CN219302669U - 激光接收装置及激光雷达 - Google Patents

激光接收装置及激光雷达 Download PDF

Info

Publication number
CN219302669U
CN219302669U CN202223287164.6U CN202223287164U CN219302669U CN 219302669 U CN219302669 U CN 219302669U CN 202223287164 U CN202223287164 U CN 202223287164U CN 219302669 U CN219302669 U CN 219302669U
Authority
CN
China
Prior art keywords
light
angle
echo
laser
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202223287164.6U
Other languages
English (en)
Inventor
张明伟
杨昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Wanji Photoelectric Technology Co Ltd
Original Assignee
Wuhan Wanji Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Wanji Photoelectric Technology Co Ltd filed Critical Wuhan Wanji Photoelectric Technology Co Ltd
Priority to CN202223287164.6U priority Critical patent/CN219302669U/zh
Application granted granted Critical
Publication of CN219302669U publication Critical patent/CN219302669U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本实用新型属于激光雷达领域,尤其涉及一种激光接收装置及激光雷达,该激光接收装置包括接收镜组、探测器以及角度选择性透过膜。接收镜组包括从物侧至像侧依次布置的多个透镜。探测器设置于接收镜组的像侧,探测器用于接收回波光。角度选择性透过膜设置于接收镜组中位于物侧的透镜上和/或位于像侧的透镜上,角度选择性透过膜用于透过入射角在回波光的发散角范围内的光线,并用于阻挡入射角在回波光的发散角范围外的光线。可有效地减少进入探测器中的杂散光。由于角度选择性透过膜设置在接收镜组中的透镜上,有利于激光雷达的小型化和装配。

Description

激光接收装置及激光雷达
技术领域
本实用新型涉及激光雷达技术领域,尤其涉及一种激光接收装置及激光雷达。
背景技术
激光雷达通过发射和接收激光光束,分析激光光束遇到探测目标后的折返时间,计算出探测目标与激光雷达所在地(比如车辆、低空飞行直升机、固定探测设备等)的相对距离,并收集探测目标表面大量密集的点的三维坐标、反射率等信息,复建出探测目标的三维模型。
激光雷达在发射光发射后,常常收到滤光罩或者与结构件反射的杂散光,由于距离激光接收装置较近,导致近距离信号幅值受到严重的干扰,严重影响激光雷达信号质量。
目前激光雷达中消杂散光的方式主要是通过结构件表面处理,或者避免光线打到反射面,对于结构设计要求较高,严重阻碍了激光雷达的小型化和装配。
实用新型内容
本实用新型实施例提供了一种激光接收装置及激光雷达,用于解决目前激光雷达中消杂散光的方式对于结构设计要求较高的技术问题。
为此,根据本实用新型的一个方面,提供了一种激光接收装置,应用于激光雷达,所述激光雷达的发射光经目标物反射后形成回波光,所述激光接收装置包括:
接收镜组,包括从物侧至像侧依次布置的多个透镜;
探测器,设置于所述接收镜组的像侧,所述探测器用于接收回波光;以及
角度选择性透过膜,设置于所述接收镜组中位于物侧的透镜上和/或位于像侧的透镜上,所述角度选择性透过膜用于透过入射角在回波光的发散角范围内的光线,并用于阻挡入射角在回波光的发散角范围外的光线。
可选地,所述角度选择性透过膜具有多层结构。
可选地,所述角度选择性透过膜包括多层介质薄膜,至少两层所述介质薄膜的光折射率不同。
根据本实用新型的另一个方面,提供了一种激光雷达,该激光雷达包括:
激光发射装置,用于产生所述发射光;以及
如上任一项所述的激光接收装置,用于接收所述回波光。
可选地,所述激光雷达还包括分光镜,经所述分光镜作用的所述发射光与所述回波光同轴。
可选地,所述分光镜具有用于透射所述回波光至所述激光接收装置的回波透射区域,所述回波透射区域上设置有第一角度选择透射膜,所述第一角度选择透射膜用于透射入射角在回波光的发散角范围内的光线,并用于阻挡入射角在回波光的发散角范围外的光线。
可选地,所述分光镜具有用于反射所述回波光至所述激光接收装置的回波反射区域,所述回波反射区域上设置有第一角度选择反射膜,所述第一角度选择反射膜用于反射入射角在回波光的发散角范围内的光线,并用于透射或吸收入射角在回波光的发散角范围外的光线。
可选地,所述激光雷达还包括转镜,经分光镜作用的发射光经所述转镜反射后向三维空间出射,经所述转镜反射后,所述回波光经所述分光镜作用后被所述激光接收装置接收。
可选地,所述转镜的表面设置有第二角度选择反射膜,所述第二角度选择反射膜用于反射入射角在回波光的发散角范围内的光线,并用于透射或吸收入射角在回波光的发散角范围外的光线。
可选地,所述激光雷达还包括滤光罩,所述滤光罩罩设于所述激光发射装置和所述激光接收装置上,所述滤光罩的表面设置有第二角度选择透射膜,所述第二角度选择透射膜用于透射入射角在回波光的发散角范围内的光线,并用于阻挡入射角在回波光的发散角范围外的光线。
本实用新型提供的激光接收装置及激光雷达的有益效果在于:与现有技术相比,本实用新型的激光接收装置通过在接收镜组中位于物侧的透镜上和/或位于像侧的透镜上设置角度选择性透过膜,可通过角度选择性透过膜对不同入射角度的光线进行选择,以使满足入射角度要求(入射角在回波光的发散角范围内)的光线能够透过,而阻挡不满足入射要求的光线(入射角在回波光的发散角范围外的光线),可有效地减少进入探测器中的杂散光。由于角度选择性透过膜设置在接收镜组中的透镜上,有利于激光雷达的小型化和装配。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1是本实用新型一实施例示出的一种激光接收装置的结构示意图;
图2是本实用新型一实施例示出的另一种激光接收装置的结构示意图;
图3是回波光在接收镜组的透镜上的发散角(图中以α示出)的示意图;
图4是接收镜组中透镜在0°光线入射时的透过率;
图5是本实用新型一实施例示出的接收镜组中设置有角度选择性透过膜的透镜,在7°光线入射时的透过率;
图6是本实用新型一实施例示出的一种激光雷达的结构示意图;
图7是本实用新型一实施例示出的另一种激光雷达的结构示意图;
图8是本实用新型一实施例示出的又一种激光雷达的结构示意图;
图9是本实用新型一实施例示出的再一种激光雷达的结构示意图。
主要元件符号说明:
10、目标物;
100、激光接收装置;110、接收镜组;120、探测器;130、角度选择性透过膜;
200、激光发射装置;
300、分光镜;301、回波透射区域;302、回波反射区域;
400、第一角度选择透射膜;
500、第一角度选择反射膜;
600、转镜;
700、第二角度选择反射膜;
800、滤光罩;
900、第二角度选择透射膜。
具体实施方式
为了便于理解本实用新型,下面将参照相关附图对本实用新型进行更全面的描述。附图中给出了本实用新型的较佳的实施例。但是,本实用新型可以通过许多其他不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本实用新型的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实用新型的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本实用新型。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
还需说明的是,本申请实施例中以同一附图标记表示同一组成部分或同一零部件,对于本申请实施例中相同的零部件,图中可能仅以其中一个零件或部件为例标注了附图标记,应理解的是,对于其他相同的零件或部件,附图标记同样适用。
正如背景技术中所记载的,相关技术中,目前激光雷达中消杂散光的方式主要是通过结构件表面处理,或者避免光线打到反射面,对于结构设计要求较高,严重阻碍了激光雷达的小型化和装配。
为了解决上述问题,根据本实用新型的一个方面,如图1-图3所示,本实用新型的实施例提供了一种激光接收装置100,应用于激光雷达,激光雷达的发射光经目标物10反射后形成回波光,激光接收装置100包括接收镜组110、探测器120以及角度选择性透过膜130。
接收镜组110包括从物侧至像侧依次布置的多个透镜。
探测器120设置于接收镜组110的像侧,探测器120用于接收回波光。
角度选择性透过膜130设置于接收镜组110中位于物侧的透镜上和/或位于像侧的透镜上,角度选择性透过膜130用于透过入射角在回波光的发散角范围内的光线,并用于阻挡入射角在回波光的发散角范围外的光线。
结合图8和图9所示,在图8中,激光雷达的发射光通过滤光罩800出射后,在滤光罩800上进行反射,反射光进入激光雷达接收装置中,如图中虚线所示,即产生杂散光;在图9中,外部的环境光经过滤光罩800后,进入激光雷达接收装置中,如图中虚线所示,即产生杂散光。由上可见,大部分杂散光以不同于回波光的入射角度射入激光雷达接收装置。
在本实用新型实施例中,该激光接收装置100通过在接收镜组110中位于物侧的透镜上和/或位于像侧的透镜上设置角度选择性透过膜130,可通过角度选择性透过膜130对不同入射角度的光线进行选择,以使满足入射角度要求(入射角在回波光的发散角范围内)的光线能够透过,而阻挡不满足入射要求的光线(入射角在回波光的发散角范围外的光线),可有效地减少进入探测器120中的杂散光。由于角度选择性透过膜130设置在接收镜组110中的透镜上,有利于激光雷达的小型化和装配。
如图8和图9中所示,虚线处杂散光与水平方向(设计光路方向)存在夹角,通过使用上述角度选择性透过膜130抑制杂散光后,如图4和图5所示,理论设计光路水平入射,在需求波段905±10nm,透过率为95%,常规要求,在7°光线入射时,仍然有60%-90%的透过率,通过增加角度选择性透过膜130后,在7°光线入射时,透过率降低至12%,大大抑制了杂散光对探测器的影响。
接收镜组110作为激光接收装置100中的重要光学部件,其主要用于将从目标物10反射后形成回波光进行汇聚。接收镜组110通常是多片透镜(包括正焦距透镜、负焦距透镜)的组合。可以理解的是,物侧是指回波光入射的一侧,像侧是指回波光出射的一侧。
其中,探测器120可以是PIN光电二极管(Positive-intrinsic-negative diode,PIN diode)、雪崩光电二极管(Avalanche Photo Diode,APD)、单光子雪崩二极管(SinglePhoton Avalanche Diode,SPAD)、多像素光子计数器(Multi-Pixel Photon Counter,MPPC)、硅光电倍增管(Silicon photo multiplier,SiPM)等。
需要说明的是,在本实施例中,角度选择性透过膜130通过镀膜工艺直接镀设在透镜上。当然,在其他实施例中,也可先制得角度选择性透过膜130,然后再将角度选择性透过膜130粘贴在透镜上。
可以理解的是,在本实施例中,角度选择性透过膜130设置于接收镜组110中位于物侧的透镜上和/或位于像侧的透镜上包括如下三种方案:一、角度选择性透过膜130设置在接收镜组110中位于物侧的透镜上,如图1所示;二、角度选择性透过膜130设置在接收镜组110中位于像侧的透镜上,如图2所示;三、接收镜组110中位于物侧的透镜和位于像侧的透镜上均设置有角度选择性透过膜130,图中未示出。
可通过对角度选择性透过膜130的材质进行选择,来对角度选择性透过膜130的透过率进行调整。
在具体设置角度选择性透过膜130时,角度选择性透过膜130的厚度也是光线透过的重要影响因素,其可根据需要阻挡的杂散光以及入射角进行选择。
在一种实施例中,角度选择性透过膜130具有多层结构。
角度选择性透过膜130可通过多层结构被实现。具体地,角度选择性透过膜130具有TiO2层和MgF2层交替层压而形成的多层结构。
当利用具有多层结构的角度选择性透过膜130时,可通过构成角度选择性透过膜130的材料(折射率)和层的厚度的设置,来调整成为可透射和不可透射之间的边界的角度。
在一种具体实施例中,角度选择性透过膜130包括多层介质薄膜,至少两层介质薄膜的光折射率不同。
角度选择性透过膜130可为薄膜堆叠形成,其可包括多层介质薄膜,至少两层介质薄膜的光折射率不同,且每层介质薄膜的厚度可为50nm-200nm。从而使角度选择透过薄膜基于多层介质薄膜对光线进行干涉的原理即可实现对光线的选择透过。
在另一种实施例中,角度选择性透过膜130还可以为单层膜结构,且该单层膜结构可根据该随机化深孔原理开设有深孔,并通过调整深孔的孔深和孔径的比,来使得不满足入射角的光只能投射在深孔的侧壁上被吸收,从而无法透过深孔;而满足入射角度要求的光可以直接透过深孔,以实现对光线的选择。其中,角度选择透过薄膜上的深孔的半径r,与孔深H的比值可以满足:r/H=tan(α/2),α为回波光的发散角,以使入射角为大于或等于0°,且小于或等于α/2的光线能够透过深孔。
根据本实用新型的另一个方面,本实用新型的实施例还提供了一种激光雷达,如图6-图9所示,该激光雷达包括激光发射装置200以及上述任一实施例中的激光接收装置100。激光发射装置200用于产生发射光,激光接收装置100用于接收回波光。
由于该激光雷达具有上述激光接收装置100,因此,不仅能够有效地减少进入探测器120中的杂散光,提高激光雷达的探测性能,由于角度选择性透过膜130设置在接收镜组110中的透镜上,还有利于激光雷达的小型化和装配。
需要说明的是,能够应用上述激光接收装置100的激光雷达不限于图示中的同轴光路激光雷达,还包括非同轴光路的激光雷达。
在一种实施例中,如图6-图9所示,激光雷达还包括分光镜300,经分光镜300作用的发射光与回波光同轴。
通过如上设计,形成同轴收发式激光雷达。同轴收发方案具有相同的输入输出光路,收发模块集成于一处,发出的激光触达被测物体后返回并再次通过分光镜300被探测器120接收,优点在于只接收沿着原光路返回的光信号,因而有较好的日光抑制性,信噪比高;同时接收器采用单颗APD即可,成本可控;如果采用多个激光收发模组拼接,不同模组之间相对独立,可以同时进行扫描互不干扰。
可以理解的是,同轴收发激光雷达的分光方式包括但不限中心反射式和中心透射式。
在一种具体实施例中,如图6所示,分光镜300具有用于透射回波光至激光接收装置100的回波透射区域301,回波透射区域301上设置有第一角度选择透射膜400,第一角度选择透射膜400用于透射入射角在回波光的发散角范围内的光线,并用于阻挡入射角在回波光的发散角范围外的光线。
在本实施例中,通过第一角度选择透射膜400对不同入射角度的光线进行选择,以使满足入射角度要求的光线能够透过,而阻挡不满足入射要求的光线,进一步减少进入探测器120中的杂散光。
需要说明的是,第一角度选择透射膜400的原理与上述激光接收装置100中的角度选择性透过膜130相同,在此不再赘述。
在另一种具体实施例中,如图7所示,分光镜300具有用于反射回波光至激光接收装置100的回波反射区域302,回波反射区域302上设置有第一角度选择反射膜500,第一角度选择反射膜500用于反射入射角在回波光的发散角范围内的光线,并用于透射或吸收入射角在回波光的发散角范围外的光线。
在本实施例中,通过第一角度选择反射膜500对不同入射角度的光线进行选择,以使满足入射角度要求的光线能够反射,而透射或吸收不满足入射要求的光线,进一步减少进入探测器120中的杂散光。
需要说明的是,第一角度选择反射膜500的原理类似于上述激光接收装置100中的角度选择性透过膜130,在此不再赘述。
在一些实施例中,如图6-图9所示,激光雷达还包括转镜600,经分光镜300作用的发射光经转镜600反射后向三维空间出射,经转镜600反射后,回波光经分光镜300作用后被激光接收装置100接收。
具体地,转镜600位于分光镜300和激光雷达的出光口之间,用于实现对三维空间中的目标物10的扫描。
在一些具体的实施例中,如图8-图9所示,转镜600的表面设置有第二角度选择反射膜700,第二角度选择反射膜700用于反射入射角在回波光的发散角范围内的光线,并用于透射或吸收入射角在回波光的发散角范围外的光线。
在本实施例中,通过第二角度选择反射膜700对不同入射角度的光线进行选择,以使满足入射角度要求的光线能够反射,而透射或吸收不满足入射要求的光线,进一步减少进入探测器120中的杂散光。
需要说明的是,第二角度选择反射膜700的原理与上述第一角度选择反射膜500相同,在此不再赘述。
在一些实施例中,如图9所示,激光雷达还包括滤光罩800,滤光罩800罩设于激光发射装置200和激光接收装置100上,滤光罩800的表面设置有第二角度选择透射膜900,第二角度选择透射膜900用于透射入射角在回波光的发散角范围内的光线,并用于阻挡入射角在回波光的发散角范围外的光线。
在本实施例中,通过第二角度选择透射膜900对不同入射角度的光线进行选择,以使满足入射角度要求的光线能够透过,而阻挡不满足入射要求的光线,进一步减少进入探测器120中的杂散光。
需要说明的是,第二角度选择透射膜900的原理与上述激光接收装置100中的角度选择性透过膜130相同,在此不再赘述。
此外,可以理解的是,在本实施例的激光雷达中,还可以在其他镜片(透镜或反射镜)上通过设置上述角度选择反射膜或角度选择透射膜,管控镜片角度镀膜反射率或透射率,使之在有效光线角度包含回波光的发散角范围内高透过或高反射,在其他角度高反射或高透过,使得杂散光无法通过镜片进入接收系统中。具体来说,以下分别列举了两种常见激光雷达内部的光路;
一种为需要光线进入接收系统,假设光线入射角度为回波光发散角度区域内,在该区域内进行镀膜管控,设置该角度内为高透部分,其他角度为高反部分,则非有效光线的杂散光在通过该镜片时即被反射出镜片,不会进入光路中;
另一种为需要光线在反射镜进行反射,假设光线入射角度为回波光发散角度区域内,在该区域内进行镀膜管控,设置该角度内为高反部分,其他角度为高透部分,则非有效光线的杂散光在通过该镜片反射时被透过,不会反射进入光路中。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型的保护范围应以所附权利要求为准。

Claims (10)

1.一种激光接收装置,应用于激光雷达,所述激光雷达的发射光经目标物反射后形成回波光,其特征在于,所述激光接收装置包括:
接收镜组,包括从物侧至像侧依次布置的多个透镜;
探测器,设置于所述接收镜组的像侧,所述探测器用于接收回波光;以及
角度选择性透过膜,设置于所述接收镜组中位于物侧的透镜上和/或位于像侧的透镜上,所述角度选择性透过膜用于透过入射角在回波光的发散角范围内的光线,并用于阻挡入射角在回波光的发散角范围外的光线。
2.根据权利要求1所述的激光接收装置,其特征在于,所述角度选择性透过膜具有多层结构。
3.根据权利要求2所述的激光接收装置,其特征在于,所述角度选择性透过膜包括多层介质薄膜,至少两层所述介质薄膜的光折射率不同。
4.一种激光雷达,其特征在于,包括:
激光发射装置,用于产生所述发射光;以及
如权利要求1-3任一项所述的激光接收装置,用于接收所述回波光。
5.根据权利要求4所述的激光雷达,其特征在于,所述激光雷达还包括分光镜,经所述分光镜作用的所述发射光与所述回波光同轴。
6.根据权利要求5所述的激光雷达,其特征在于,所述分光镜具有用于透射所述回波光至所述激光接收装置的回波透射区域,所述回波透射区域上设置有第一角度选择透射膜,所述第一角度选择透射膜用于透射入射角在回波光的发散角范围内的光线,并用于阻挡入射角在回波光的发散角范围外的光线。
7.根据权利要求5所述的激光雷达,其特征在于,所述分光镜具有用于反射所述回波光至所述激光接收装置的回波反射区域,所述回波反射区域上设置有第一角度选择反射膜,所述第一角度选择反射膜用于反射入射角在回波光的发散角范围内的光线,并用于透射或吸收入射角在回波光的发散角范围外的光线。
8.根据权利要求5-7任一项所述的激光雷达,其特征在于,所述激光雷达还包括转镜,经分光镜作用的发射光经所述转镜反射后向三维空间出射,经所述转镜反射后,所述回波光经所述分光镜作用后被所述激光接收装置接收。
9.根据权利要求8所述的激光雷达,其特征在于,所述转镜的表面设置有第二角度选择反射膜,所述第二角度选择反射膜用于反射入射角在回波光的发散角范围内的光线,并用于透射或吸收入射角在回波光的发散角范围外的光线。
10.根据权利要求4-7任一项所述的激光雷达,其特征在于,所述激光雷达还包括滤光罩,所述滤光罩罩设于所述激光发射装置和所述激光接收装置上,所述滤光罩的表面设置有第二角度选择透射膜,所述第二角度选择透射膜用于透射入射角在回波光的发散角范围内的光线,并用于阻挡入射角在回波光的发散角范围外的光线。
CN202223287164.6U 2022-12-08 2022-12-08 激光接收装置及激光雷达 Active CN219302669U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202223287164.6U CN219302669U (zh) 2022-12-08 2022-12-08 激光接收装置及激光雷达

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202223287164.6U CN219302669U (zh) 2022-12-08 2022-12-08 激光接收装置及激光雷达

Publications (1)

Publication Number Publication Date
CN219302669U true CN219302669U (zh) 2023-07-04

Family

ID=86951975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202223287164.6U Active CN219302669U (zh) 2022-12-08 2022-12-08 激光接收装置及激光雷达

Country Status (1)

Country Link
CN (1) CN219302669U (zh)

Similar Documents

Publication Publication Date Title
CN109814082B (zh) 光接收模块、及激光雷达系统
CN108594206B (zh) 光传输模块、激光发射模块、激光雷达系统及车辆
US20230184905A1 (en) Optical system of laser radar, and laser radar system
CN109814086A (zh) 一种激光雷达
US20200292671A1 (en) Laser radar system
CN109001747B (zh) 一种无盲区激光雷达系统
US20210341610A1 (en) Ranging device
CN104977725A (zh) 用于光电吊舱的光学系统
WO2020142941A1 (zh) 一种光发射方法、装置及扫描系统
CN112513669A (zh) 激光收发模块和激光雷达
CN110850437A (zh) 激光雷达
CN210894687U (zh) 一种激光发射装置以及激光雷达系统
CN113625295A (zh) 一种用于激光雷达的光学系统和激光雷达
US20220099833A1 (en) Distance measurement device
CN219302669U (zh) 激光接收装置及激光雷达
US7826039B2 (en) Target acquisition device
CN111856508A (zh) 一种窄线宽滤波激光雷达
WO2021102950A1 (zh) 光探测器、探测模组和探测装置
CN219456484U (zh) 激光雷达
CN210894690U (zh) 一种激光发射装置以及激光雷达系统
CN115047431A (zh) 一种探测装置、探测器、激光雷达及终端设备
CN210894689U (zh) 一种激光发射装置以及激光雷达系统
CN210347919U (zh) 一种激光发射装置以及激光雷达系统
CN210347925U (zh) 一种激光发射装置以及激光雷达系统
CN115933025A (zh) 分光装置及激光雷达

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant