CN220040733U - System for calibrating noise coefficient - Google Patents
System for calibrating noise coefficient Download PDFInfo
- Publication number
- CN220040733U CN220040733U CN202321057491.4U CN202321057491U CN220040733U CN 220040733 U CN220040733 U CN 220040733U CN 202321057491 U CN202321057491 U CN 202321057491U CN 220040733 U CN220040733 U CN 220040733U
- Authority
- CN
- China
- Prior art keywords
- resistor
- attenuator
- fixed attenuator
- microwave
- noise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- 239000010935 stainless steel Substances 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004164 analytical calibration Methods 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
本实用新型提供了一种对噪声系数进行校准的系统,包括微波信号源、第一固定衰减器、功率分配器、同轴衰减器、微波功率传感器和微波功率计;微波信号源的输出端与第一固定衰减器的输入端连接,第一固定衰减器的输出端与功率分配器的输入端连接;功率分配器的第一输出端与同轴衰减器的输入端连接,同轴衰减器的输出端用于连接被校仪器;功率分配器的第二输出端与微波功率传感器的输入端连接;微波功率传感器的输出端与微波功率计的输入端连接。所述系统的反射系数较小,可以使输入端的微波信号源更少的受到器件失配的影响,能在更宽的频域内对被校仪器进行连续的噪声系数校准,提高了噪声系数的校准结果的准确性。
The utility model provides a system for calibrating the noise coefficient, which includes a microwave signal source, a first fixed attenuator, a power divider, a coaxial attenuator, a microwave power sensor and a microwave power meter; the output end of the microwave signal source is connected to The input end of the first fixed attenuator is connected, the output end of the first fixed attenuator is connected to the input end of the power divider; the first output end of the power divider is connected to the input end of the coaxial attenuator, and the The output end is used to connect the instrument to be calibrated; the second output end of the power divider is connected to the input end of the microwave power sensor; the output end of the microwave power sensor is connected to the input end of the microwave power meter. The reflection coefficient of the system is small, which can make the microwave signal source at the input end less affected by device mismatch, enable continuous noise coefficient calibration of the instrument being calibrated in a wider frequency domain, and improve the calibration of the noise coefficient. accuracy of results.
Description
技术领域Technical field
本实用新型涉及仪器校准技术领域,特别涉及一种对噪声系数进行校准的系统。The utility model relates to the technical field of instrument calibration, and in particular to a system for calibrating the noise coefficient.
背景技术Background technique
噪声系数分析仪和频谱分析仪等仪器的噪声系数需要进行校准,因为噪声系数是直接影响仪器测试精度的主要参数之一。噪声系数分析仪可以简单、快速且非破坏性的测量出半导体器件的噪声系数,从而区分合格的半导体器件和不合格的半导体器件。The noise figure of instruments such as noise figure analyzers and spectrum analyzers needs to be calibrated because the noise figure is one of the main parameters that directly affects the instrument's test accuracy. The noise figure analyzer can simply, quickly and non-destructively measure the noise figure of semiconductor devices, thereby distinguishing qualified semiconductor devices from unqualified semiconductor devices.
目前通常采用图1所示的连接方式对被校仪器的噪声系数进行校准,对噪声系数进行校准的系统包括依次连接的微波信号源、隔离器、同轴衰减器和隔离器,被校仪器与后端的隔离器连接。At present, the connection method shown in Figure 1 is usually used to calibrate the noise coefficient of the instrument to be calibrated. The system for calibrating the noise coefficient includes a microwave signal source, isolator, coaxial attenuator and isolator connected in sequence. The instrument to be calibrated and Isolator connection at rear end.
然而,采用图1所示的连接方式对被校仪器的噪声系数进行校准的过程中,隔离器增加了系统的反射系数;另外,由于隔离器的工作频段较窄,不能在宽频域内对被测噪声系数做数据比对,这样导致校准结果不准确。However, in the process of calibrating the noise figure of the instrument being calibrated using the connection method shown in Figure 1, the isolator increases the reflection coefficient of the system; in addition, due to the narrow working frequency band of the isolator, it cannot calibrate the measured instrument in the wide frequency domain. Noise coefficient is used for data comparison, which leads to inaccurate calibration results.
实用新型内容Utility model content
本实用新型提供了一种对噪声系数进行校准的系统,以解决被校仪器的噪声系数的校准结果不准确的技术问题。The utility model provides a system for calibrating the noise coefficient to solve the technical problem of inaccurate calibration results of the noise coefficient of the instrument being calibrated.
为解决上述技术问题,本实用新型提供了一种对噪声系数进行校准的系统,包括微波信号源、第一固定衰减器、功率分配器、同轴衰减器、微波功率传感器和微波功率计;In order to solve the above technical problems, the utility model provides a system for calibrating the noise coefficient, including a microwave signal source, a first fixed attenuator, a power divider, a coaxial attenuator, a microwave power sensor and a microwave power meter;
所述微波信号源的输出端与所述第一固定衰减器的输入端连接,所述第一固定衰减器的输出端与所述功率分配器的输入端连接;The output end of the microwave signal source is connected to the input end of the first fixed attenuator, and the output end of the first fixed attenuator is connected to the input end of the power divider;
所述功率分配器的第一输出端与所述同轴衰减器的输入端连接,所述同轴衰减器的输出端用于连接被校仪器;The first output end of the power divider is connected to the input end of the coaxial attenuator, and the output end of the coaxial attenuator is used to connect the instrument to be calibrated;
所述功率分配器的第二输出端与所述微波功率传感器的输入端连接;所述微波功率传感器的输出端与所述微波功率计的输入端连接。The second output end of the power divider is connected to the input end of the microwave power sensor; the output end of the microwave power sensor is connected to the input end of the microwave power meter.
可选的,所述系统还包括第二固定衰减器,所述第二固定衰减器的输入端与所述同轴衰减器的输出端连接,所述第二固定衰减器的输出端与所述被校仪器的检测端连接。Optionally, the system further includes a second fixed attenuator, the input end of the second fixed attenuator is connected to the output end of the coaxial attenuator, and the output end of the second fixed attenuator is connected to the Connect the detection terminal of the instrument being calibrated.
可选的,所述第一固定衰减器和所述第二固定衰减器的规格相同。Optionally, the first fixed attenuator and the second fixed attenuator have the same specifications.
可选的,所述第一固定衰减器和所述第二固定衰减器均为π型平衡式衰减器。Optionally, both the first fixed attenuator and the second fixed attenuator are π-type balanced attenuators.
可选的,所述第一固定衰减器和所述第二固定衰减器均包括第一电阻、第二电阻和第三电阻;所述第一电阻的一端和所述第二电阻的一端连接,所述第一电阻的另一端与所述第三电阻的一端连接;所述第二电阻的另一端与所述第三电阻的另一端连接;所述第一电阻的阻值等于所述第三电阻的阻值。Optionally, the first fixed attenuator and the second fixed attenuator each include a first resistor, a second resistor and a third resistor; one end of the first resistor is connected to one end of the second resistor, The other end of the first resistor is connected to one end of the third resistor; the other end of the second resistor is connected to the other end of the third resistor; the resistance of the first resistor is equal to the third resistor. The resistance of the resistor.
可选的,所述第一电阻的阻值等于96.25Ω,所述第二电阻的阻值等于71.15Ω,所述第三电阻的阻值等于96.25Ω。Optionally, the resistance of the first resistor is equal to 96.25Ω, the resistance of the second resistor is equal to 71.15Ω, and the resistance of the third resistor is equal to 96.25Ω.
可选的,所述第一固定衰减器和所述第二固定衰减器均包括不锈钢外壳,所述第一电阻、所述第二电阻和所述第三电阻均安装在所述不锈钢外壳的内部Optionally, the first fixed attenuator and the second fixed attenuator each include a stainless steel shell, and the first resistor, the second resistor and the third resistor are all installed inside the stainless steel shell.
可选的,所述系统还包括金属板,所述微波信号源、所述第一固定衰减器、所述功率分配器、所述微波功率传感器和所述微波功率计的接地端分别与所述金属板连接。Optionally, the system further includes a metal plate, and the ground terminals of the microwave signal source, the first fixed attenuator, the power divider, the microwave power sensor and the microwave power meter are respectively connected to the Metal plate connection.
可选的,所述金属板为表面平整的金属平板。Optionally, the metal plate is a flat metal plate with a flat surface.
可选的,所述微波信号源、所述第一固定衰减器、所述功率分配器、所述同轴衰减器、所述微波功率传感器和所述微波功率计之间通过射频电缆连接。Optionally, the microwave signal source, the first fixed attenuator, the power divider, the coaxial attenuator, the microwave power sensor and the microwave power meter are connected through radio frequency cables.
本实用新型提供的一种对噪声系数进行校准的系统的反射系数较小,可以使输入端的微波信号源更少的受到器件失配的影响,能在更宽的频域内对被校仪器进行连续的噪声系数校准,提高了噪声系数的校准结果的准确性。The system for calibrating the noise coefficient provided by the utility model has a small reflection coefficient, which can make the microwave signal source at the input end less affected by device mismatch, and can continuously calibrate the instrument in a wider frequency domain. The noise figure calibration improves the accuracy of the noise figure calibration results.
附图说明Description of the drawings
图1是现有技术中一种对噪声系数进行校准的系统的模块示意图。Figure 1 is a schematic module diagram of a system for calibrating noise figures in the prior art.
图2是本实用新型一实施例提供的一种对噪声系数进行校准的系统的连接示意图。FIG. 2 is a schematic connection diagram of a system for calibrating the noise figure provided by an embodiment of the present invention.
图3是图2对应的模块示意图。Figure 3 is a schematic diagram of the module corresponding to Figure 2.
图4是图2对应的部分网络结构图。Figure 4 is a partial network structure diagram corresponding to Figure 2.
图5是本实用新型一实施例提供的一种π型平衡式衰减器的结构示意图。FIG. 5 is a schematic structural diagram of a π-type balanced attenuator provided by an embodiment of the present invention.
图6是本实用新型一实施例提供的另一种对噪声系数进行校准的系统的模块示意图。FIG. 6 is a schematic module diagram of another system for calibrating the noise figure provided by an embodiment of the present invention.
具体实施方式Detailed ways
为使本实用新型的目的、优点和特征更加清楚,以下结合附图对本实用新型提出的一种对噪声系数进行校准的系统作进一步详细说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本实用新型实施例的目的。In order to make the purpose, advantages and characteristics of the present invention clearer, a system for calibrating the noise coefficient proposed by the present invention will be further described in detail below with reference to the accompanying drawings. It should be noted that the drawings are in a very simplified form and use imprecise proportions, and are only used to conveniently and clearly assist in explaining the embodiments of the present invention.
在本实用新型的描述中,术语“第一”、“第二”等限定词是为了方便描述和引用而增加的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等限定词的特征可以明示或者隐含地包括一个或者更多个该特征。In the description of the present utility model, the terms "first", "second" and other qualifiers are added for convenience of description and reference, and cannot be understood as indicating or implying relative importance or implicitly indicating the indicated technical features. quantity. Therefore, features defined by qualifiers such as "first" and "second" may explicitly or implicitly include one or more of these features.
如图2-图4所示,本实施例提供了一种对噪声系数进行校准的系统,包括微波信号源、第一固定衰减器、功率分配器、同轴衰减器、微波功率传感器和微波功率计;所述微波信号源的输出端与所述第一固定衰减器的输入端连接,所述第一固定衰减器的输出端与所述功率分配器的输入端连接;所述功率分配器的第一输出端与所述同轴衰减器的输入端连接,所述同轴衰减器的输出端用于连接被校仪器;所述功率分配器的第二输出端与所述微波功率传感器的输入端连接;所述微波功率传感器的输出端与所述微波功率计的输入端连接。As shown in Figures 2 to 4, this embodiment provides a system for calibrating the noise figure, including a microwave signal source, a first fixed attenuator, a power divider, a coaxial attenuator, a microwave power sensor and a microwave power meter; the output end of the microwave signal source is connected to the input end of the first fixed attenuator, and the output end of the first fixed attenuator is connected to the input end of the power divider; the power divider's The first output end is connected to the input end of the coaxial attenuator, and the output end of the coaxial attenuator is used to connect the instrument to be calibrated; the second output end of the power divider is connected to the input end of the microwave power sensor. The output end of the microwave power sensor is connected to the input end of the microwave power meter.
其中,第一固定衰减器是指衰减器的衰减量不变。同轴衰减器是指衰减器的衰减量可调。功率分配器起到保持输出两路功率完全相等的作用,方便在不加入额外的监测器件的前提下,保证在线实时监测被校仪器的功率变化。微波功率传感器和微波功率计主要是用于精准捕捉微波功率变化,其最高可以溯源至微波功率基准,有着良好的准确性。所述被校仪器可以是噪声系数分析仪或频谱分析仪等需要进行噪声系数校准的仪器。以下实施例主要以噪声系数分析仪为例进行解释说明。Wherein, the first fixed attenuator means that the attenuation amount of the attenuator remains unchanged. Coaxial attenuator refers to an attenuator with adjustable attenuation. The power divider plays the role of keeping the output power of the two output channels completely equal, ensuring online real-time monitoring of the power changes of the instrument being calibrated without adding additional monitoring devices. Microwave power sensors and microwave power meters are mainly used to accurately capture microwave power changes, which can be traced to the microwave power benchmark with good accuracy. The instrument to be calibrated may be a noise figure analyzer or a spectrum analyzer, which requires noise figure calibration. The following embodiments mainly take a noise figure analyzer as an example for explanation.
所述系统的校准原理如下:The calibration principle of the system is as follows:
同轴衰减器可以看作为一个线性二端口网络,线性二端口网络的噪声系数和源反射系数之间数学函数关系如式1所示,一般称其为噪声参数方程。The coaxial attenuator can be regarded as a linear two-port network. The mathematical functional relationship between the noise coefficient of the linear two-port network and the source reflection coefficient is shown in Equation 1, which is generally called the noise parameter equation.
其中,F为噪声系数;Fmin为最小噪声系数(由材料环境决定的常数,可查表获得);Rn为等效噪声电阻(表示噪声系数跟随源反射系数变化的快慢);ГS为源端反射系数;Гopt为最佳源反射系数(对应最小噪声系数时的源反射系数)。Among them, F is the noise coefficient; F min is the minimum noise coefficient (a constant determined by the material environment, which can be obtained by looking up the table); R n is the equivalent noise resistance (indicating how quickly the noise coefficient changes with the source reflection coefficient); Г S is Source reflection coefficient; Г opt is the optimal source reflection coefficient (the source reflection coefficient corresponding to the minimum noise coefficient).
此时网络分析仪记录下二端口网络的S参数。带入公式将S参数转换为T参数,公式如下:At this time, the network analyzer records the S parameters of the two-port network. Enter the formula to convert S parameters into T parameters. The formula is as follows:
此时二端口的失配误差可由反射系数方程转换得:At this time, the mismatch error of the two ports can be converted from the reflection coefficient equation:
其中,a代表二端口网络在初值的参数,b代表在末值的参数,S22a代表二端口网络在初值的S参数,S22b代表二端口网络在末值的S参数;Г1a代表二端口网络在初值的反射系数,Г1b代表二端口网络在末值的反射系数。Among them, a represents the parameters of the two-port network at the initial value, b represents the parameter at the final value, S 22a represents the S parameter of the two-port network at the initial value, S 22b represents the S parameter of the two-port network at the final value; Г 1a represents The reflection coefficient of the two-port network at the initial value, Г 1b represents the reflection coefficient of the two-port network at the final value.
第一固定衰减器为精密衰减器,其参数矩阵m为第一固定衰减器和二端口网络组合后,假定拥有无穷大的反向衰减,故这两个衰减器S矩阵副对角线上位0。但衰减器无法保证完全匹配故保留主对角线上系数。此时的失配误差可化简为:The first fixed attenuator is a precision attenuator, and its parameter matrix m is After the first fixed attenuator and the two-port network are combined, it is assumed to have infinite reverse attenuation, so the sub-diagonal lines of the S matrices of these two attenuators are set to 0. However, the attenuator cannot guarantee complete matching, so the coefficients on the main diagonal are retained. The mismatch error at this time can be simplified to:
此时表达式中更加理想的衰减器参数代替了原有二端口S参数进行计算,且合成后新的S22a,S22b也进一步降低了负载端的被校噪声分析仪的反射系数的影响,使得输入端的信号源反射系数对失配的影响也小了很多。由此可以证明第一固定衰减器和同轴衰减器的组合在原理上可以起到减小校准系统反射系数,提高准确度的作用。At this time, the more ideal attenuator parameters in the expression replace the original two-port S parameters for calculation, and the new S 22a and S 22b after synthesis also further reduce the impact of the reflection coefficient of the calibrated noise analyzer at the load end, so that The influence of the signal source reflection coefficient on the input end on the mismatch is also much smaller. It can be proved that the combination of the first fixed attenuator and the coaxial attenuator can in principle reduce the reflection coefficient of the calibration system and improve the accuracy.
所述系统在校准时所使用的标准器可以如下所示:The standard used in calibrating the system can be as follows:
1、微波信号源/矢量信号源:频率范围:250kHz~40GHz;频率准确度:1×10-7;输出功率:(-110~+20)dBm;输出功率平坦度:±0.1dB/10MHz。1. Microwave signal source/vector signal source: frequency range: 250kHz~40GHz; frequency accuracy: 1×10 -7 ; output power: (-110~+20)dBm; output power flatness: ±0.1dB/10MHz.
2、功率计/功率探头:频率范围:DC~18GHz;测量范围(-35~+20)dBm;线性度<0.16%。2. Power meter/power probe: frequency range: DC~18GHz; measurement range (-35~+20)dBm; linearity <0.16%.
3、第一固定衰减器/精密衰减器:数量1个;频率范围:DC~18GHz;衰减量:10dB,电压驻波比:≤1.1。3. First fixed attenuator/precision attenuator: quantity 1; frequency range: DC~18GHz; attenuation: 10dB, voltage standing wave ratio: ≤1.1.
4、网络分析仪:频率范围为9kHz~18GHz;传输系数幅值测量最大允许误差为±0.01dB。4. Network analyzer: frequency range is 9kHz~18GHz; the maximum allowable error in transmission coefficient amplitude measurement is ±0.01dB.
5、功率分配器:频率范围:DC~18GHz;两输出通道的功率分配最大允许误差为±0.02dB。5. Power divider: Frequency range: DC~18GHz; the maximum allowable error in power distribution of the two output channels is ±0.02dB.
6、同轴衰减器:频率范围:DC~18GHz;衰减量:20dB,电压驻波比:≤1.2。6. Coaxial attenuator: frequency range: DC ~ 18GHz; attenuation: 20dB, voltage standing wave ratio: ≤1.2.
噪声系数的校准步骤包括:Calibration steps for noise figure include:
a、记录信号源在输出功率为5dB时,被校噪声系数分析仪与功率计的读数,分别作为P0和Ps,0记录入原始记录。信号源在输出功率范围在-6dB~+5dB,功率输出变化量量为1dB。a. When the output power of the recording signal source is 5dB, the readings of the calibrated noise figure analyzer and power meter are recorded into the original record as P 0 and P s,0 respectively. The output power range of the signal source is -6dB ~ +5dB, and the power output variation is 1dB.
b、设置信号源输出功率,将功率计测量示值作为标准噪声系数标准值,记录Ps,i于原始记录表内,并根据式5计算被校噪声系数分析仪的噪声系数标准值。b. Set the output power of the signal source, use the measured value of the power meter as the standard noise coefficient value, record P s,i in the original record table, and calculate the noise coefficient standard value of the noise coefficient analyzer being calibrated according to Equation 5.
NFSi:被校噪声系数分析仪的噪声系数标准值,dB;NFS i : the standard value of the noise figure of the noise figure analyzer being calibrated, dB;
ENR:噪声源超噪比设定值;ENR: Noise source excess noise ratio setting value;
Ps,0:模拟信号源输出连续波功率5dBm,功率探头测量值,dBm;P s,0 : Analog signal source output continuous wave power 5dBm, power probe measurement value, dBm;
Ps,i:被校噪声系数分析仪噪声功率测量值,dB;P s,i : noise power measurement value of the calibrated noise figure analyzer, dB;
i:检测次数数量为1~11。i: The number of detection times is 1 to 11.
c、调节信号源输出功率,并记录此时被校噪声系数分析仪示值为仪器的噪声功率,可获得被校噪声系数分析仪的噪声系数测量值,记录Pi于原始记录c. Adjust the output power of the signal source, and record that the value indicated by the noise coefficient analyzer being calibrated is the noise power of the instrument. The noise coefficient measurement value of the noise coefficient analyzer being calibrated can be obtained, and record P i in the original record.
表内:In the table:
NFi:被校噪声系数分析仪的噪声系数测量值,dB;NF i : noise figure measurement value of the noise figure analyzer being calibrated, dB;
ENR:噪声源超噪比设定值;ENR: Noise source excess noise ratio setting value;
P0:模拟信号源输出连续波功率5dBm,功率计测量值,dBm;P 0 : Analog signal source output continuous wave power 5dBm, power meter measurement value, dBm;
Pi:模拟信号源输出不同连续波功率时,功率探头测量值,dBm;P i : When the analog signal source outputs different continuous wave powers, the power probe measurement value, dBm;
i:检测次数数量为1~11。i: The number of detection times is 1 to 11.
式6和式5的差值可以作为校准的误差,误差在规定的范围内,表示校准结果可以接受。The difference between Equation 6 and Equation 5 can be used as the calibration error. If the error is within the specified range, it means the calibration result is acceptable.
失配在校准时最为明显的就是造成噪声系数测量过程中的频域起伏大,不平坦。所述系统能使失配误差明显消除,如表1所示。The most obvious mismatch during calibration is that it causes large fluctuations and unevenness in the frequency domain during the noise figure measurement process. The system described can significantly eliminate mismatch errors, as shown in Table 1.
一般而言,失配造成的功率测量不确定度是由以下公式给出的:In general, the power measurement uncertainty due to mismatch is given by:
Δmiss≈(20loge)·|ΓS||Γ1|cos(Φs+ΦL) (式7)Δ miss ≈(20loge)·|Γ S ||Γ 1 |cos(Φ s +Φ L ) (Equation 7)
其中的失配误差最大值为:The maximum mismatch error is:
Δmiss_max=(20loge)·rSr1=±8.686rSrL (式8)Δ miss_max =(20loge)·r S r 1 =±8.686r S r L (Equation 8)
式中:rS=|ΓS|;r1=|Γ1|;ΓS:微波信号源的电压反射系数;Γ1:第一级网络(即第一固定衰减器)功率输入端的电压反射系数。In the formula: r S = |Γ S |; r 1 = |Γ 1 |; Γ S : voltage reflection coefficient of the microwave signal source; Γ 1 : voltage reflection at the power input end of the first-level network (i.e., the first fixed attenuator) coefficient.
表1校准系统在改善前后的电压驻波比的测量值与不确定度Table 1 Measured values and uncertainties of the voltage standing wave ratio of the calibration system before and after improvement
本实施例提供的一种对噪声系数进行校准的系统的反射系数较小,可以使输入端的微波信号源更少的受到器件失配的影响,能在更宽的频域内对被校仪器进行连续的噪声系数校准,提高了噪声系数的校准结果的准确性。The reflection coefficient of the system for calibrating the noise coefficient provided by this embodiment is smaller, which can make the microwave signal source at the input end less affected by device mismatch, and can continuously calibrate the instrument in a wider frequency domain. The noise figure calibration improves the accuracy of the noise figure calibration results.
可选的,如图6所示,所述系统还包括第二固定衰减器,所述第二固定衰减器的输入端与所述同轴衰减器的输出端连接,所述第二固定衰减器的输出端与所述被校仪器的检测端连接。设置第二固定衰减器可以降低所述系统的反射系数,从而使所述系统的校准结果更加准确。Optionally, as shown in Figure 6, the system further includes a second fixed attenuator, the input end of the second fixed attenuator is connected to the output end of the coaxial attenuator, the second fixed attenuator The output end is connected to the detection end of the calibrated instrument. Providing a second fixed attenuator can reduce the reflection coefficient of the system, thereby making the calibration results of the system more accurate.
可选的,所述第一固定衰减器和所述第二固定衰减器的规格相同。这样方便设计和组装所述系统。Optionally, the first fixed attenuator and the second fixed attenuator have the same specifications. This facilitates the design and assembly of the system.
可选的,如图5和图6所示,所述第一固定衰减器和所述第二固定衰减器均为π型平衡式衰减器。由于同轴衰减器形成的二端口网络的输入端和输出端的特性阻抗相等,所以使用π型平衡式衰减器能降低所述系统的失配误差。Optionally, as shown in Figures 5 and 6, both the first fixed attenuator and the second fixed attenuator are π-type balanced attenuators. Since the characteristic impedances of the input and output ends of the two-port network formed by the coaxial attenuator are equal, the use of a π-type balanced attenuator can reduce the mismatch error of the system.
可选的,如图5和图6所示,所述第一固定衰减器和所述第二固定衰减器均包括第一电阻、第二电阻和第三电阻;所述第一电阻的一端和所述第二电阻的一端连接,所述第一电阻的另一端与所述第三电阻的一端连接;所述第二电阻的另一端与所述第三电阻的另一端连接;所述第一电阻的阻值等于所述第三电阻的阻值。π型平衡式衰减器可以定制,本实施例提供的π型平衡式衰减器的结构简单,容易制作。Optionally, as shown in Figure 5 and Figure 6, the first fixed attenuator and the second fixed attenuator each include a first resistor, a second resistor and a third resistor; one end of the first resistor and One end of the second resistor is connected, the other end of the first resistor is connected to one end of the third resistor; the other end of the second resistor is connected to the other end of the third resistor; the first The resistance of the resistor is equal to the resistance of the third resistor. The π-type balanced attenuator can be customized. The π-type balanced attenuator provided in this embodiment has a simple structure and is easy to manufacture.
可选的,如图5所示,所述第一电阻的阻值等于96.25Ω,所述第二电阻的阻值等于71.15Ω,所述第三电阻的阻值等于96.25Ω。微波射频领域器件的特性阻抗通常默认为50欧,所以本实施提供的第一固定衰减器的特性阻抗为50欧。微波器件在无阻抗转换的情况下,输入阻抗和输出阻抗通常相等。而衰减器因为存在衰减插入损耗大,表现出了拥有较好的低驻波系数。Optionally, as shown in Figure 5, the resistance of the first resistor is equal to 96.25Ω, the resistance of the second resistor is equal to 71.15Ω, and the resistance of the third resistor is equal to 96.25Ω. The characteristic impedance of devices in the microwave radio frequency field usually defaults to 50 ohms, so the characteristic impedance of the first fixed attenuator provided in this implementation is 50 ohms. In the case of microwave devices without impedance conversion, the input impedance and output impedance are usually equal. The attenuator has a good low standing wave coefficient because of its large attenuation insertion loss.
具体的,Z为特性阻抗,ZS为源阻抗,ZL为负载阻抗。 其中K为阻抗因子,R1为输入端阻抗即所述第一电阻的阻抗,R2为所述第二电阻的阻抗,R3为输出端阻抗即所述第三电阻的阻抗。π型平衡式衰减器由无源器件构成,使得电路设计表现为线性,R1和R3也就是输入和输出端子阻抗可相互替换。因此当特性阻抗与第一固定衰减器阻抗相等时,π型平衡式衰减器能有效减小信号电平。本校准系统所需精密衰减器为10dB衰减度,匹配50Ω的网络阻抗。Specifically, Z is the characteristic impedance, Z S is the source impedance, and Z L is the load impedance. Where K is the impedance factor, R 1 is the input impedance, which is the impedance of the first resistor, R 2 is the impedance of the second resistor, and R 3 is the output impedance, which is the impedance of the third resistor. The π-type balanced attenuator is composed of passive components, which makes the circuit design linear. R1 and R3, that is, the input and output terminal impedances, are interchangeable. Therefore, when the characteristic impedance is equal to the impedance of the first fixed attenuator, the π-type balanced attenuator can effectively reduce the signal level. The precision attenuator required for this calibration system is 10dB attenuation and matches the network impedance of 50Ω.
Z=50ΩZ=50Ω
K=10dB=1010/20=3.1623K=10dB=10 10/20 =3.1623
可选的,所述第一固定衰减器和所述第二固定衰减器均包括不锈钢外壳,所述第一电阻、所述第二电阻和所述第三电阻均安装在所述不锈钢外壳的内部。不锈钢外壳可以减小外部信号对校准的影响,从而提高所述系统的校准结果。衰减器的内导体可以使用镀镍黄铜,因其功率通常较小不需要铝翅片散热,如后期改进大功率可额外增加。内部为陶瓷基底衰减片使用材料可以为氧化铍,导出膜为厚膜,其中同轴上的引出带可以为镀金铜带。Optionally, the first fixed attenuator and the second fixed attenuator each include a stainless steel shell, and the first resistor, the second resistor and the third resistor are all installed inside the stainless steel shell. . The stainless steel housing can reduce the impact of external signals on the calibration, thereby improving the calibration results of the system. The inner conductor of the attenuator can be made of nickel-plated brass, because the power is usually small and does not require aluminum fins for heat dissipation. If the power is improved later, additional additions can be made. The internal ceramic base attenuator material can be beryllium oxide, the lead-out film can be a thick film, and the lead-out strip on the coaxial can be a gold-plated copper strip.
可选的,所述系统还包括金属板,所述微波信号源、所述第一固定衰减器、所述功率分配器、所述微波功率传感器和所述微波功率计的接地端分别与所述金属板连接。使用同一个参考接地平面,可以提高所述系统的校准结果。Optionally, the system further includes a metal plate, and the ground terminals of the microwave signal source, the first fixed attenuator, the power divider, the microwave power sensor and the microwave power meter are respectively connected to the Metal plate connection. Using the same reference ground plane improves the calibration results of the system.
可选的,所述金属板为表面平整的金属平板。这样可以方便固定所述系统包括的各器件。Optionally, the metal plate is a flat metal plate with a flat surface. In this way, various components included in the system can be easily fixed.
可选的,所述微波信号源、所述第一固定衰减器、所述功率分配器、所述同轴衰减器、所述微波功率传感器和所述微波功率计之间通过射频电缆连接。射频线缆可以减小外部信号对校准的影响,从而提高所述系统的校准结果。Optionally, the microwave signal source, the first fixed attenuator, the power divider, the coaxial attenuator, the microwave power sensor and the microwave power meter are connected through radio frequency cables. RF cables can reduce the impact of external signals on calibration, thereby improving the calibration results of the system.
综上所述,本实用新型提供的一种对噪声系数进行校准的系统的反射系数较小,可以使输入端的微波信号源更少的受到器件失配的影响,能在更宽的频域内对被校仪器进行连续的噪声系数校准,提高了噪声系数的校准结果的准确性。To sum up, the system for calibrating the noise coefficient provided by the present invention has a smaller reflection coefficient, which can make the microwave signal source at the input end less affected by device mismatch, and can calibrate the noise coefficient in a wider frequency domain. The instrument being calibrated performs continuous noise coefficient calibration, which improves the accuracy of the noise coefficient calibration results.
上述描述仅是对本实用新型较佳实施例的描述,并非对本实用新型范围的任何限定,本领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本实用新型的保护范围。The above description is only a description of the preferred embodiments of the present utility model, and does not limit the scope of the present utility model in any way. Any changes or modifications made by those of ordinary skill in the art based on the above disclosures fall within the protection scope of the present utility model.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202321057491.4U CN220040733U (en) | 2023-05-05 | 2023-05-05 | System for calibrating noise coefficient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202321057491.4U CN220040733U (en) | 2023-05-05 | 2023-05-05 | System for calibrating noise coefficient |
Publications (1)
Publication Number | Publication Date |
---|---|
CN220040733U true CN220040733U (en) | 2023-11-17 |
Family
ID=88722989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202321057491.4U Active CN220040733U (en) | 2023-05-05 | 2023-05-05 | System for calibrating noise coefficient |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN220040733U (en) |
-
2023
- 2023-05-05 CN CN202321057491.4U patent/CN220040733U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107271802B (en) | A Noise Power Spectral Density Measurement Method Based on Noise Figure Analyzer | |
US6060888A (en) | Error correction method for reflection measurements of reciprocal devices in vector network analyzers | |
CN104237829B (en) | Overall calibration method for high-accuracy noise factor measuring system | |
CN108614152B (en) | Load traction system and method for measuring input end face power of tested piece of load traction system | |
CN104515907B (en) | A kind of scattering parameter test system and its implementation | |
CN112946461B (en) | Method and device for testing linearity of active calibration body power amplifier | |
CN108828336A (en) | A kind of noise coefficient test method based on vector network analyzer and noise source | |
CN108226643A (en) | The method of the source reflectance factor of on-line measurement load balance factor system | |
CN112067915B (en) | Noise source calibration system | |
CN220040733U (en) | System for calibrating noise coefficient | |
CN111856374B (en) | High-speed digital oscilloscope bandwidth calibration testing device and testing method | |
CN110988490A (en) | Power filter differential loss time domain measurement system and method | |
CN109521407B (en) | Working bandwidth testing method for radar emission subsystem | |
Randus et al. | Microwave impedance measurement for nanoelectronics | |
GB2409049A (en) | Measuring complex reflection coefficient of an RF source | |
Hiebel | Vector network analyzer (VNA) calibration: the basics | |
CN107643450A (en) | The measuring method and measuring system of low damage dielectric materials | |
US3731186A (en) | Radio frequency measurements | |
CN113466774B (en) | System and method for realizing automatic calibration of spectrometer power under condition of adaptive ADC linear characteristic | |
RU2039363C1 (en) | Method of and device for inherent noise measurement | |
CN214703953U (en) | A calibration and correction device for gain parameters of L-band signal amplification module | |
Martines et al. | Determination of microwave transistor noise and gain parameters through noise-figure measurements only | |
Fezai et al. | Traceability and calibration techniques for vector-network-analyzer | |
CN209072508U (en) | The adjustable fixed attenuation equipment of tape test function | |
US4045730A (en) | Incremental method and system for absolute measurement of coherent power at millimeter and submillimeter wavelengths |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |