer at least includes an aluminum oxide layer disposed on and connected to the top surface of the emitter.

在其中一个实施例中,所述第一半导体掺杂层具有N型导电类型,所述发射极具有P型导电类型。In one embodiment, the first semiconductor doping layer has an N-type conductivity type, and the emitter has a P-type conductivity type.

第二方面,本新型提供了一种光伏组件,包括如本新型的第一方面所述的电池结构。In a second aspect, the present invention provides a photovoltaic module, comprising the battery structure as described in the first aspect of the present invention.

本新型的电池结构及光伏组件,第一钝化层和第一减反射层层叠设置在硅基底的背面,第一钝化层具有良好的表面钝化效果、成膜质量和高温稳定性的特点,第一减反射层具有良好的钝化效果和透光效果,如此,既能满足电池结构对透光性的要求,还能进一步提升电池结构背面的钝化效果。In the novel battery structure and photovoltaic module, the first passivation layer and the first anti-reflection layer are stacked on the back of the silicon substrate. The first passivation layer has good surface passivation effect, film-forming quality and high-temperature stability. The first anti-reflection layer has good passivation effect and light transmission effect. In this way, the requirements of the battery structure for light transmission can be met, and the passivation effect on the back of the battery structure can be further improved.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the conventional technology, the drawings required for use in the embodiments or the conventional technology descriptions are briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.

图1为一实施例中提供的电池结构的结构示意图。FIG. 1 is a schematic diagram of a battery structure provided in an embodiment.

图2为一实施例中提供的电池结构的结构示意图。FIG. 2 is a schematic diagram of a battery structure provided in an embodiment.

图3为一实施例中提供的电池结构的结构示意图。FIG. 3 is a schematic diagram of a battery structure provided in an embodiment.

附图标记说明:Description of reference numerals:

1、硅基底;1a、正面;1b、背面;2、隧穿层;3、第一半导体掺杂层;4、第一钝化层;5、第一减反射层;51、第一氮化硅层;52、第二氮化硅层;53、第三氮化硅层;6、发射极;7、第二钝化层;71、氧化铝层;72、氮化硅钝化层;73、氮氧化硅钝化层;74、氧化硅钝化层。1. Silicon substrate; 1a. Front side; 1b. Back side; 2. Tunneling layer; 3. First semiconductor doping layer; 4. First passivation layer; 5. First anti-reflection layer; 51. First silicon nitride layer; 52. Second silicon nitride layer; 53. Third silicon nitride layer; 6. Emitter; 7. Second passivation layer; 71. Aluminum oxide layer; 72. Silicon nitride passivation layer; 73. Silicon oxynitride passivation layer; 74. Silicon oxide passivation layer.

具体实施方式Detailed ways

为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的首选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容更加透彻全面。In order to facilitate understanding of the present application, the present application will be described more fully below with reference to the relevant drawings. The preferred embodiments of the present application are given in the drawings. However, the present application can be implemented in many different forms and is not limited to the embodiments described herein. On the contrary, the purpose of providing these embodiments is to make the disclosure of the present application more thorough and comprehensive.

除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art to which this application belongs. The terms used herein in the specification of this application are only for the purpose of describing specific embodiments and are not intended to limit this application.

相关技术中,为了保证太阳能电池的光电转换效率,通常选用氮化硅作为太阳能电池的背面钝化层,然而,氮化硅的表面钝化效果、成膜质量和高温稳定性相对较差,如何提高太阳能电池的背面钝化层的钝化效果,成为了亟待解决的问题。In the related art, in order to ensure the photoelectric conversion efficiency of solar cells, silicon nitride is usually selected as the back passivation layer of solar cells. However, the surface passivation effect, film quality and high-temperature stability of silicon nitride are relatively poor. How to improve the passivation effect of the back passivation layer of solar cells has become an urgent problem to be solved.

为解决以上技术问题,本申请提供了一种电池结构,本申请的电池结构包括硅基底、隧穿层、第一半导体掺杂层、第一钝化层和第一减反射层;硅基底包括正面和背面,隧穿层、第一半导体掺杂层、第一钝化层和第一减反射层按顺序依次设置在硅基底的背面,其中,第一钝化层包括氧化硅层,第一减反射层包括至少一层氮化硅层。本实施例的电池结构,在硅基底的背面设置的第一钝化层包括氧化硅层,在第一钝化层的底面设置的第一减反射层包括至少一层氮化硅层,利用氧化硅具有良好的表面钝化效果、成膜质量和高温稳定性的特点,以及氮化硅具有良好的钝化效果和透光效果,如此,第一钝化层和第一减反射层层叠设置在硅基底的背面,既能满足电池结构对透光性的要求,还能进一步提升电池结构背面的钝化效果。In order to solve the above technical problems, the present application provides a battery structure, which includes a silicon substrate, a tunneling layer, a first semiconductor doping layer, a first passivation layer and a first anti-reflection layer; the silicon substrate includes a front side and a back side, and the tunneling layer, the first semiconductor doping layer, the first passivation layer and the first anti-reflection layer are sequentially arranged on the back side of the silicon substrate, wherein the first passivation layer includes a silicon oxide layer, and the first anti-reflection layer includes at least one silicon nitride layer. In the battery structure of this embodiment, the first passivation layer arranged on the back side of the silicon substrate includes a silicon oxide layer, and the first anti-reflection layer arranged on the bottom surface of the first passivation layer includes at least one silicon nitride layer, and the silicon oxide has the characteristics of good surface passivation effect, film forming quality and high temperature stability, and the silicon nitride has good passivation effect and light transmission effect. In this way, the first passivation layer and the first anti-reflection layer are stacked on the back side of the silicon substrate, which can not only meet the requirements of the battery structure for light transmission, but also further improve the passivation effect of the back side of the battery structure.

根据一示例性实施例,本实施例提供了一种电池结构,本实施例的电池结构应用于光伏电池,比如可以应用于PERC(Passivated Emitter RearCell)、TOPCON(TunnelOxide Passivated Contact)或IBC(Interdigitated BackContact)等电池,如图1所示,本实施例的电池结构包括硅基底1、隧穿层2、第一半导体掺杂层3、第一钝化层4和第一减反射层5,硅基底1可以为N型基底也可以为P型基底,硅基底1包括正面1a和背面1b,硅基底1的正面1a和背面1b相对设置。隧穿层2覆盖硅基底1的背面1b,隧穿层2的材料可以包括氧化硅、氮化硅、氮氧化硅、碳化硅或者氟化镁中的至少一种,第一半导体掺杂层3覆盖隧穿层2的底面,第一半导体掺杂层3是导电层,第一半导体掺杂层3具有N型导电类型或P型导电类型,第一半导体掺杂层3和硅基底1具有相同的导电类型,第一半导体掺杂层3的材料可以包括非晶硅、多晶硅或者碳化硅中的至少一种;第一钝化层4覆盖第一半导体掺杂层3的底面,第一钝化层4包括氧化硅层;第一减反射层5覆盖第一钝化层4的底面,第一减反射层5包括至少一层氮化硅层,第一钝化层4的氧化硅层具有良好的表面钝化效果、成膜质量和高温稳定性,第一减反射层5的氮化硅层具有良好钝化效果,第一钝化层4和第一减反射层5层叠设置在硅基底1的背面1b,对硅基底1的背面1b起到良好的钝化效果,降低硅基底1的背面1b的缺陷态密度,更好的抑制硅基底1的背面1b的载流子复合,同时,第一减反射层5的氮化硅层具有良好的透光性,第一减反射层5起到良好的减反射效果,减小硅基底1的背面1b对入射光线的反射,提高电池结构对入射光线的利用率。According to an exemplary embodiment, this embodiment provides a battery structure, and the battery structure of this embodiment is applied to photovoltaic cells, such as PERC (Passivated Emitter Rear Cell), TOPCON (Tunnel Oxide Passivated Contact) or IBC (Interdigitated Back Contact) and other batteries. As shown in FIG1 , the battery structure of this embodiment includes a silicon substrate 1, a tunneling layer 2, a first semiconductor doping layer 3, a first passivation layer 4 and a first anti-reflection layer 5. The silicon substrate 1 can be an N-type substrate or a P-type substrate. The silicon substrate 1 includes a front side 1a and a back side 1b. The front side 1a and the back side 1b of the silicon substrate 1 are arranged opposite to each other. The tunneling layer 2 covers the back side 1b of the silicon substrate 1. The material of the tunneling layer 2 may include at least one of silicon oxide, silicon nitride, silicon oxynitride, silicon carbide or magnesium fluoride. The first semiconductor doping layer 3 covers the bottom surface of the tunneling layer 2. The first semiconductor doping layer 3 is a conductive layer. The first semiconductor doping layer 3 has an N-type conductivity type or a P-type conductivity type. The first semiconductor doping layer 3 and the silicon substrate 1 have the same conductivity type. The material of the first semiconductor doping layer 3 may include at least one of amorphous silicon, polycrystalline silicon or silicon carbide. The first passivation layer 4 covers the bottom surface of the first semiconductor doping layer 3. The first passivation layer 4 includes a silicon oxide layer. The first anti-reflection layer 5 covers the bottom surface of the first passivation layer 4. The first anti-reflection layer 5 The invention comprises at least one silicon nitride layer, the silicon oxide layer of the first passivation layer 4 has good surface passivation effect, film-forming quality and high-temperature stability, the silicon nitride layer of the first anti-reflection layer 5 has good passivation effect, the first passivation layer 4 and the first anti-reflection layer 5 are stacked on the back side 1b of the silicon substrate 1, and have good passivation effect on the back side 1b of the silicon substrate 1, reduce the defect state density of the back side 1b of the silicon substrate 1, and better inhibit the carrier recombination of the back side 1b of the silicon substrate 1, and at the same time, the silicon nitride layer of the first anti-reflection layer 5 has good light transmittance, the first anti-reflection layer 5 has good anti-reflection effect, reduces the reflection of the back side 1b of the silicon substrate 1 on the incident light, and improves the utilization rate of the battery structure on the incident light.

在一些实施例中,第一减反射层5可以是单层结构,第一减反射层5仅包括一层氮化硅层。In some embodiments, the first anti-reflection layer 5 may be a single-layer structure, and the first anti-reflection layer 5 only includes a silicon nitride layer.

在一些实施例中,第一减反射层5也可以包括在第一钝化层4的底面依次层叠的多层结构,多层结构中的至少一层为氮化硅层,多层结构中的其他层的材料可以包括氮化硅、氮氧化硅或氧化铝中的至少一种;多层结构中各层的材料可以彼此不同,或者,部分数量层的材料可以彼此不同,且其余部分数量的材料可以相同。例如,第一减反射层5可以为氮化硅层和氧化铝层的多层结构。In some embodiments, the first anti-reflection layer 5 may also include a multilayer structure stacked in sequence on the bottom surface of the first passivation layer 4, at least one layer in the multilayer structure is a silicon nitride layer, and the materials of other layers in the multilayer structure may include at least one of silicon nitride, silicon oxynitride or aluminum oxide; the materials of each layer in the multilayer structure may be different from each other, or the materials of a part of the number of layers may be different from each other, and the materials of the remaining part of the number may be the same. For example, the first anti-reflection layer 5 may be a multilayer structure of a silicon nitride layer and an aluminum oxide layer.

在电池结构的制作过程需要经过数次高温烧结,或者,电池结构的工作环境也可能处于高温环境,氧化硅层具有良好的高温稳定性,能够提高在高温环境下对电池结构的背面的钝化效果。氧化硅层和第一半导体掺杂层3具有良好的晶格匹配性,且氧化硅层的膜层致密度高,表面钝化效果、成膜质量和高温稳定性表现性好,在硅基底1的背面1b设置第一钝化层4能够对硅基底1的背面1b形成良好的防护。第一减反射层5的氮化硅层具有良好的透光性和钝化效果。The manufacturing process of the battery structure needs to undergo several high-temperature sinterings, or the working environment of the battery structure may also be in a high-temperature environment. The silicon oxide layer has good high-temperature stability and can improve the passivation effect on the back of the battery structure in a high-temperature environment. The silicon oxide layer and the first semiconductor doping layer 3 have good lattice matching, and the film density of the silicon oxide layer is high, and the surface passivation effect, film quality and high-temperature stability performance are good. The first passivation layer 4 is set on the back side 1b of the silicon substrate 1 to form a good protection for the back side 1b of the silicon substrate 1. The silicon nitride layer of the first anti-reflection layer 5 has good light transmittance and passivation effect.

本实施例在第一减反射层5和第一半导体掺杂层3之间设置第一钝化层4,第一减反射层5通过第一钝化层4和第一半导体掺杂层3结合,能够提高第一减反射层5和第一半导体掺杂层3的结合力,以使第一减反射层5和第一半导体掺杂层3牢固的结合在一起,能够避免电池结构的背面的膜层脱落,同时,第一钝化层4和第一减反射层5对电池结构的背面形成防护,加强了电池结构的背面的钝化效果,避免电池结构的背面被侵蚀损伤。In this embodiment, a first passivation layer 4 is arranged between the first anti-reflection layer 5 and the first semiconductor doping layer 3. The first anti-reflection layer 5 is combined with the first semiconductor doping layer 3 through the first passivation layer 4, which can improve the bonding force between the first anti-reflection layer 5 and the first semiconductor doping layer 3, so that the first anti-reflection layer 5 and the first semiconductor doping layer 3 are firmly combined together, which can prevent the film layer on the back side of the battery structure from falling off. At the same time, the first passivation layer 4 and the first anti-reflection layer 5 form protection for the back side of the battery structure, strengthen the passivation effect of the back side of the battery structure, and prevent the back side of the battery structure from being corroded and damaged.

在一些实施例中,如图1所示,第一减反射层5的折射率大于第一钝化层4的折射率,第一减反射层5具有良好的透光性,以保证光线透过第一减反射层5的透过率,以提高电池结构的受光率,电池结构产生伏特效应形成电动势。In some embodiments, as shown in FIG. 1 , the refractive index of the first anti-reflection layer 5 is greater than the refractive index of the first passivation layer 4 , and the first anti-reflection layer 5 has good light transmittance to ensure the transmittance of light through the first anti-reflection layer 5 , so as to increase the light receiving rate of the battery structure, and the battery structure generates a voltaic effect to form an electromotive force.

本实施例对第一钝化层4的厚度不做限制,适当增加第一钝化层4的厚度能够增强对电池结构的背面的防护效果还能进一步增强第一减反射层5和第一半导体掺杂层3的结合力。但是,第一钝化层4的折射率较小,光透过性较差,第一钝化层4的厚度增加可能影响电池结构的受光率。This embodiment does not limit the thickness of the first passivation layer 4. Properly increasing the thickness of the first passivation layer 4 can enhance the protection effect on the back of the battery structure and further enhance the bonding force between the first anti-reflection layer 5 and the first semiconductor doping layer 3. However, the refractive index of the first passivation layer 4 is relatively small, and the light transmittance is relatively poor. Increasing the thickness of the first passivation layer 4 may affect the light receiving rate of the battery structure.

在一些实施例中,如图1所示,第一钝化层4的厚度为3nm-4nm,如此,在提升第一钝化层4和第一减反射层5对电池结构的背面的防护效果的同时,尽量避免第一钝化层4影响电池结构的受光率。比如,第一钝化层4的厚度可以为3nm、3.1nm、3.2nm、3.3nm、3.4nm、3.5nm、3.6nm、3.7nm、3.8nm、3.9nm或4nm。In some embodiments, as shown in FIG1 , the thickness of the first passivation layer 4 is 3 nm to 4 nm, so that the first passivation layer 4 and the first anti-reflection layer 5 can enhance the protective effect of the back of the battery structure while avoiding the first passivation layer 4 from affecting the light receiving rate of the battery structure. For example, the thickness of the first passivation layer 4 can be 3 nm, 3.1 nm, 3.2 nm, 3.3 nm, 3.4 nm, 3.5 nm, 3.6 nm, 3.7 nm, 3.8 nm, 3.9 nm or 4 nm.

本实施例对第一减反射层5的厚度不做限制,基于电池结构的膜层的稳定性以及电池结构的背面的钝化效果考量,第一减反射层5的厚度可以为75nm-90nm,比如,第一减反射层5的厚度可以为75nm、77nm、79nm、81nm、93nm、85nm、87nm、99nm或90nm。The present embodiment does not limit the thickness of the first anti-reflection layer 5. Based on the stability of the film layer of the battery structure and the passivation effect of the back of the battery structure, the thickness of the first anti-reflection layer 5 can be 75nm-90nm. For example, the thickness of the first anti-reflection layer 5 can be 75nm, 77nm, 79nm, 81nm, 93nm, 85nm, 87nm, 99nm or 90nm.

本实施例对第一减反射层5的层数不做限制,第一减反射层5可以为单层或多层结构,比如,第一减反射层5可以仅包括一层氮化硅层,或者,第一减反射层5可以包括依次层叠设置在第一钝化层4底面下的两层或更多层氮化硅层。The present embodiment does not limit the number of layers of the first anti-reflection layer 5, and the first anti-reflection layer 5 may be a single-layer or multi-layer structure. For example, the first anti-reflection layer 5 may include only one silicon nitride layer, or the first anti-reflection layer 5 may include two or more silicon nitride layers stacked in sequence under the bottom surface of the first passivation layer 4.

在一些实施例中,如图1所示,沿远离第一钝化层4的方向,至少一层氮化硅层的折射率逐渐降低。第一减反射层5可以仅包括一层氮化硅层,沿远离第一钝化层4的方向,氮化硅层的折射率渐变变小,也即,第一减反射层5中光线的入射面的折射率最小;或者,第一减反射层5可以括多层氮化硅层,沿远离第一钝化层4的方向,多层氮化硅层的折射率阶梯式变小,也即,第一减反射层5中光线的入射层的折射率最小。如此,能够减小入射至第一减反射层5的光线的反射量,能够将更多的光线转移到硅基底1用于光电转化。In some embodiments, as shown in FIG1 , the refractive index of at least one silicon nitride layer gradually decreases in a direction away from the first passivation layer 4. The first anti-reflection layer 5 may include only one silicon nitride layer, and the refractive index of the silicon nitride layer gradually decreases in a direction away from the first passivation layer 4, that is, the refractive index of the incident surface of the light in the first anti-reflection layer 5 is the smallest; or the first anti-reflection layer 5 may include multiple silicon nitride layers, and the refractive index of the multiple silicon nitride layers decreases in a step-like manner in a direction away from the first passivation layer 4, that is, the refractive index of the incident layer of the light in the first anti-reflection layer 5 is the smallest. In this way, the amount of reflection of the light incident to the first anti-reflection layer 5 can be reduced, and more light can be transferred to the silicon substrate 1 for photoelectric conversion.

同时,本实施例的电池结构在进行光电转化时,沿光线自第一减反射层5入射至硅基底1的背面1b的入射路径,光线经过第一减反射层5的折射率逐渐增大,如此,经过第一减反射层5的转移,能够调整光线入射至硅基底1的背面1b的方向,以使光线垂直入射硅基底1的背面1b,进一步增加电池结构的光电转换效率。At the same time, when the battery structure of this embodiment performs photoelectric conversion, along the incident path of the light from the first anti-reflection layer 5 to the back side 1b of the silicon substrate 1, the refractive index of the light gradually increases after passing through the first anti-reflection layer 5. In this way, after the transfer of the first anti-reflection layer 5, the direction of the light incident on the back side 1b of the silicon substrate 1 can be adjusted so that the light is vertically incident on the back side 1b of the silicon substrate 1, further increasing the photoelectric conversion efficiency of the battery structure.

可以理解的是,在形成第一减反射层5的过程中,可通过调整形成氮化硅层的工艺参数,调整形成的氮化硅层的折射率,实现在不同层的氮化硅层具有不同的折射率。比如,在形成第一减反射层5时,以硅烷(SiH4)和氨气(NH3)作为气体源,采用等离子增强化学气相沉积工艺形成至少一层氮化硅层,通过增加硅烷的比例以增大氮化硅层的折射率,通过降低硅烷的比例以减小氮化硅层的折射率,从而实现沿远离第一钝化层4的方向,至少一层氮化硅层的折射率逐渐降低。It is understandable that, in the process of forming the first anti-reflection layer 5, the refractive index of the formed silicon nitride layer can be adjusted by adjusting the process parameters for forming the silicon nitride layer, so that the silicon nitride layers at different layers have different refractive indices. For example, when forming the first anti-reflection layer 5, silane (SiH 4 ) and ammonia (NH 3 ) are used as gas sources, and at least one silicon nitride layer is formed by a plasma enhanced chemical vapor deposition process, and the refractive index of the silicon nitride layer is increased by increasing the proportion of silane, and the refractive index of the silicon nitride layer is reduced by reducing the proportion of silane, so that the refractive index of the silicon nitride layer gradually decreases along the direction away from the first passivation layer 4.

在一些实施例中,如图1所示,至少一层氮化硅层中掺杂有氢离子,沿远离第一钝化层4的方向,至少一层氮化硅层中氢离子的掺杂浓度逐渐降低。可以是沿远离第一钝化层4的方向,氢离子的掺杂浓度渐变变小;或者,可以是沿远离第一钝化层4的方向,多层氮化硅层中氢离子的掺杂浓度阶梯式变小。In some embodiments, as shown in FIG1 , at least one silicon nitride layer is doped with hydrogen ions, and the doping concentration of hydrogen ions in at least one silicon nitride layer gradually decreases in a direction away from the first passivation layer 4. The doping concentration of hydrogen ions may gradually decrease in a direction away from the first passivation layer 4; or, the doping concentration of hydrogen ions in multiple silicon nitride layers may decrease in a stepwise manner in a direction away from the first passivation layer 4.

硅基底1的表面可以存在缺陷,比如凹坑或划痕等,硅悬挂键聚集在硅基底1表面的缺陷处。本示例中,第一减反射层5中靠近第一钝化层4的氮化硅层的氢离子浓度最高,氮化硅层中的氢离子能够中和集聚在硅基底1的背面1b的硅悬挂键,避免游离的硅悬挂键影响硅基底1的背面1b的钝化效果。The surface of the silicon substrate 1 may have defects, such as pits or scratches, and silicon dangling bonds gather at the defects on the surface of the silicon substrate 1. In this example, the hydrogen ion concentration of the silicon nitride layer close to the first passivation layer 4 in the first anti-reflection layer 5 is the highest, and the hydrogen ions in the silicon nitride layer can neutralize the silicon dangling bonds gathered on the back side 1b of the silicon substrate 1, thereby preventing the free silicon dangling bonds from affecting the passivation effect of the back side 1b of the silicon substrate 1.

在形成第一减反射层5的过程中,可通过调整形成氮化硅层的工艺参数,调整形成的氮化硅层中氢离子的含量,比如,通过增加硅烷的比例以增大氮化硅层中氢离子的含量,通过减小硅烷的比例以降低氮化硅层中氢离子的含量,从而实现沿远离第一钝化层4的方向,至少一层氮化硅层中氢离子的掺杂浓度逐渐降低。In the process of forming the first anti-reflection layer 5, the content of hydrogen ions in the formed silicon nitride layer can be adjusted by adjusting the process parameters for forming the silicon nitride layer. For example, the content of hydrogen ions in the silicon nitride layer can be increased by increasing the proportion of silane, and the content of hydrogen ions in the silicon nitride layer can be reduced by reducing the proportion of silane. This can achieve a gradual decrease in the doping concentration of hydrogen ions in at least one silicon nitride layer away from the first passivation layer 4.

根据一示例性实施例,如图2所示,本实施例提供了一种电池结构,电池结构包括硅基底1、隧穿层2、第一半导体掺杂层3、第一钝化层4和第一减反射层5;硅基底1包括相对设置的正面1a和背面1b,隧穿层2、第一半导体掺杂层3、第一钝化层4和第一减反射层5按顺序依次设置在硅基底1的背面1b,其中,第一钝化层4包括氧化硅层,第一钝化层4的厚度为3nm-4nm,第一减反射层5包括层叠设置在第一钝化层4的底面的第一氮化硅层51、第二氮化硅层52和第三氮化硅层53。According to an exemplary embodiment, as shown in FIG. 2 , this embodiment provides a battery structure, which includes a silicon substrate 1, a tunneling layer 2, a first semiconductor doping layer 3, a first passivation layer 4 and a first anti-reflection layer 5; the silicon substrate 1 includes a front side 1a and a back side 1b that are arranged opposite to each other, and the tunneling layer 2, the first semiconductor doping layer 3, the first passivation layer 4 and the first anti-reflection layer 5 are sequentially arranged on the back side 1b of the silicon substrate 1, wherein the first passivation layer 4 includes a silicon oxide layer, and the thickness of the first passivation layer 4 is 3nm-4nm, and the first anti-reflection layer 5 includes a first silicon nitride layer 51, a second silicon nitride layer 52 and a third silicon nitride layer 53 that are stacked on the bottom surface of the first passivation layer 4.

第一氮化硅层51的折射率为n1、第二氮化硅层52的折射率为n2、第三氮化硅层53的折射率为n3,n1>n2大于n3。The refractive index of the first silicon nitride layer 51 is n1, the refractive index of the second silicon nitride layer 52 is n2, and the refractive index of the third silicon nitride layer 53 is n3, and n1>n2 is greater than n3.

第一氮化硅层51中氢离子的含量>第二氮化硅层52中氢离子的含量>第三氮化硅层53中氢离子的含量。The content of hydrogen ions in the first silicon nitride layer 51 is greater than the content of hydrogen ions in the second silicon nitride layer 52 and greater than the content of hydrogen ions in the third silicon nitride layer 53 .

在一些示例中,第一氮化硅层51的折射率n1为2.2-2.3,第二氮化硅层52的折射率n2为2.1-2.2,第三氮化硅层53的折射率n3为2.0-2.1。可以理解的是,第一氮化硅层51、第二氮化硅层52、第二氮化硅层52的数值范围虽然有重叠的区域,但在具有实施方式的选择中保证n1>n2大于n3即可。In some examples, the refractive index n1 of the first silicon nitride layer 51 is 2.2-2.3, the refractive index n2 of the second silicon nitride layer 52 is 2.1-2.2, and the refractive index n3 of the third silicon nitride layer 53 is 2.0-2.1. It is understandable that although the numerical ranges of the first silicon nitride layer 51, the second silicon nitride layer 52, and the third silicon nitride layer 53 have overlapping areas, it is sufficient to ensure that n1>n2 is greater than n3 in the selection of the implementation method.

在一些实施例中,第一氮化硅层51、第二氮化硅层52和第三氮化硅层53的厚度可以相同。In some embodiments, the thicknesses of the first silicon nitride layer 51 , the second silicon nitride layer 52 , and the third silicon nitride layer 53 may be the same.

在一些实施例中,第一氮化硅层51的厚度小于第二氮化硅层52的厚度,第二氮化硅层52的厚度小于第三氮化硅层53的更厚。比如,第一氮化硅层51的厚度范围为15nm-20nm,第二氮化硅层52的厚度范围为25nm-30nm,第Sam氮化硅层53的厚度范围为30nm-40nm。In some embodiments, the thickness of the first silicon nitride layer 51 is less than the thickness of the second silicon nitride layer 52, and the thickness of the second silicon nitride layer 52 is less than the thickness of the third silicon nitride layer 53. For example, the thickness of the first silicon nitride layer 51 ranges from 15nm to 20nm, the thickness of the second silicon nitride layer 52 ranges from 25nm to 30nm, and the thickness of the third silicon nitride layer 53 ranges from 30nm to 40nm.

本实施例的电池结构在进行光电转换的过程中,光线沿第三氮化硅层53、第二氮化硅层52、第一氮化硅层51的方向向硅基底1的背面1b入射,第三氮化层的反射率最小,如此,第一减反射层5反射的光线,增加了入射至硅基底1的光线量,增加了电池结构光电转化效率。光线经过第三氮化硅层53、第二氮化硅层52、第一氮化硅层51,折射率依次增加,将更多倾斜入射硅基底1的背面1b的光线转换为垂直入射,增加了垂直入射硅基底1的光线量,进一步增加了电池结构的光电转换效率。In the process of photoelectric conversion of the cell structure of this embodiment, light is incident on the back side 1b of the silicon substrate 1 along the direction of the third silicon nitride layer 53, the second silicon nitride layer 52, and the first silicon nitride layer 51. The reflectivity of the third nitride layer is the smallest. In this way, the light reflected by the first anti-reflection layer 5 increases the amount of light incident on the silicon substrate 1, thereby increasing the photoelectric conversion efficiency of the cell structure. The light passes through the third silicon nitride layer 53, the second silicon nitride layer 52, and the first silicon nitride layer 51, and the refractive index increases in sequence, converting more light obliquely incident on the back side 1b of the silicon substrate 1 into vertical incident light, thereby increasing the amount of light vertically incident on the silicon substrate 1, further increasing the photoelectric conversion efficiency of the cell structure.

本实施例的电池结构,第一钝化层4设置在第一减反射层5和第一半导体掺杂层3之间,提高硅基底1的背面1b的钝化效果,同时第一钝化层4增强了第一减反射层5和第一半导体掺杂层3的结合强度,避免第一减反射层5脱落。同时,当电池结构处于加热状态或者处于高温环境中,第一减反射层5中的氢离子向外扩散可能产生气泡,尤其是第一氮化硅层51中的氢离子向第一半导体掺杂层3的方向扩散并产生气泡,第一钝化层4具有良好的高温稳定性,能够隔绝第一氮化硅层51产生的气泡,避免气泡挤压第一半导体掺杂层3导致第一半导体掺杂层3脱落,提高了硅基底1的背面1b的膜层的结构稳定性和工作稳定性。In the battery structure of this embodiment, the first passivation layer 4 is arranged between the first anti-reflection layer 5 and the first semiconductor doping layer 3, so as to improve the passivation effect of the back side 1b of the silicon substrate 1. At the same time, the first passivation layer 4 enhances the bonding strength between the first anti-reflection layer 5 and the first semiconductor doping layer 3, so as to prevent the first anti-reflection layer 5 from falling off. At the same time, when the battery structure is in a heated state or in a high-temperature environment, the hydrogen ions in the first anti-reflection layer 5 diffuse outward and may generate bubbles, especially the hydrogen ions in the first silicon nitride layer 51 diffuse in the direction of the first semiconductor doping layer 3 and generate bubbles. The first passivation layer 4 has good high-temperature stability, and can isolate the bubbles generated by the first silicon nitride layer 51, so as to prevent the bubbles from squeezing the first semiconductor doping layer 3 and causing the first semiconductor doping layer 3 to fall off, thereby improving the structural stability and working stability of the film layer on the back side 1b of the silicon substrate 1.

在一些实施例中,如图1、图2或图3所示,如图3所示,电池结构还包括发射极6和第二钝化层7,发射极6位于硅基底1的正面1a,发射极6具有P型导电类型,发射极6和衬底1形成PN结,第二钝化层7覆盖发射极6的顶面,第二钝化层7和发射极6的接触面形成欧姆接触。In some embodiments, as shown in Figures 1, 2 or 3, as shown in Figure 3, the battery structure also includes an emitter 6 and a second passivation layer 7, the emitter 6 is located on the front side 1a of the silicon substrate 1, the emitter 6 has a P-type conductivity type, the emitter 6 and the substrate 1 form a PN junction, the second passivation layer 7 covers the top surface of the emitter 6, and the contact surface of the second passivation layer 7 and the emitter 6 forms an ohmic contact.

在一些实施例中,如图3所示,第二钝化层7至少包括设置在发射极6的顶面上和发射极6的顶面相连的氧化铝层71。第二钝化层7还可以包括层叠设置在氧化铝层71上的氮化硅钝化层72、氮氧化硅钝化层73和氧化硅钝化层74。本实施例的电池结构的正面和背面均具有良好的钝化效果和透光性,第一钝化层4和第一减反射层5对电池结构的背面形成良好的防护,第二钝化层7对电池结构的正面形成良好的防护,提高了电池结构的表面钝化效果。In some embodiments, as shown in FIG3 , the second passivation layer 7 at least includes an aluminum oxide layer 71 disposed on the top surface of the emitter 6 and connected to the top surface of the emitter 6. The second passivation layer 7 may also include a silicon nitride passivation layer 72, a silicon oxynitride passivation layer 73, and a silicon oxide passivation layer 74 stacked on the aluminum oxide layer 71. The front and back sides of the battery structure of this embodiment have good passivation effect and light transmittance, the first passivation layer 4 and the first anti-reflection layer 5 form good protection for the back side of the battery structure, and the second passivation layer 7 forms good protection for the front side of the battery structure, thereby improving the surface passivation effect of the battery structure.

在一些实施例中,如图1、图2或图3所示,电池结构还包括位于第二钝化层7背离衬底1的一侧的多个正面栅线电极101,正面栅线电极101透过第二钝化层7和发射极6相接触。正面栅线电极101的材料可以包括银或铝。In some embodiments, as shown in FIG. 1, FIG. 2 or FIG. 3, the battery structure further includes a plurality of front gate electrodes 101 located on the side of the second passivation layer 7 away from the substrate 1, and the front gate electrodes 101 are in contact with the emitter 6 through the second passivation layer 7. The material of the front gate electrodes 101 may include silver or aluminum.

在一些实施例中,如图1、图2或图3所示,电池结构还包括位于第一减反射层5背离衬底1的一侧多个背面栅线电极201,背面栅线电极201贯穿第一减反射层5和第一钝化层4延伸到第一半导体掺杂层3中,背面栅线电极201透过第一减反射层5、第一钝化层4和第一半导体掺杂层3相接触。背面栅线电极201的材料可以包括银或铝。In some embodiments, as shown in FIG. 1, FIG. 2 or FIG. 3, the cell structure further includes a plurality of back gate electrodes 201 located on the side of the first anti-reflection layer 5 away from the substrate 1, the back gate electrodes 201 penetrate the first anti-reflection layer 5 and the first passivation layer 4 and extend into the first semiconductor doping layer 3, and the back gate electrodes 201 contact the first semiconductor doping layer 3 through the first anti-reflection layer 5, the first passivation layer 4 and the first semiconductor doping layer 3. The material of the back gate electrodes 201 may include silver or aluminum.

根据一示例性实施例,提供一种光伏组件,光伏组件包括上述实施例中的电池结构,本实施例的光伏组件具有良好的钝化效果和光电转化效率。According to an exemplary embodiment, a photovoltaic module is provided. The photovoltaic module includes the cell structure in the above embodiment. The photovoltaic module of this embodiment has good passivation effect and photoelectric conversion efficiency.

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features of the above-described embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-described embodiments only express several implementation methods of the present application, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the patent application. It should be pointed out that, for a person of ordinary skill in the art, several variations and improvements can be made without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the protection scope of the patent application shall be subject to the attached claims.

Claims (10)

1. A battery structure, characterized by comprising:
A silicon substrate comprising a front side and a back side;
a tunneling layer covering the back surface of the silicon substrate;
The first semiconductor doping layer covers the bottom surface of the tunneling layer;
a first passivation layer covering a bottom surface of the first semiconductor doped layer, the first passivation layer including a silicon oxide layer;
And the first antireflection layer covers the bottom surface of the first passivation layer and comprises at least one silicon nitride layer.
2. The cell structure of claim 1, wherein the refractive index of the first anti-reflective layer is greater than the refractive index of the first passivation layer.
3. The cell structure of claim 1, wherein the refractive index of at least one of the silicon nitride layers decreases gradually in a direction away from the first passivation layer.
4. The cell structure of claim 1 wherein at least one of said silicon nitride layers is doped with hydrogen ions, the doping concentration of hydrogen ions in at least one of said silicon nitride layers decreasing in a direction away from said first passivation layer.
5. The cell structure of claim 3 or 4, wherein the first anti-reflection layer comprises a first silicon nitride layer, a second silicon nitride layer, and a third silicon nitride layer stacked on a bottom surface of the first passivation layer.
6. The cell structure of claim 3 or 4, wherein the first passivation layer has a thickness of 3nm-4nm.
7. The battery structure of claim 1, wherein the battery structure further comprises:
the emitter is positioned on the front surface of the silicon substrate;
And the second passivation layer covers the top surface of the emitter, and the contact surface of the second passivation layer and the emitter forms ohmic contact.
8. The cell structure of claim 7, wherein the second passivation layer comprises at least an aluminum oxide layer disposed on and coupled to the top surface of the emitter.
9. The battery structure of claim 7, wherein the first semiconductor doped layer has an N-type conductivity and the emitter has a P-type conductivity.
10. A photovoltaic module comprising the cell structure of any one of claims 1-9.
CN202322678827.5U 2023-09-28 2023-09-28 Battery structure and photovoltaic module Active CN220821575U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202322678827.5U CN220821575U (en) 2023-09-28 2023-09-28 Battery structure and photovoltaic module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202322678827.5U CN220821575U (en) 2023-09-28 2023-09-28 Battery structure and photovoltaic module

Publications (1)

Publication Number Publication Date
CN220821575U true CN220821575U (en) 2024-04-19

Family

ID=90701834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202322678827.5U Active CN220821575U (en) 2023-09-28 2023-09-28 Battery structure and photovoltaic module

Country Status (1)

Country Link
CN (1) CN220821575U (en)

Similar Documents

Publication Publication Date Title
CN115132851B (en) Solar cell, manufacturing method thereof and photovoltaic module
CN111668317B (en) Photovoltaic module, solar cell and preparation method thereof
CN115188833B (en) Solar cell, manufacturing method thereof and photovoltaic module
CN109728103B (en) Solar cell
CN1826699B (en) Silicon based thin film solar cell
KR101631450B1 (en) Solar cell
CN112201701A (en) Solar cells and photovoltaic modules
TWI435454B (en) Solar cell
CN101273464A (en) Solar Cells and Solar Cell Modules
CN217306521U (en) Solar cell and photovoltaic module
CN115732576A (en) Solar cell, forming method thereof and photovoltaic module
CN102097514B (en) Solar battery
CN218182221U (en) Solar cells and photovoltaic modules
CN117352569A (en) Solar cell and photovoltaic module
CN115188834B (en) Solar cell, preparation method thereof and photovoltaic module
WO2025066518A1 (en) Solar cell and preparation method therefor, and photovoltaic module
CN220821575U (en) Battery structure and photovoltaic module
US20110259398A1 (en) Thin film solar cell and method for manufacturing the same
CN117117020A (en) Solar cells and photovoltaic modules
JP6047494B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
Bittkau et al. Geometrical light trapping in thin c-Si solar cells beyond lambertian limit
CN218918902U (en) Solar cell and photovoltaic module
CN110148637A (en) A kind of solar battery antireflective membrane structure
CN115036374B (en) Solar cell, manufacturing method thereof and photovoltaic module
US12142698B1 (en) Solar cell and photovoltaic module

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant