CN219038211U - Anti-interference dual-wavelength active laser temperature measuring device - Google Patents
Anti-interference dual-wavelength active laser temperature measuring device Download PDFInfo
- Publication number
- CN219038211U CN219038211U CN202220908519.XU CN202220908519U CN219038211U CN 219038211 U CN219038211 U CN 219038211U CN 202220908519 U CN202220908519 U CN 202220908519U CN 219038211 U CN219038211 U CN 219038211U
- Authority
- CN
- China
- Prior art keywords
- laser
- interference
- wavelength
- hole
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005855 radiation Effects 0.000 claims abstract description 29
- 230000000694 effects Effects 0.000 claims abstract description 22
- 230000003287 optical effect Effects 0.000 claims description 23
- 239000013078 crystal Substances 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 2
- 239000003973 paint Substances 0.000 claims description 2
- 238000009529 body temperature measurement Methods 0.000 description 21
- 238000005259 measurement Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 5
- 239000000306 component Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000008358 core component Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Radiation Pyrometers (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及辐射测温技术领域,尤其涉及一种防干扰双波长主动式激光测温装置。The utility model relates to the technical field of radiation temperature measurement, in particular to an anti-interference dual-wavelength active laser temperature measurement device.
背景技术Background technique
辐射测温方法基于物体辐射强度与温度的函数关系,可实现对被测物体的非接触温度测量,有效减少了对原有温度场的影响,理论上的测温上限没有限制,是一种重要的温度测量手段。The radiation temperature measurement method is based on the functional relationship between the radiation intensity of the object and the temperature, which can realize the non-contact temperature measurement of the measured object, effectively reducing the influence on the original temperature field, and the theoretical upper limit of the temperature measurement is not limited, which is an important means of temperature measurement.
常见的辐射测温仪有亮度温度计、全辐射温度计和比色温度计等,这些温度计目前已在工业生产、国防、科研以及社会生活中发挥着巨大作用,但是,受制于测量对象表面发射率的精确获取,传统辐射测温方法的测量精度有待提升,尤其是对于低发射率物理的温度测量。Common radiation thermometers include luminance thermometers, total radiation thermometers, and colorimetric thermometers. These thermometers have played a huge role in industrial production, national defense, scientific research, and social life. However, they are limited by the accuracy of the surface emissivity of the measurement object. Acquisition, the measurement accuracy of the traditional radiation temperature measurement method needs to be improved, especially for the temperature measurement of low emissivity physics.
实用新型内容Utility model content
本实用新型的目的是提供一种防干扰的双波长主动式激光测温装置,以解决传统的辐射测温方法受制于被测物体表面发射率的问题。The purpose of the utility model is to provide an anti-interference dual-wavelength active laser temperature measurement device to solve the problem that the traditional radiation temperature measurement method is limited by the emissivity of the surface of the measured object.
为了实现上述目的,本实用新型提供了一种双波长主动式激光测温装置,其包括:In order to achieve the above purpose, the utility model provides a dual-wavelength active laser temperature measuring device, which includes:
第一激光发生器,其产生具有第一波长的第一激光;a first laser generator that generates a first laser light having a first wavelength;
第二激光发生器,其产生具有第二波长的第二激光;a second laser generator that generates a second laser light having a second wavelength;
激光调制器、所述激光调制器与所述第一激光发生器和第二激光发生器连接;A laser modulator, the laser modulator is connected to the first laser generator and the second laser generator;
防干扰壳体,所述防干扰壳体内设置有待测物体、反射镜以及物镜;在所述防干扰壳体上具有第一孔和第二孔;其特征在于:An anti-interference housing, the object to be measured, a reflector and an objective lens are arranged in the anti-interference housing; a first hole and a second hole are provided on the anti-interference housing; it is characterized in that:
激光从第一孔入射到所述防干扰壳体内,辐射信号从第二孔出射;在第二孔的外侧设置有第一光热效应探测器和第二光热效应探测器。Laser light enters the anti-interference housing from the first hole, and radiation signals exit from the second hole; a first photothermal effect detector and a second photothermal effect detector are arranged outside the second hole.
其中,所述第一激光发生器包括激光二极管、谐振腔、光纤耦合光学器件、激光电源、LD电流和晶体温控器。Wherein, the first laser generator includes a laser diode, a resonant cavity, a fiber-coupled optical device, a laser power supply, an LD current and a crystal temperature controller.
其中,所述第二激光发生器包括激光二极管、谐振腔、光纤耦合光学器件、激光电源、LD电流和晶体温控器。Wherein, the second laser generator includes a laser diode, a resonant cavity, a fiber-coupled optical device, a laser power supply, an LD current and a crystal temperature controller.
其中,所述激光调制器通过函数发生器输出高低电平信号直接控制激光器的供电,实现所需频率的调制功能。Wherein, the laser modulator outputs high and low level signals through the function generator to directly control the power supply of the laser, so as to realize the modulation function of the required frequency.
其中,进一步包括第一滤光片,所述第一滤光片的工作中心波长范围800~1200nm,带宽为5~20nm。Wherein, a first optical filter is further included, and the working center wavelength range of the first optical filter is 800-1200 nm, and the bandwidth is 5-20 nm.
其中,进一步包括第二滤光片,所述第二滤光片的工作中心波长范围1400~1800nm,带宽为30~50nm。Wherein, a second optical filter is further included, and the working center wavelength range of the second optical filter is 1400-1800 nm, and the bandwidth is 30-50 nm.
本实用新型提供一种防干扰的双波长主动式激光测温装置,通过设置防干扰壳体,有效摆脱了传统辐射测温方法受制于被测物体表面发射率的困境,更加便捷和准确地获取被测物理的表面真实温度,推动了辐射测温技术的发展,提高了测量的准确性。The utility model provides an anti-interference dual-wavelength active laser temperature measuring device. By setting an anti-interference housing, it effectively gets rid of the dilemma that the traditional radiation temperature measurement method is restricted by the emissivity of the surface of the measured object, and obtains more conveniently and accurately The real surface temperature of the measured object promotes the development of radiation temperature measurement technology and improves the accuracy of measurement.
本实用新型附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本实用新型的实践了解到。Additional aspects and advantages of the invention will be set forth in part in the description which follows, and will become apparent from the description, or may be learned by practice of the invention.
附图说明Description of drawings
为了更清楚地说明本实用新型实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the accompanying drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention , for those skilled in the art, other drawings can also be obtained according to these drawings on the premise of not paying creative work.
图1为本实用新型实施例的双波长主动式激光测温装置示意图。Fig. 1 is a schematic diagram of a dual-wavelength active laser temperature measuring device according to an embodiment of the present invention.
具体实施方式Detailed ways
下面详细描述本实用新型的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本实用新型,而不能解释为对本实用新型的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the accompanying drawings, wherein the same or similar reference numerals represent the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are only used to explain the present invention, and cannot be construed as limiting the present invention.
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本实用新型的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。Those skilled in the art will understand that unless otherwise stated, the singular forms "a", "an", "said" and "the" used herein may also include plural forms. It should be further understood that the word "comprising" used in the description of the present utility model refers to the presence of the stated features, integers, steps, operations, elements and/or components, but does not exclude the presence or addition of one or more other features , integers, steps, operations, elements, components, and/or groups thereof. It will be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may also be present. Additionally, "connected" or "coupled" as used herein may include wirelessly connected or coupled. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本实用新型所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。Those skilled in the art can understand that, unless otherwise defined, all terms (including technical terms and scientific terms) used herein have the same meanings as commonly understood by those of ordinary skill in the art to which the present invention belongs. It should also be understood that terms such as those defined in commonly used dictionaries should be understood to have a meaning consistent with the meaning in the context of the prior art, and unless defined as herein, are not to be interpreted in an idealized or overly formal sense explain.
为便于对本实用新型实施例的理解,下面将结合附图以具体实施例为例做进一步的解释说明。In order to facilitate the understanding of the embodiments of the present utility model, further explanations will be given below by taking specific embodiments as examples in conjunction with the accompanying drawings.
实施例Example
图1为本实用新型实施例的双波长主动式激光测温装置示意图。如图1所示,该测温装置包括:第一激光发生器1,其产生具有第一波长的第一激光;第二激光发生器2,其产生具有第二波长的第二激光;激光调制器3、所述激光调制器3与所述第一激光发生器1和第二激光发生器2连接;所述第一激光发生器1、第二激光发生器2和激光调制器3的组合作为激光光源系统,用于提供两种不同波长的激光,所述激光光源系统不局限于第一激光发生器1、第二激光发生器2和激光调制器3,还可以包括其他光学部件。Fig. 1 is a schematic diagram of a dual-wavelength active laser temperature measuring device according to an embodiment of the present invention. As shown in Figure 1, the temperature measurement device includes: a
其中,所述的第一激光发生器1优选包括激光二极管、谐振腔、光纤耦合光学器件、激光电源、LD电流和晶体温控器等,具备光纤输出功能,输出激光中心波长范围800~1200nm,输出功率8~12W,LD温度控制范围15~30℃。Among them, the
其中,所述的第二激光发生器2优选包括激光二极管、谐振腔、光纤耦合光学器件、激光电源、LD电流和晶体温控器等,具备光纤输出功能,输出激光中心波长范围1400~1800nm,输出功率8~12W,LD温度控制范围15~30℃。Wherein, the
其中,所述激光调制器3通过函数发生器输出高低电平信号直接控制激光器的供电,实现所需频率的调制功能;Wherein, the
所述第一激光发生器1发出的第一激光和所述第二激光发生器2发出的第二激光相垂直,第一激光入射到第一分光镜4的第一侧,第二激光入射到第一分光镜的第二侧,所述第一激光从所述第一分光镜透射,所述第二激光从所述第一分光镜反射;第一激光或第二激光入射到防干扰壳体15的第一孔。The first laser emitted by the
所述防干扰壳体15采用金属材料制成,所述金属材料可以起到电磁屏蔽的作用,在所述防干扰壳体15内部设置有黑漆,能够吸收被待测物体6表面杂散反射的激光信号,避免杂散激光对待测物体6表面的二次加热。所述防干扰壳体内设置有待测物体、反射镜以及物镜。所述防干扰壳体15包括第一孔和第二孔,所述第一激光或第二激光入射到防干扰壳体15的第一孔,通过反射镜5照射到待测物体6的目标面;目标表面在激光的加热下产生温升T,目标表面在一定立体角内发出的辐射能经物镜7,之后从防干扰壳体的第二孔出射,入射到第二分光镜8,温升对应的辐射信号被第二分光镜8分光,一部分从所述第二分光镜8透射,另一部分从所述第二分光镜8反射,透射的辐射信号经过第一准直透镜组9和第一滤光片10,入射到第一光热效应探测器11;从所述第二分光镜8反射的辐射信号经过第二准直透镜组12和第二滤光片13,入射到第二光热效应探测器14、所述第一光热效应探测器11和第二光热效应探测器12连接到放大器和显示仪表。The
所述第一准直透明组和第一滤光片的工作中心波长范围800~1200nm,带宽为5~20nm;其中,所述第二准直透明组和第二滤光片的工作中心波长范围1400~1800nm,带宽为30~50nm;其中,所述第一光阑9的中心口径大小可调节,用于控制第一光热效应探测器11接收到的光信号强度;其中,所述的第一光热效应探测器11和第二光热效应探测器14可将接收到的不同强度辐射能转化为相应的电信号。The working central wavelength range of the first collimating transparent group and the first optical filter is 800-1200 nm, and the bandwidth is 5-20 nm; wherein, the working central wavelength range of the second collimating transparent group and the second optical filter is 1400-1800nm, with a bandwidth of 30-50nm; wherein, the central aperture of the
所述物镜、第二分光镜、准直透镜和滤光片等组合作为成像系统,用于传递光学信号,所述成像系统不局限于上述部件,还可以包括其他光学元件;第一光热效应探测器11和第二光热效应探测器14的组合作为双波长辐射测量系统,分别将两种波长的光信号转化成热信号;放大器将来自探测器的信号进行放大;将电信号转换为温度数值;显示仪表用于显示温度测量数值。所述放大器将来自探测器的信号进行放大;单片机将电信号转换为温度数值;所述显示仪表用于显示温度测量数值。其中,所述的放大器包括低噪声放大器和锁相放大器,将探测器发出的微弱信号进行有效放大。其中,通过电路板,如单片机将所接收的电信号转换为温度数值。The combination of the objective lens, the second beam splitter, the collimating lens and the optical filter is used as an imaging system for transmitting optical signals, and the imaging system is not limited to the above components, but may also include other optical elements; the first photothermal effect detection The combination of the
采用本实用新型的测量装置进行辐射测温的具体过程包括如下步骤:The concrete process that adopts measuring device of the present invention to carry out radiation temperature measurement comprises the following steps:
首先,通过激光调制器3输出高低电平信号直接控制第一激光发生器1和第二激光发生器2的供电,第一激光发生器1开始工作,发出第一波长λ1(980nm)的激光束,经第一分光镜4、防干扰壳体15的第一孔以及反射镜5后投射到待测物体6的目标面,目标表面在激光的加热下产生温升△T1,目标表面在一定立体角内发出的辐射能经物镜、第二分光镜后到达第二准直透镜组,经第二滤光片后得到波长λ2(1550)的辐射光束,该该辐射光束照射于第二光热效应探测器14,通过第二光热效应探测器测量目标表面在激光的加热下产生的温升△T1,获得光电流Ip(λ2):First, the high and low level signals output by the
式中,R2为探测器光谱响应度函数,ε2为材料在波长λ2下的光谱发射率,Ω2为测量立体角,△λ2为测量带宽,τ2为仪器系统在波长λ2下的光谱透过率,τ1为仪器系统在波长λ1下的光谱透过率,G1(t)为与被测物体温度响应有关的系数,P1为激光功率,ρ1为仪器系统在波长λ1下的光谱反射率,L0(λ2,T)为温度为T的黑体在波长λ2下的光谱辐射亮度。In the formula, R 2 is the spectral responsivity function of the detector, ε 2 is the spectral emissivity of the material at the wavelength λ 2 , Ω 2 is the measurement solid angle, △λ 2 is the measurement bandwidth, τ 2 is the instrument system at the wavelength λ 2 τ 1 is the spectral transmittance of the instrument system at wavelength λ 1 , G 1 (t) is the coefficient related to the temperature response of the measured object, P 1 is the laser power, ρ 1 is the instrument system Spectral reflectance at wavelength λ 1 , L 0 (λ 2 ,T) is the spectral radiance of a blackbody at temperature T at wavelength λ 2 .
对于半无限大不透明物体,有For semi-infinite opaque objects, we have
式中,K为导热系数,D为热扩散系数,ω为激光调制频率。In the formula, K is the thermal conductivity, D is the thermal diffusivity, and ω is the laser modulation frequency.
同样,通过激光调制器3控制第二激光发射器发出第二波长λ2(1550nm)的激光束,经第一分光镜4和反射镜5后投射到待测物体6的目标面,目标表面在激光的加热下产生温升△T2,目标表面在一定立体角内发出的辐射能经物镜、第二分光镜到达第一准直透镜组,经第一滤光片后得到波长λ1(980)的辐射光束,该该辐射光束照射于第一光热效应探测器11,通过第一光热效应探测器11测量目标表面在激光的加热下产生的温升△T2,获得光电流Ip(λ1):Similarly, the second laser transmitter is controlled by the
将式(1)和式(3)相除,结合维恩定律,可消除被测目标发射率的影响:Dividing formula (1) and formula (3) together with Wien's law can eliminate the influence of the emissivity of the measured target:
式中,CALP为仪器固有常数,c2为第二辐射常数。In the formula, C ALP is the intrinsic constant of the instrument, and c 2 is the second radiation constant.
由式(4)可知,通过设计表面温度已知的定标系统实现仪器固有常数的高精度定标。因此,在开展目标面的温度测量时,通过Ip(λ2)和Ip(λ1)的测量值即可换算得到被测目标表面温度。在测量得到Ip(λ2)和Ip(λ1)后,利用放大器将电信号进行放大并传输至单片机,将电信号转化成温度数值并利用显示仪表将该数值进行显示。It can be seen from formula (4) that the high-precision calibration of the intrinsic constants of the instrument can be achieved by designing a calibration system with known surface temperature. Therefore, when carrying out the temperature measurement of the target surface, the measured value of I p (λ 2 ) and I p (λ 1 ) can be converted to obtain the surface temperature of the measured target. After measuring I p (λ 2 ) and I p (λ 1 ), the electrical signal is amplified by an amplifier and transmitted to a single-chip microcomputer, and the electrical signal is converted into a temperature value and displayed by a display instrument.
由上述本实用新型的一种基于光热效应的双波长主动式激光测温装置的技术方案可以看出,本实用新型的系统核心组成部分为:激光光源系统、成像系统和双波长辐射测量系统。通过激光光源系统和双波长辐射测量系统的协同工作,可在物体表面发射率未知的条件下实现表面温度的精确测量,防干扰壳体的设置,提高了测量的准确度。It can be seen from the above-mentioned technical scheme of a dual-wavelength active laser temperature measuring device based on photothermal effect of the present invention that the core components of the system of the present invention are: laser light source system, imaging system and dual-wavelength radiation measurement system. Through the cooperative work of the laser light source system and the dual-wavelength radiation measurement system, the precise measurement of the surface temperature can be realized under the condition that the surface emissivity of the object is unknown, and the setting of the anti-interference shell improves the accuracy of the measurement.
本实用新型提供一种基于光热效应的双波长主动式激光测温装置,使得开展辐射测温时不需要事先已知被测物体表面发射率,有效摆脱了传统辐射测温方法受制于被测物体表面发射率的困境,更加便捷和准确地获取被测物理的表面真实温度,推动了辐射测温技术的发展。The utility model provides a dual-wavelength active laser temperature measurement device based on the photothermal effect, so that the surface emissivity of the measured object does not need to be known in advance when carrying out radiation temperature measurement, effectively getting rid of the traditional radiation temperature measurement method being restricted by the measured object The dilemma of surface emissivity and the more convenient and accurate acquisition of the real surface temperature of the measured object have promoted the development of radiation temperature measurement technology.
本领域技术人员应能理解上述的应用类型仅为举例,其他现有的或今后可能出现的应用类型如可适用于本实用新型实施例,也应包含在本实用新型保护范围以内,并在此以引用方式包含于此。Those skilled in the art should be able to understand that the above-mentioned application types are only examples, and other existing or future application types, if applicable to the embodiments of the present utility model, should also be included in the protection scope of the present utility model, and hereby Included herein by reference.
本领域技术人员应能理解,图1仅为简明起见而示出的各类元件的数量可能小于一个实际系统中的数量,但这种省略无疑是以不会影响对实用新型实施例进行清楚、充分的公开为前提的。Those skilled in the art should be able to understand that the number of various elements shown in Figure 1 may be less than the number in an actual system for the sake of simplicity, but this omission is undoubtedly so as not to affect the clarity of the utility model embodiment. full disclosure.
以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应该以权利要求的保护范围为准。The above is only a preferred embodiment of the utility model, but the scope of protection of the utility model is not limited thereto, and any person familiar with the technical field can easily think of All changes or replacements should fall within the protection scope of the present utility model. Therefore, the protection scope of the present utility model should be based on the protection scope of the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220908519.XU CN219038211U (en) | 2022-04-19 | 2022-04-19 | Anti-interference dual-wavelength active laser temperature measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220908519.XU CN219038211U (en) | 2022-04-19 | 2022-04-19 | Anti-interference dual-wavelength active laser temperature measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN219038211U true CN219038211U (en) | 2023-05-16 |
Family
ID=86285026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220908519.XU Active CN219038211U (en) | 2022-04-19 | 2022-04-19 | Anti-interference dual-wavelength active laser temperature measuring device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN219038211U (en) |
-
2022
- 2022-04-19 CN CN202220908519.XU patent/CN219038211U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2740206B2 (en) | Thermal radiation type low temperature measuring instrument | |
CN102564610A (en) | Energy method-based high-temperature radiation rate measuring device of semi-transparent material and revising method for deducting background radiation | |
CN102353454A (en) | Optical infrared radiation high-temperature calibrating device and self-calibrating method thereof | |
US6682216B1 (en) | Single-fiber multi-color pyrometry | |
CN108279218A (en) | The long light path gas-detecting device of light intensity is compensated using erbium-doped fiber amplifier | |
CN205015147U (en) | A integrated test system for semiconductor laser chamber face failure analysis | |
CN103674250A (en) | High-accuracy middle-infrared-band absolute spectral responsivity calibrating device | |
CA2028352A1 (en) | High temperature sensor | |
CN219038211U (en) | Anti-interference dual-wavelength active laser temperature measuring device | |
CN201892585U (en) | Non-contact dot temperature measurement instrument | |
CN112013988B (en) | A dual-wavelength laser temperature measurement device based on optical fiber transmission signal | |
CN114563089A (en) | Standard transfer infrared detector calibration system based on blackbody radiation spectrum | |
CN211717618U (en) | High-power laser power meter | |
CN212133888U (en) | Color CCD self-calibration temperature measuring device based on radiation spectrum | |
CN111879413A (en) | Dual-wavelength active laser temperature measuring device based on photothermal effect | |
Sapritskii | A new standard for the candela in the USSR | |
CN212721824U (en) | Dual-wavelength laser temperature measuring device based on optical fiber transmission signals | |
US2690511A (en) | Comparative emission pyrometer | |
CN116046182A (en) | A Spectroradiometer Absolute Radiation Calibration Device Based on High Temperature Blackbody | |
CN117686115A (en) | Dual-wavelength temperature measurement method and device based on induced laser reflection | |
CN104089704B (en) | Semiconductive thin film reaction chamber auxiliary temperature calibration steps | |
CN208953128U (en) | Myriawatt power meter | |
CN102692283B (en) | Method for measuring multi-FBG (fiber bragg grating) colorimetric transient temperature | |
CN217605130U (en) | Device suitable for measuring radiation intensity of parts at different angles | |
Small IV et al. | Two-color infrared thermometer for low-temperature measurement using a hollow glass optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |