CN219991795U - Superfine denier polyester fiber production facility - Google Patents

Superfine denier polyester fiber production facility Download PDF

Info

Publication number
CN219991795U
CN219991795U CN202320576447.8U CN202320576447U CN219991795U CN 219991795 U CN219991795 U CN 219991795U CN 202320576447 U CN202320576447 U CN 202320576447U CN 219991795 U CN219991795 U CN 219991795U
Authority
CN
China
Prior art keywords
fixed
spinning box
polyester fiber
smelting pot
fiber production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202320576447.8U
Other languages
Chinese (zh)
Inventor
张尚垛
薛江烨
胡宇斌
李笠夫
劳小锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongkun Group Zhejiang Hengchao Chemical Fiber Co ltd
Original Assignee
Tongkun Group Zhejiang Hengchao Chemical Fiber Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongkun Group Zhejiang Hengchao Chemical Fiber Co ltd filed Critical Tongkun Group Zhejiang Hengchao Chemical Fiber Co ltd
Priority to CN202320576447.8U priority Critical patent/CN219991795U/en
Application granted granted Critical
Publication of CN219991795U publication Critical patent/CN219991795U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

The utility model provides superfine denier polyester fiber production equipment, and relates to the field of polyester fiber production equipment. This superfine denier polyester fiber production facility, including spinning beam and smelting pot, be equipped with stirring structure in the smelting pot, the fixed inlet pipe and the booster pump of being equipped with in top of smelting pot, the bottom of booster pump is equipped with the material suction pipe, the inner wall of smelting pot is equipped with the zone of heating, the fixed control panel that is equipped with in one side of smelting pot, the fixed melt cooler that is equipped with in top of spinning beam, the bottom of melt cooler is equipped with the measuring pump, the top of melt cooler is equipped with the conveying pipeline, through setting up agitator motor, puddler and a plurality of stirring board, and agitator motor drives a plurality of stirring boards through the puddler and rotates, and the stirring board stirs the fuse-element in the smelting pot, can make the fuse-element be in the state of turning over constantly, can make the solution concentration that will add the fiber production keep even, guarantees fibrous manufacturing quality.

Description

Superfine denier polyester fiber production facility
Technical Field
The utility model relates to the technical field of polyester fiber production equipment, in particular to superfine denier polyester fiber production equipment.
Background
The fabric woven by the fine denier series products is light, thin, soft and high in density, and can meet the requirements of consumers on comfort level of clothes and higher end surface materials. In order to break the situation of multiple import of high-end fabrics and improve the market competitiveness of products, a company takes half extinction P0Y51-53dtex/72P as a research object to research and develop 30D high-density polyester fibers. The fabric manufactured by post-processing is light, thin and high in density, and is used for sun-proof clothes in summer, and ultraviolet rays are effectively isolated; meanwhile, the anti-penetration down jacket can be used for novel ultra-thin down jacket fabrics in winter, and the anti-penetration down effect is effectively improved. The 30D high-density polyester fiber not only meets the needs of consumers, but also meets the market demands.
In the production process of the existing superfine denier polyester fiber production equipment, the inside of the equipment cools and shapes the spinning limiting wire harness at the production position of the spinning component in a blowing mode, and as the blown air still remains in the equipment and has heat, the cooling mode is low in cooling speed and low in efficiency, and the setting time of a melting furnace is long, so that the condition of uneven concentration of a melt caused by melt precipitation can be caused.
Disclosure of Invention
(one) solving the technical problems
Aiming at the defects of the prior art, the utility model provides superfine denier polyester fiber production equipment, which solves the problems of low cooling efficiency, uneven material consistency of a melting furnace and multiple broken ends of filaments of the polyester fiber production equipment.
(II) technical scheme
In order to achieve the above purpose, the utility model is realized by the following technical scheme:
the utility model provides an superfine denier polyester fiber production facility, includes spinning beam and smelting pot, be equipped with stirring structure in the smelting pot, the fixed inlet pipe and the booster pump of being equipped with in top of smelting pot, the bottom of booster pump is equipped with the suction pipe, the inner wall of smelting pot is equipped with the zone of heating, the fixed control panel that is equipped with in one side of smelting pot, the fixed melt cooler that is equipped with in top of spinning beam, the bottom of melt cooler is equipped with the metering pump, the top of melt cooler is equipped with the conveying pipeline, the fixed mounting panel that is equipped with in inside of spinning beam, the mounting panel internal fixation is equipped with the spinneret, the fixed diaphragm that is equipped with in inner wall of spinning beam, be equipped with a plurality of subassembly connectors on the diaphragm, the fixed first fixed plate that is equipped with in one side of spinning beam, the top of first fixed plate is equipped with atomizing structure, the back of spinning beam is equipped with the second fixed plate, the top of second fixed plate is equipped with air-cooled structure, the fixed being equipped with the riser on the inner wall of bottom of spinning beam, the fixed being equipped with the nozzle on the riser, the first guide disc and the second guide disc, the fixed web assembly is equipped with on the inner wall of the first guide disc, the first web assembly is located between the first web assembly and the second web assembly is equipped with.
Preferably, the stirring structure comprises a stirring motor fixedly connected with the bottom of the melting furnace, a rotating shaft is fixedly arranged at the output end of the stirring motor, and a plurality of stirring plates are fixedly arranged in the rotating shaft extending into the melting furnace.
Preferably, the top of the stirring motor is fixedly provided with two connecting rods, the tops of the two connecting rods are fixedly connected with the bottom of the melting furnace, and the two connecting rods are made of stainless steel.
Preferably, the atomizing structure comprises a water tank fixedly connected with a first fixing plate, a water pump and a plurality of connecting columns fixedly connected with the bottom of the transverse plate, wherein the water pump is connected with the water tank through a water inlet pipe, one side, far away from the water tank, of the water pump is provided with a guide pipe, the bottom of the connecting columns is fixedly provided with a water collecting pipe, the bottom of the water collecting pipe is provided with a plurality of atomizing pipes, and one end, far away from the water pump, of the guide pipe is connected with the water collecting pipe.
Preferably, the water collecting pipe is in a ring shape, the number of the atomizing pipes is fifteen, and three atomizing spray heads are arranged on the fifteen atomizing pipes.
Preferably, the air cooling structure comprises a filter box and an air pump which are fixedly connected with the second fixing plate, one sides of the air pump and the filter box are connected through an air pipe, an air outlet pipe is fixedly arranged on one side of the air pump, one end of the air outlet pipe extends into the spinning box and is fixedly provided with an air collecting box, and one side of the air collecting box is provided with a plurality of air blowing nozzles.
Preferably, one side of the filter box, which is far away from the gas collection box, is provided with a plurality of ventilation holes, and a plurality of metal filter screens are arranged in the ventilation holes.
Preferably, the bottom of the melting furnace is fixedly provided with three supporting legs which are arranged in a triangle shape, the bottom of each supporting leg is provided with an anti-slip pad, and the anti-slip pad is made of rubber.
(III) beneficial effects
The utility model provides a production device for superfine denier polyester fibers. The beneficial effects are as follows:
1. through setting up agitator motor, puddler and a plurality of stirring board, agitator motor drives a plurality of stirring boards through the puddler and rotates, and the stirring board stirs the fuse-element in the smelting pot, can make the fuse-element be in the billow state constantly, can make the solution concentration that will add the fiber production keep even, guarantees fibrous manufacturing quality.
2. Through setting up parts such as water pump, water tank, collector pipe, atomizing pipe and pipe, in the production period, the water pump lets in the collector pipe with the water in the water tank, and the collector pipe passes through atomizing pipe blowout with moisture again, and the water after the atomizing adheres to on the silk bundle, can absorb the heat on the silk bundle fast, takes away heat energy, cooperates traditional forced air cooling mode, can accelerate the cooling rate to the silk bundle, improves product quality and production efficiency.
3. Through set up the rose box on the forced air cooling structure, can be better filter the inhaled air, reduce the entering volume of dust, improve product quality.
4. Through set up the network subassembly between two guide discs, can reduce the evenness unevenness, reduce the broken silk, still through improving the subassembly connector, can prolong no wind zone height, promote breaking strength, reduce the silk bundle broken ends.
Drawings
FIG. 1 is a perspective view of a first view of the present utility model;
FIG. 2 is a perspective view of a second view of the present utility model;
FIG. 3 is a schematic illustration of the front cross-section of the present utility model;
FIG. 4 is a schematic perspective view of the atomizing structure according to the present utility model;
FIG. 5 is a schematic perspective view of an air-cooled structure according to the present utility model;
FIG. 6 is a schematic perspective view of a spinneret plate according to the present utility model;
fig. 7 is a schematic perspective view of a component connector according to the present utility model.
Wherein, 1, a spinning box; 2. a melting furnace; 3. a stirring structure; 301. a stirring motor; 302. a rotating shaft; 303. a stirring plate; 4. a feed pipe; 5. a booster pump; 6. a suction pipe; 7. a heating layer; 8. a control panel; 9. a melt cooler; 10. a material conveying pipe; 11. a mounting plate; 12. a spinneret plate; 13. a cross plate; 14. a component connector; 15. an atomizing structure; 151. a water tank; 152. a water pump; 153. a connecting column; 154. a water collecting pipe; 155. an atomizing tube; 156. a conduit; 16. an air cooling structure; 161. a filter box; 162. an air pump; 163. an air outlet pipe; 164. a gas collection box; 165. a blowing nozzle; 17. an oil nozzle; 18. a first guide disc; 19. a second guide disc; 20. a winding forming mechanism; 21. a first network component; 22. a second network component; 23. a box door.
Detailed Description
The following description of the embodiments of the present utility model will be made clearly and completely with reference to the accompanying drawings, in which it is apparent that the embodiments described are only some embodiments of the present utility model, but not all embodiments. All other embodiments, which can be made by those skilled in the art based on the embodiments of the utility model without making any inventive effort, are intended to be within the scope of the utility model.
Examples:
as shown in fig. 1-7, the embodiment of the utility model provides a production device for ultra-fine denier polyester fibers, which comprises a spinning box 1 and a melting furnace 2, wherein three support legs which are arranged in a triangle are arranged at the bottom of the melting furnace 2 through bolts, anti-slip pads are arranged at the bottoms of the support legs and made of rubber, the anti-slip pads are arranged to improve the friction force between the device and the ground and prevent the displacement of the device, a rare earth layer is coated on the surface of the spinning box 1, heat-insulating cotton is attached before the rare earth is uncured, a rare earth layer is coated outside the heat-insulating cotton after the heat-insulating cotton is cured, the heat-insulating effect can be improved through the improvement, a stirring structure 3 is arranged in the melting furnace 2, the stirring structure 3 comprises a stirring motor 301 which is arranged at the bottom of the melting furnace 2 through bolts, two connecting rods are welded at the top of the stirring motor 301, the tops of the two connecting rods are connected with the bottom of the melting furnace 2 through bolts, the two connecting rods are made of stainless steel, a rotating shaft 302 is welded at the output end of the stirring motor 301, and the rotating shaft 302 extends into the melting furnace 2 and is welded with a plurality of stirring plates 303;
specifically, the top of the melting furnace 2 is welded with a feeding pipe 4 and a booster pump 5, the bottom of the booster pump 5 is provided with a suction pipe 6, the inner wall of the melting furnace 2 is provided with a heating layer 7, one side bolt of the melting furnace 2 is provided with a control panel 8, the top bolt of the spinning box 1 is provided with a melt cooler 9, the bottom of the melt cooler 9 is provided with a metering pump, the top of the melt cooler 9 is provided with a conveying pipe 10, the inner bolt of the spinning box 1 is provided with a mounting plate 11, the inner bolt of the mounting plate 11 is provided with a spinneret plate 12, the inner wall bolt of the spinning box 1 is provided with a transverse plate 13, the transverse plate 13 is provided with a plurality of component connectors 14, and the improved component connectors 14 can prolong the height of a windless area, improve the breaking strength and reduce the breakage;
specifically, a first fixing plate is arranged on one side of the spinning box 1 through bolts, an atomization structure 15 is arranged at the top of the first fixing plate, the atomization structure 15 comprises a water tank 151, a water pump 152 and a plurality of connecting columns 153 welded with the bottom of the transverse plate 13, which are connected with the first fixing plate through bolts, the water pump 152 is connected with the water tank 151 through a water inlet pipe, a conduit 156 is arranged on one side, far away from the water tank 151, of the water pump 152, a water collecting pipe 154 is welded at the bottom of the plurality of connecting columns 153, a plurality of atomization pipes 155 are arranged at the bottom of the water collecting pipe 154, the water collecting pipe 154 is in a ring shape, fifteen atomization pipes 155 are arranged, three atomization spray heads are arranged on the fifteen atomization pipes 155, one end, far away from the water pump 152, of the conduit 156 is connected with the water collecting pipe 154, the atomization structure 15 is arranged, the device has the advantages that mist can take away heat on the tows, the cooling speed of the tows is improved, a second fixing plate is arranged on the back surface of the spinning box 1, an air cooling structure 16 is arranged at the top of the second fixing plate, the air cooling structure 16 comprises a filter box 161 and an air pump 162 which are connected with the second fixing plate through bolts, one side of the air pump 162 is connected with one side of the filter box 161 through an air pipe, an air outlet pipe 163 is arranged on a flange plate of one side of the air pump 162, one end of the air outlet pipe 163 extends into the spinning box 1 and is welded with an air collecting box 164, a plurality of ventilation holes are formed in one side, away from the air collecting box 164, of the filter box 161, a metal filter screen is arranged in each ventilation hole, the arrangement of the metal filter screen can filter inhaled air, dust entering equipment is reduced, and a plurality of air blowing nozzles 165 are arranged on one side of the air collecting box 164;
specifically, the riser has been welded on the bottom inner wall of spinning beam 1, the welding has fuel sprayer 17 on the riser, first guide disc 18 and second guide disc 19 are installed to spinning beam 1 internal rotation, be equipped with winding forming mechanism 20 on the bottom inner wall of spinning beam 1, first network component 21 is installed to the bolt on the one side inner wall of spinning beam 1, the pole setting is installed to the bolt on the bottom inner wall of spinning beam 1, the top of pole setting is equipped with second network component 22, first network component 21 is located between second guide disc 19 and winding forming mechanism 20, second network component 22 is located between first guide disc 18 and the second guide disc 19, the setting of second network component 22 can reduce the evenness rate, reduce the filigree, the front of spinning beam 1 is equipped with chamber door 23, the setting of chamber door 23 can be convenient for follow-up maintenance to equipment, take the coiled material.
In practical application, the superfine denier polyester fiber production process based on the superfine denier polyester fiber production equipment provided by the utility model comprises the following steps:
s1, introducing materials into a furnace 2 through a feed pipe 4, then starting a stirring motor 301 and a heating layer 7 through a control panel 8, and driving a plurality of stirring plates 303 by the stirring motor 301 through a stirring shaft 302, wherein the stirring plates 303 can stir a melt to enable the melt to be in a billowing state at any time;
s2, starting a booster pump 5, sucking a melt by the booster pump 5 through a suction pipe 6, introducing the melt into a conveying pipe 10, then introducing the melt into a melt cooler 9 through the conveying pipe 10, introducing the melt into a metering pump by the melt cooler 9, introducing the melt into a spinneret plate 12 after the metering pump is used for metering the melt, and spraying a silk bundle through the spinneret plate 12;
s3, when the tows pass through the water collecting pipe 154, mist sprayed by the atomizing pipes 155 is attached to the tows, so that the tows can be rapidly absorbed in heat and vaporized, a large amount of heat energy is taken away, the spun fiber tows are rapidly cooled and shaped, and after passing through the water collecting pipe 154, the tows are blown by the blowing nozzles 165, and the tows are cooled again;
s4, after the tows are cooled and then the oil nozzle 17 oils the tows, the tows pass through the first guide disc 18, pass through the second network component 22, then pass through the first network component 21 sequentially through the second guide disc 19, and finally are introduced into the winding forming mechanism 20 to finish winding collection.
Although embodiments of the present utility model have been shown and described, it will be understood by those skilled in the art that various changes, modifications, substitutions and alterations can be made therein without departing from the principles and spirit of the utility model, the scope of which is defined in the appended claims and their equivalents

Claims (5)

1. The production equipment of the superfine denier polyester fiber comprises a spinning box (1) and a melting furnace (2), and is characterized in that: be equipped with stirring structure (3) in smelting pot (2), the fixed inlet pipe (4) and the booster pump (5) that are equipped with in top of smelting pot (2), the bottom of booster pump (5) is equipped with inhales material pipe (6), the inner wall of smelting pot (2) is equipped with zone of heating (7), the fixed control panel (8) that are equipped with in one side of smelting pot (2), the fixed melt cooler (9) that are equipped with in top of spinning box (1), the bottom of melt cooler (9) is equipped with the measuring pump, the top of melt cooler (9) is equipped with conveying pipeline (10), the fixed mounting panel (11) that are equipped with in inside of spinning box (1), the mounting panel (11) internal fixation is equipped with spinneret (12), the fixed diaphragm (13) that are equipped with of inner wall of spinning box (1), be equipped with a plurality of subassembly connectors (14) on diaphragm (13), the fixed first fixed plate that is equipped with in one side of spinning box (1), the top of first fixed plate is equipped with atomizing structure (15), the back of spinning box (1) is equipped with the second fixed plate, the fixed plate that is equipped with on the top of second fixed plate (16), the fixed vertical air nozzle (17) is equipped with on the bottom of spinning box, the novel spinning box is characterized in that a first guide disc (18) and a second guide disc (19) are movably arranged in the spinning box (1), a winding forming mechanism (20) is arranged on the inner wall of the bottom of the spinning box (1), a first network component (21) is fixedly arranged on one side inner wall of the spinning box (1), a vertical rod is fixedly arranged on the inner wall of the bottom of the spinning box (1), a second network component (22) is arranged at the top of the vertical rod, the first network component (21) is located between the second guide disc (19) and the winding forming mechanism (20), the second network component (22) is located between the first guide disc (18) and the second guide disc (19), and a box door (23) is arranged on the front face of the spinning box (1).
2. The ultra fine denier polyester fiber production facility as claimed in claim 1, wherein: stirring structure (3) include with furnace (2) bottom fixed connection's agitator motor (301), the output of agitator motor (301) is fixed to be equipped with pivot (302), pivot (302) extend to in furnace (2) and are fixed to be equipped with a plurality of stirring boards (303).
3. The ultra fine denier polyester fiber production facility as claimed in claim 2, wherein: the top of stirring motor (301) is fixed and is equipped with two connecting rods, two the top of connecting rod all with the bottom fixed connection of smelting pot (2), two the connecting rod is made by stainless steel.
4. The ultra fine denier polyester fiber production facility as claimed in claim 1, wherein: the atomizing structure (15) comprises a water tank (151) fixedly connected with a first fixing plate, a water pump (152) and a plurality of connecting columns (153) fixedly connected with the bottom of the transverse plate (13), wherein the water pump (152) and the water tank (151) are connected through a water inlet pipe, one side, far away from the water tank (151), of the water pump (152) is provided with a guide pipe (156), the bottoms of the connecting columns (153) are fixedly provided with the same water collecting pipe (154), the bottoms of the water collecting pipes (154) are provided with a plurality of atomizing pipes (155), and one end, far away from the water pump (152), of the guide pipe (156) is connected with the water collecting pipe (154).
5. The ultra fine denier polyester fiber production facility as claimed in claim 4, wherein: the water collecting pipes (154) are in a ring shape, the number of the atomizing pipes (155) is fifteen, and three atomizing spray heads are arranged on the fifteen atomizing pipes (155).
CN202320576447.8U 2023-03-22 2023-03-22 Superfine denier polyester fiber production facility Active CN219991795U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202320576447.8U CN219991795U (en) 2023-03-22 2023-03-22 Superfine denier polyester fiber production facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202320576447.8U CN219991795U (en) 2023-03-22 2023-03-22 Superfine denier polyester fiber production facility

Publications (1)

Publication Number Publication Date
CN219991795U true CN219991795U (en) 2023-11-10

Family

ID=88603098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202320576447.8U Active CN219991795U (en) 2023-03-22 2023-03-22 Superfine denier polyester fiber production facility

Country Status (1)

Country Link
CN (1) CN219991795U (en)

Similar Documents

Publication Publication Date Title
KR101166675B1 (en) Electro-spinning apparatus for manaufactureing nonofiber for controlling temperature and hummidity of spinning zone
CN111993683A (en) Continuous fiber reinforced thermoplastic resin powder impregnation device and impregnation method
CN101050551A (en) Cooling installation in producing high modulus, ultralow contractive polyester industrial yarn through singlestage process
CN109268982A (en) Suitable for field of textiles workshop high-efficiency water cooling constant temperature and humidity air-conditioning system
CN102134759A (en) Circular blow cooling device for producing industrial polyester filaments
CN219991795U (en) Superfine denier polyester fiber production facility
CN103710880A (en) Anti-oxidant polyphenylene sulfide spun-bonded spunlace non-woven filter material and production method thereof
CN108642585A (en) Combination machine is led in a kind of spinning of FDY filament
CN110983461A (en) Chemical fiber yarn spinning process
CN116479538A (en) Superfine denier polyester fiber production equipment and production process
CN113005541B (en) Production equipment and process of special-shaped polyester drawn fibers
CN219586267U (en) Flower-shaped waterproof thermal fiber production equipment
CN104947217B (en) A kind of atomizing humidifier and chemical fibre spinning machine
CN104532482B (en) The extensive quickly serialization of needleless Static Spinning polymer nanofiber manufactures system
CN218115685U (en) Breeze liquid atomization type cooling spinning mechanism
CN106555236A (en) A kind of utilization meltblown prepares the device and method of superfine fibre beam
CN106521841A (en) Textile fabric humidification device
CN206477063U (en) A kind of viscose rayon spinning-drawing machine
CN210636110U (en) Fiber humidifying device for carding machine
CN214160901U (en) Corrosion-resistant's phosphorized steel wire's draw-off gear
CN210237852U (en) U-shaped ring air-blowing cooling device for short fiber melt spinning
CN217948362U (en) Cashmere collection device of cashmere processing carding machine
CN207963538U (en) A kind of high-performance combined-type cooling tower
CN206266856U (en) Yarn fabric humidification device
CN215440780U (en) Production equipment for polyester profiled drawn fibers

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant