CN218824680U - Laser radar's coaxial light path structure and laser radar - Google Patents
Laser radar's coaxial light path structure and laser radar Download PDFInfo
- Publication number
- CN218824680U CN218824680U CN202222846716.6U CN202222846716U CN218824680U CN 218824680 U CN218824680 U CN 218824680U CN 202222846716 U CN202222846716 U CN 202222846716U CN 218824680 U CN218824680 U CN 218824680U
- Authority
- CN
- China
- Prior art keywords
- laser
- mirror
- reflector
- path structure
- optical path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 63
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
Abstract
本实用新型实施例提供了一种激光雷达的同轴光路结构及激光雷达,激光雷达的同轴光路结构包括激光发射器、激光探测器、第一反射镜、第二反射镜和振镜;第二反射镜能够转动设置,第二反射镜位于振镜的一侧,第二反射镜的反射面朝向振镜的反射面,第二反射镜的转动轴线与振镜形成的扫描面平行;激光发射器、第一反射镜、振镜沿着激光发射器的光轴依次设置,第一反射镜的反射面朝向振镜的反射面,第一反射镜对应激光发射器设置有穿孔;激光探测器位于第一反射镜的一侧,激光探测器朝向第一反射镜的反射面。该激光雷达的同轴光路结构的结构简单、可靠,既能够提高激光雷达的测量性能,并且具有成本低廉的优点。
The embodiment of the utility model provides a laser radar coaxial optical path structure and a laser radar. The laser radar coaxial optical path structure includes a laser emitter, a laser detector, a first reflector, a second reflector and a vibrating mirror; The two reflectors can be rotated, the second reflector is located on one side of the oscillating mirror, the reflecting surface of the second reflecting mirror faces the reflecting surface of the oscillating mirror, and the rotation axis of the second reflecting mirror is parallel to the scanning surface formed by the oscillating mirror; The device, the first reflector, and the oscillating mirror are sequentially arranged along the optical axis of the laser emitter, the reflective surface of the first reflector faces the reflective surface of the galvanometer, and the first reflector is provided with a perforation corresponding to the laser emitter; the laser detector is located at On one side of the first reflector, the laser detector faces the reflective surface of the first reflector. The coaxial optical path structure of the laser radar has a simple and reliable structure, can not only improve the measurement performance of the laser radar, but also has the advantage of low cost.
Description
技术领域technical field
本实用新型涉及激光探测技术领域,特别涉及一种激光雷达的同轴光路结构及激光雷达。The utility model relates to the technical field of laser detection, in particular to a laser radar coaxial light path structure and the laser radar.
背景技术Background technique
近年来,随着市场的需求,激光雷达的应用越来越广,其发展也趋向于多样化。常规的激光雷达多为多线式扫描激光雷达,如机械式扫描雷达,内部设置多个发射模组和多个接受模组,发射模组和接受模组一一对应,以实现激光的发射和接收,通常为了提高激光雷达的测距精度和测距范围,通常通过增加发射、接收模组的方式,但增加了雷达性能的同时也提升了激光雷达自身的成本和复杂性,这不利于激光雷达的市场推广普及。In recent years, with the demand of the market, the application of lidar has become more and more extensive, and its development has also tended to be diversified. Conventional laser radars are mostly multi-line scanning laser radars, such as mechanical scanning radars. There are multiple transmitting modules and multiple receiving modules inside, and the transmitting modules and receiving modules correspond one-to-one to realize laser emission and Receiving, usually in order to improve the ranging accuracy and ranging range of the laser radar, usually by increasing the transmitting and receiving modules, but increasing the radar performance also increases the cost and complexity of the laser radar itself, which is not conducive to laser radar Radar marketing popularization.
实用新型内容Utility model content
本实用新型实施例提供了一种激光雷达的同轴光路结构及激光雷达,旨在设计一种结构简单的同轴光路结构,不但能够提供激光雷达的测量性能,并且能够降低激光雷达的制造成本。The embodiment of the utility model provides a laser radar coaxial optical path structure and a laser radar, aiming to design a coaxial optical path structure with a simple structure, which can not only provide the measurement performance of the laser radar, but also reduce the manufacturing cost of the laser radar .
本实用新型提供一种激光雷达的同轴光路结构,包括激光发射器、激光探测器、第一反射镜、第二反射镜和振镜;The utility model provides a laser radar coaxial optical path structure, which includes a laser emitter, a laser detector, a first reflector, a second reflector and a vibrating mirror;
所述第二反射镜能够转动设置,所述第二反射镜位于所述振镜的一侧,所述第二反射镜的反射面朝向所述振镜的反射面,所述第二反射镜的转动轴线与所述振镜形成的扫描面平行;The second reflecting mirror can be rotatably arranged, the second reflecting mirror is located on one side of the vibrating mirror, the reflecting surface of the second reflecting mirror faces the reflecting surface of the vibrating mirror, and the reflecting surface of the second reflecting mirror The rotation axis is parallel to the scanning plane formed by the vibrating mirror;
所述激光发射器、所述第一反射镜、所述振镜沿着所述激光发射器的光轴依次设置,所述第一反射镜的反射面朝向所述振镜的反射面,所述第一反射镜对应所述激光发射器设置有穿孔,以让所述激光发射器的激光光束能够自所述穿孔处穿过所述第一反射镜后,依次经所述振镜、所述第二反射镜反射后射出;The laser emitter, the first reflecting mirror, and the vibrating mirror are sequentially arranged along the optical axis of the laser emitting emitter, the reflecting surface of the first reflecting mirror faces the reflecting surface of the vibrating mirror, and the The first reflecting mirror is provided with a perforation corresponding to the laser transmitter, so that the laser beam of the laser transmitter can pass through the first reflecting mirror from the perforation, and then pass through the vibrating mirror, the second The two mirrors are reflected and emitted;
所述激光探测器位于所述第一反射镜的一侧,所述激光探测器朝向所述第一反射镜的反射面,以让所述激光探测器能够接收到依次经所述第二反射镜、所述振镜、所述第一反射镜反射的激光回波。The laser detector is located on one side of the first reflector, and the laser detector faces the reflective surface of the first reflector, so that the laser detector can receive , the laser echo reflected by the vibrating mirror and the first reflecting mirror.
在本实用新型的技术方案中,激光发射器的激光光束经振镜的扫描作用形成扫描面,再转动的第二反射镜的扫描作用,实现三维扫描的效果,该激光雷达的同轴光路结构的结构简单、可靠,既能够提高激光雷达的测量性能,并且具有成本低廉的优点。In the technical scheme of the utility model, the laser beam of the laser emitter forms a scanning surface through the scanning action of the vibrating mirror, and then the scanning action of the second rotating mirror realizes the effect of three-dimensional scanning. The coaxial optical path structure of the laser radar The structure is simple and reliable, which can not only improve the measurement performance of the laser radar, but also has the advantage of low cost.
在一具体实施例中,所述第二反射镜与所述激光探测器分别位于所述振镜在垂直于所述激光发射器的光轴的方向上的两侧。In a specific embodiment, the second reflecting mirror and the laser detector are respectively located on two sides of the vibrating mirror in a direction perpendicular to the optical axis of the laser emitter.
在一具体实施例中,所述第一反射镜和所述第二反射镜均相对于所述激光发射器的光轴呈45°倾斜设置。In a specific embodiment, both the first reflector and the second reflector are arranged at an inclination of 45° relative to the optical axis of the laser emitter.
在一具体实施例中,所述激光发射器的光轴垂直于所述激光探测器的光轴。In a specific embodiment, the optical axis of the laser emitter is perpendicular to the optical axis of the laser detector.
在一具体实施例中,所述激光雷达的同轴光路结构还包括接收平凸镜,所述接收平凸镜设置于所述激光探测器与所述第一反射镜之间。In a specific embodiment, the coaxial optical path structure of the lidar further includes a receiving plano-convex mirror, and the receiving plano-convex mirror is arranged between the laser detector and the first reflector.
在一具体实施例中,其特征在于,所述激光雷达的同轴光路结构还包括准直筒,所述准直筒位于所述激光发射器与所述第一反射镜之间,所述准直筒内设置有发射平凸镜,所述准直筒的一端与所述第一反射镜连接。In a specific embodiment, it is characterized in that the coaxial optical path structure of the lidar further includes a collimating cylinder, the collimating cylinder is located between the laser emitter and the first reflector, and the collimating cylinder An emitting plano-convex mirror is provided, and one end of the collimating cylinder is connected with the first reflecting mirror.
在一具体实施例中,所述准直筒靠近所述第一反射镜的一端设置有与所述第一反射镜形状相适配的斜面,所述斜面与所述穿孔靠近所述准直筒的孔缘粘接。In a specific embodiment, the end of the collimating cylinder close to the first reflector is provided with a slope matching the shape of the first reflector, and the slope and the through hole close to the hole of the collimating cylinder edge bonding.
在一具体实施例中,其特征在于,所述激光雷达的同轴光路结构还包括电机组件,所述电机组件与所述第二反射镜动力耦合连接,所述电机组件用于驱动所述第二反射镜转动。In a specific embodiment, it is characterized in that the coaxial optical path structure of the lidar further includes a motor assembly, the motor assembly is dynamically coupled with the second mirror, and the motor assembly is used to drive the first The two mirrors rotate.
在一具体实施例中,所述振镜为一维振镜。In a specific embodiment, the vibrating mirror is a one-dimensional vibrating mirror.
在一具体实施例中,所述振镜的中心位于所述第二反射镜的转动轴线上。In a specific embodiment, the center of the vibrating mirror is located on the rotation axis of the second reflecting mirror.
本实用新型还提供一种激光雷达,包括如上所述的激光雷达的同轴光路结构。The utility model also provides a laser radar, including the above-mentioned coaxial optical path structure of the laser radar.
附图说明Description of drawings
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are only some embodiments of the utility model, and those skilled in the art can also obtain other drawings according to these drawings without any creative effort.
图1为本实用新型实施例提供的一种激光雷达的同轴光路结构的结构示意图。FIG. 1 is a schematic structural diagram of a laser radar coaxial optical path structure provided by an embodiment of the present invention.
附图标号说明:激光雷达的同轴光路结构100、激光发射器1、激光探测器2、第一反射镜3、第二反射镜4、振镜5、接收平凸镜6、准直筒7、发射平凸镜8、电机组件9。Explanation of reference numerals: coaxial
具体实施方式Detailed ways
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. Example. Based on the embodiments of the present utility model, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of the present utility model.
需要说明,若本实用新型实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。It should be noted that if there is a directional indication (such as up, down, left, right, front, back...) in the embodiment of the present utility model, the directional indication is only used to explain the position in a certain posture (as shown in the accompanying drawing). If the relative positional relationship, movement conditions, etc. between the components shown in the figure below are changed, if the specific posture changes, the directional indication will also change accordingly.
另外,若本实用新型实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本实用新型要求的保护范围之内。In addition, if there are descriptions involving "first", "second", etc. in the embodiments of the present utility model, the descriptions of "first", "second", etc. Implying their relative importance or implying the number of technical features indicated. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In addition, the meaning of "and/or" appearing in the whole text includes three parallel schemes, taking "A and/or B" as an example, including scheme A, scheme B, or schemes that both A and B satisfy. In addition, the technical solutions of the various embodiments can be combined with each other, but it must be based on the realization of those skilled in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that the combination of technical solutions does not exist , also not within the scope of protection required by the utility model.
本实用新型提供了一种激光雷达的同轴光路结构,该激光雷达的同轴光路结构能够运用于激光雷达等激光扫描设备中,图1为本实用新型提供的激光雷达的同轴光路结构运用于激光雷达的一实施例。The utility model provides a laser radar coaxial optical path structure, the laser radar coaxial optical path structure can be used in laser scanning equipment such as laser radar, Fig. 1 is the application of the coaxial optical path structure of the laser radar provided by the utility model An embodiment of lidar.
请参阅图1,在本实施例中,该激光雷达的同轴光路结构100包括激光发射器1、激光探测器2、第一反射镜3、第二反射镜4和振镜5,第二反射镜4能够转动设置,第二反射镜4位于振镜5的一侧,第二反射镜4的反射面朝向振镜5的反射面,第二反射镜4的转动轴线与振镜5形成的扫描面平行;激光发射器1、第一反射镜3、振镜5沿着激光发射器1的光轴依次设置,第一反射镜3的反射面朝向振镜5的反射面,第一反射镜3对应激光发射器1设置有穿孔,以让激光发射器1的激光光束能够自穿孔处穿过第一反射镜3后,依次经振镜5、第二反射镜4反射后射出;激光探测器2位于第一反射镜3的一侧,激光探测器2朝向第一反射镜3的反射面,以让激光探测器2能够接收到依次经第二反射镜4、振镜5、第一反射镜3反射的激光回波。Please refer to Fig. 1, in this embodiment, the coaxial
具体而言,激光雷达的同轴光路结构100形成有激光发射回路和激光接收回路,激光发射回路与激光接收回路部分重叠,从而形成同轴光路结构。Specifically, the coaxial
激光发射器1、第一反射镜3、振镜5、第二反射镜4沿着激光发射回路依次布置,激光发射器1位于激光发射回路的始端,激光发射器1用于产生激光光束。可选地,在本实施例中,激光发射器1为半导体激光器。The laser emitter 1, the
下面定义第二反射镜4的转动轴线所在的方向为上下向,那么振镜5能够绕着水平向的轴线振动。激光发射器1产生的激光光束能够自穿孔处穿过第一反射镜3,激光光束穿过第一反射镜3后投射到振镜5的反射面上,激光光束经过振镜5的振动反射,能够投射到第二反射镜4的反射面上,并实现垂直扫描而形成激光雷达的垂直视场,投射到第二反射镜4的反射面上的激光光束经过第二反射镜4的转动反射,能够实现水平360°扫描而形成激光雷达的水平视场。In the following, it is defined that the direction of the rotation axis of the
第二反射镜4、振镜5、第一反射镜3、激光探测器2沿着激光接收回路依次布置,激光探测器2位于激光发射回路的末端,激光探测器2用于接收被反射回来的激光回波,由此可见,第一反射镜3、第二反射镜4、振镜5位于激光发射回路与激光接收回路部分重叠上。可选地,在本实施例中,激光探测器2为雪崩光电二极管。The
可选地,请参阅图1,在本实施例中,激光雷达的同轴光路结构100还包括准直筒7,准直筒7位于激光发射器1与第一反射镜3之间,准直筒7内设置有发射平凸镜8,准直筒7的一端与第一反射镜3连接。Optionally, please refer to FIG. 1. In this embodiment, the coaxial
具体而言,准直筒7、发射平凸镜8位于激光发射回路上,并且位于激光发射器1与第一反射镜3之间。准直筒7、发射平凸镜8用于将激光发射器1发射出的激光光束准直成平行光束,将发射出来的光全部汇聚到后面的激光发射回路中。Specifically, the
激光发射器1的发射端通常是伸入准直筒7中,准直筒7的内径大于激光发射器1的发射端的直径,确保激光发射器1的发射端能够伸入准直筒7中,并且激光发射器1还能够上下移动调整和沿着激光发射器1的光轴方向移动调整。通过准直筒7内部的发射平凸镜8能够将激光发射器1发射的光信号准直成平行光束,由于准直筒7的内径大于激光发射器1的发射端的直径,可方便调整激光发射器1在准直筒7内的位置,确保激光发射器1发射出来的光信号通过发射平凸镜8后能量最强后,将激光发射器1与准直筒7进行固定。The emitting end of the laser emitter 1 usually extends into the
准直筒7远离激光发射器1的一端与第一反射镜3相连,可选地,请参阅图1,在本实施例中,准直筒7靠近第一反射镜3的一端设置有与第一反射镜3形状相适配的斜面,斜面与穿孔靠近准直筒7的孔缘粘接。One end of the
具体而言,穿孔位于第一反射镜3的中部,穿孔的孔径大于准直筒7的内径,并且穿孔的孔径小于准直筒7的外径,从而使得准直筒7远离激光发射器1的一端与穿孔靠近准直筒7的孔缘粘接能够进行粘接。准直筒7靠近第一反射镜3的一端与第一反射镜3呈相同角度倾斜设置,例如,请参阅图1,在本实施例中,准直筒7靠近第一反射镜3的一端与第一反射镜3呈45°角设计。Specifically, the perforation is located in the middle of the
可选地,请参阅图1,在本实施例中,第一反射镜3相对于激光发射器1的光轴呈45°倾斜设置。Optionally, please refer to FIG. 1 , in this embodiment, the
具体而言,第一反射镜3用于改变激光接收回路的激光回波的传播角度,第一反射镜3与振镜5形成的扫描面垂直,并且第一反射镜3相对于水平面45°倾角。第一反射镜3的中心设置有穿孔,穿孔可供准直筒7穿过,第一反射镜3的中心轴与激光发射器1、准直筒7的中心轴处于同一水平面。Specifically, the
可选地,请参阅图1,在本实施例中,振镜5为一维振镜。Optionally, referring to FIG. 1 , in this embodiment, the vibrating mirror 5 is a one-dimensional vibrating mirror.
可选地,请参阅图1,在本实施例中,振镜5的中心位于第二反射镜4的转动轴线上。Optionally, referring to FIG. 1 , in this embodiment, the center of the vibrating mirror 5 is located on the rotation axis of the second reflecting
具体而言,振镜5位于激光发射回路上,对经过准直筒7校准的激光光束进行反射,调节激光光束的垂直角度,使得激光光束能够在竖直面呈一定角度扫描反射激光光束。Specifically, the vibrating mirror 5 is located on the laser emitting circuit, reflects the laser beam calibrated by the
可选地,请参阅图1,在本实施例中,激光雷达的同轴光路结构100还包括电机组件9,电机组件9与第二反射镜4动力耦合连接,电机组件9用于驱动第二反射镜4转动。电机组件9用于驱动第二反射镜4水平旋转,使得经由振镜5反射的激光光束能够在进行360°水平旋转扫描。同时将接收到的激光回波反射到激光接收回路中。Optionally, please refer to FIG. 1. In this embodiment, the coaxial
第二反射镜4用于将发射出来的激光反射于外界进行物体探测,同时将外界反射回来的激光回波反射回激光接收回路中。可选地,请参阅图1,在本实施例中,第二反射镜4相对于激光发射器1的光轴呈45°倾斜设置。The
可选地,请参阅图1,在本实施例中,第二反射镜4与激光探测器2分别位于振镜5在垂直于激光发射器1的光轴的方向上的两侧。第二反射镜4位于振镜5的上方,而激光探测器2位于振镜5的下方。Optionally, please refer to FIG. 1 , in this embodiment, the
可选地,请参阅图1,在本实施例中,激光发射器1的光轴垂直于激光探测器2的光轴。激光发射器1的光轴所在的方向为水平向,而激光探测器2的光轴所在的方向为上下向,激光探测器2位于激光发射器1的下方,并且激光探测器2朝上设置。Optionally, referring to FIG. 1 , in this embodiment, the optical axis of the laser emitter 1 is perpendicular to the optical axis of the laser detector 2 . The direction of the optical axis of the laser emitter 1 is horizontal, and the direction of the optical axis of the laser detector 2 is up and down, the laser detector 2 is located below the laser emitter 1, and the laser detector 2 is set upward.
可选地,请参阅图1,在本实施例中,激光雷达的同轴光路结构100还包括接收平凸镜6,接收平凸镜6设置于激光探测器2与第一反射镜3之间。Optionally, please refer to FIG. 1. In this embodiment, the coaxial
具体而言,接收平凸镜6位于第一反射镜3的正下方,接收平凸镜6用于对经由第一反射镜3反射的激光回波进行聚焦,以使被聚焦后的激光回波被激光探测器2接收。Specifically, the receiving plano-
第一反射镜3、接收平凸镜6、激光探测器2沿着一条竖直线布置,以使激光接收回路接收到的激光回波能够尽可能的聚焦到激光探测器2上。The first reflecting
接收平凸镜6与激光探测器2之间的距离可在二者中心竖直线上下平移灵活调整,使得接收平凸镜6聚集激光回波的焦点正好位于激光探测器2上。The distance between the receiving plano-
振镜5位于第一反射镜3与第二反射镜4中轴线交界处,使得振镜5能够将激光发射回路和激光接收回路的激光反射,同时由于振镜5的特性,能够在竖直面内呈一定角度反射激光光束,使得激光光束能够在一个角度范围内扫描发射。振镜5的尺寸大小应与结合实际发射经过准直的光斑大小和接收的激光回波来确定。The vibrating mirror 5 is located at the intersection of the central axis of the first reflecting
电机组件9上的第二反射镜4位于振镜5的正上方,其大小应该确保振镜5反射过来的激光光束全部落在第二反射镜4上反射出去。The second reflecting
接收平凸镜6位于第一反射镜3的正下方,接收来自第一反射镜3反射的激光回波,经过接收平凸镜6将接收的激光回波聚焦发射到正下方的激光探测器2上。特别注意的,接收平凸镜6的面积应该大于或等于第一反射镜3向下的投影面积,这是要确保反射回来的激光回波能够全部照射到接收平凸镜6上。同时,第一反射镜3、接收平凸镜6和激光探测器2的中心在一条中轴线上,接收平凸镜6和激光探测器2之间的间隔距离可灵活调整,使得接收的激光回波焦点在激光探测器2上。The receiving plano-
激光雷达的同轴光路结构100的工作原理可以如下:The working principle of the coaxial
1、激光发射,激光发射器1产生控制信号,控制激光发射器1上的LD单元发射激光信号,激光信号经由准直筒7,通过准直筒7内部的发射平凸镜8将发射的激光信号准直成平行光束,自穿孔处通过45°角第一反射镜3的激光信号投射到振镜5上,上电工作的振镜5将收到的激光光束按照一定的角度垂直扫描反射给第二反射镜4,接着通过45°的第二反射镜4将激光光束反射出去进行探测物体,同时,通过电机组件9带动45°角第二反射镜4成360°水平旋转,相应的光信号也随着第二反射镜4旋转不断的发射激光信号,于是形成了在竖直面内能呈一定角度扫描,在水平面内360°扫描发射;1. Laser emission. The laser transmitter 1 generates a control signal to control the LD unit on the laser transmitter 1 to emit a laser signal. The laser signal passes through the
2、激光接收,发射的激光信号探测到物体反射回来,经过45°角第二反射镜4偏转90°角,接着到振镜5上,借由振镜5反射到第一反射镜3上,然后由第一反射镜3反射激光光束进入到接收平凸镜6上,将反射回来的激光信号准直聚焦在激光探测器2上,产生回波信号,再转到激光雷达后续的数据处理中,完成一次信号的接收。2. Laser reception, the emitted laser signal is detected and reflected back by the object, deflected by the
激光雷达的同轴光路结构100包含激光发射回路和激光接收回路,与多发射、多接收的机械式扫描雷达相比,在增加了激光雷达测距范围的基础上,相对成本较为低廉,结构较为简单,且便于初期的安装调试和后期的维护The coaxial
在本实用新型的技术方案中,激光发射器1的激光光束经振镜5的扫描作用形成扫描面,再转动的第二反射镜4的扫描作用,实现三维扫描的效果,该激光雷达的同轴光路结构100的结构简单、可靠,既能够提高激光雷达的测量性能,并且具有成本低廉的优点。In the technical scheme of the utility model, the laser beam of the laser emitter 1 forms a scanning surface through the scanning action of the vibrating mirror 5, and then the scanning action of the rotating
本实用新型提供了一种激光雷达,该激光雷达包括激光雷达的同轴光路结构和激光测距装置,由于该激光雷达的同轴光路结构采用了上述实施例的技术方案,因此具有上述实施例的技术方案所带来的有益效果。The utility model provides a laser radar, which includes a coaxial optical path structure of the laser radar and a laser distance measuring device. Since the coaxial optical path structure of the laser radar adopts the technical scheme of the above-mentioned embodiment, it has the above-mentioned embodiment The beneficial effect brought by the technical solution.
以上所述仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是在本实用新型的构思下,利用本实用新型说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本实用新型的专利保护范围内。The above are only preferred embodiments of the present utility model, and are not therefore limiting the patent scope of the present utility model. Under the conception of the present utility model, the equivalent structural transformations made by using the specification of the utility model and the contents of the accompanying drawings, or directly /Indirect application in other related technical fields is included in the patent protection scope of the present utility model.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202222846716.6U CN218824680U (en) | 2022-10-27 | 2022-10-27 | Laser radar's coaxial light path structure and laser radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202222846716.6U CN218824680U (en) | 2022-10-27 | 2022-10-27 | Laser radar's coaxial light path structure and laser radar |
Publications (1)
Publication Number | Publication Date |
---|---|
CN218824680U true CN218824680U (en) | 2023-04-07 |
Family
ID=87253064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202222846716.6U Active CN218824680U (en) | 2022-10-27 | 2022-10-27 | Laser radar's coaxial light path structure and laser radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN218824680U (en) |
-
2022
- 2022-10-27 CN CN202222846716.6U patent/CN218824680U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN214795200U (en) | Window for laser radar and laser radar | |
CN108445467B (en) | Scanning laser radar system | |
CN110133620B (en) | Multi-line laser radar | |
CN106291510A (en) | A kind of laser radar optical system based on time flight method | |
CN109975783B (en) | Laser radar | |
CN112219130B (en) | a distance measuring device | |
CN108710134A (en) | Two-dimensional scanning laser range radar based on receiving and transmitting combined lens | |
CN110231606A (en) | Laser scanning device and laser radar apparatus including it | |
CN109239693A (en) | Receive and dispatch road scanning laser radar altogether | |
CN211236225U (en) | Large-view-field laser radar optical-mechanical system | |
CN107102312A (en) | Laser scanning measurement instrument | |
CN111060891A (en) | Laser radar | |
CN111766588A (en) | Panoramic laser radar | |
CN216748070U (en) | Light path structure and laser radar | |
CN218824680U (en) | Laser radar's coaxial light path structure and laser radar | |
US20220146638A1 (en) | Multi-point scanning lidar and detection method thereof | |
CN114563773B (en) | LiDAR that reduces blind spots | |
CN207937606U (en) | A kind of laser radar apparatus | |
CN108387904B (en) | Laser radar device | |
CN113030913A (en) | Laser radar device and system based on two-dimensional galvanometer | |
CN218003712U (en) | Laser transmitting and receiving module and single-line laser scanning radar | |
CN116009009B (en) | TOF laser measurement system, laser emission and receiving module and laser radar | |
CN221782446U (en) | A coaxial laser radar | |
CN219201926U (en) | Laser measurement system and mechanical rotary laser radar | |
CN108761421A (en) | A kind of solid-state laser radar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |