CN217557217U - Checkerboard Tuned Mass Damper Mounts - Google Patents
Checkerboard Tuned Mass Damper Mounts Download PDFInfo
- Publication number
- CN217557217U CN217557217U CN202221608014.8U CN202221608014U CN217557217U CN 217557217 U CN217557217 U CN 217557217U CN 202221608014 U CN202221608014 U CN 202221608014U CN 217557217 U CN217557217 U CN 217557217U
- Authority
- CN
- China
- Prior art keywords
- flange plate
- lower flange
- tuned mass
- sma
- upper flange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 abstract description 9
- 230000003993 interaction Effects 0.000 abstract description 3
- 238000005096 rolling process Methods 0.000 abstract description 2
- 229910001285 shape-memory alloy Inorganic materials 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Images
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及棋盘式调谐质量阻尼器支座,属于工程减震技术领域。The utility model relates to a checkerboard-type tuned mass damper support, which belongs to the technical field of engineering shock absorption.
背景技术Background technique
调谐质量阻尼器(TMD)是一种有效的结构振动控制装置。在主结构中增设TMD子系统时,将TMD的自振频率调节至主结构的自振频率附近,当主结构受到外部动力作用时,TMD中的质量块会对主结构施加一个反方向的惯性力以抑制主结构的振动,并通过TMD中的阻尼装置耗散能量。A tuned mass damper (TMD) is an effective structural vibration control device. When the TMD subsystem is added to the main structure, the natural frequency of the TMD is adjusted to be close to the natural frequency of the main structure. When the main structure is subjected to external power, the mass in the TMD will exert an inertial force in the opposite direction to the main structure. to damp the vibration of the main structure and dissipate the energy through the damping device in the TMD.
目前TMD的安装方式主要为悬吊式与支撑式,悬吊式是将质量块悬吊在主结构上,并将弹簧和阻尼器系统设置在悬吊的质量块与主结构之间,为了保证TMD在水平方向的运动行程,悬吊的绳索需要具有一定的长度,占用较大的竖向空间。At present, the installation methods of TMD are mainly suspension type and support type. The suspension type is to suspend the mass block on the main structure, and set the spring and damper system between the suspended mass block and the main structure. For the movement stroke of TMD in the horizontal direction, the suspended rope needs to have a certain length, which occupies a large vertical space.
支撑式是将质量块通过活动支座支撑在主结构上,但是当外部激励的卓越周期与主结构的自振周期接近时,易使主结构发生共振,主结构的动力响应显著增大,TMD的行程也显著增大,极有可能超出普通支座的位移限值。若限制TMD的行程大小,则会影响TMD对结构振动控制的有效性。鉴于此,许多学者已经致力于探索一些更为有效的方法,以保证TMD在水平方向的行程。The support type is to support the mass block on the main structure through the movable support, but when the excellent period of the external excitation is close to the natural vibration period of the main structure, it is easy to cause the main structure to resonate, and the dynamic response of the main structure increases significantly, TMD The stroke is also significantly increased, and it is very likely that the displacement limit of the ordinary bearing will be exceeded. If the stroke size of TMD is limited, it will affect the effectiveness of TMD on structural vibration control. In view of this, many scholars have devoted themselves to exploring some more effective methods to ensure the travel of TMD in the horizontal direction.
调谐质量阻尼器(TMD)减振技术以其对原结构改动小、施工简单、减振效果显著等特点而广受重视,并在国内外土木工程中得到广泛应用。为了控制结构的水平向振动,通常采用悬吊式的调谐质量阻尼器,通过调整摆长使得单摆频率与结构频率调谐,达到振动控制效果。但是很多情况下,由于空间或者技术原因,单摆的应用会受到限制。Tuned mass damper (TMD) vibration reduction technology is widely valued for its characteristics of small changes to the original structure, simple construction, and significant vibration reduction effect, and has been widely used in civil engineering at home and abroad. In order to control the horizontal vibration of the structure, a suspended tuned mass damper is usually used. By adjusting the pendulum length, the frequency of the single pendulum is tuned to the frequency of the structure to achieve the effect of vibration control. But in many cases, due to space or technical reasons, the application of simple pendulum will be limited.
实用新型内容Utility model content
鉴于现有技术存在的不足,本实用新型所要解决的技术问题是:改变普通支座的受力形式,使其在发生较大位移的情况下,支座仍能起到支撑质量块以及提供恢复力的作用。In view of the deficiencies in the prior art, the technical problem to be solved by this utility model is: changing the force-bearing form of the common bearing, so that the bearing can still support the mass block and provide recovery under the condition of large displacement. effect of force.
通过采取滚动构造,给予质量块较大位移空间,并采用SMA形状记忆合金弹簧传递TMD子结构与主结构之间的相互作用力,以及通过粘滞阻尼器消耗TMD子结构的部分能量;为了达到上述目的,本实用新型采用如下技术方案:包括带有凹槽的下法兰板、设置所述下法兰板内的若干滚珠托盘、设置在所述滚珠托盘上端的若干滚珠、设置在所述滚珠上的上法兰板、若干SMA弹簧以及若干粘滞阻尼器;若干所述滚珠托盘均匀间隔设置,所述上法兰板的尺寸大于滚珠托盘间的间距;所述SMA弹簧以及粘滞阻尼器水平设置,两端分别与下法兰板内壁和上法兰板侧壁连接。By adopting the rolling structure, the mass block is given a large displacement space, and the SMA shape memory alloy spring is used to transmit the interaction force between the TMD substructure and the main structure, and the viscous damper consumes part of the energy of the TMD substructure; in order to achieve For the above purpose, the present utility model adopts the following technical solutions: including a lower flange plate with grooves, a number of ball trays arranged in the lower flange plate, a number of balls arranged on the upper end of the ball tray, and a number of balls arranged in the lower flange plate The upper flange plate, a plurality of SMA springs and a plurality of viscous dampers on the balls; a plurality of the ball trays are evenly spaced, and the size of the upper flange plate is larger than the distance between the ball trays; the SMA springs and the viscous dampers The device is arranged horizontally, and the two ends are respectively connected with the inner wall of the lower flange plate and the side wall of the upper flange plate.
进一步的,所述下法兰板的侧壁上设置有若干可沿水平方向滑动的滑块;每个滑块均与一个所述SMA弹簧和一个粘滞阻尼器连接。Further, a plurality of sliding blocks slidable in the horizontal direction are arranged on the side wall of the lower flange plate; each sliding block is connected with one of the SMA springs and a viscous damper.
进一步的,所述上法兰板和下法兰板的形状为正方形。Further, the shape of the upper flange plate and the lower flange plate is square.
进一步的,所述SMA弹簧、粘滞阻尼器以及滑块的数量为四的倍数,每个方向上设置的数量均为一致,通过调整SMA弹簧的刚度,使得四个方向的拉力一致,维持上法兰板的平衡。Further, the number of the SMA springs, viscous dampers and sliders is a multiple of four, and the numbers in each direction are the same. Balance of flange plates.
进一步的,所述滚珠托盘上方设置有一球冠衬板,所述球冠衬板设置有若干用于放置所述滚珠的凹槽,滚珠托盘上部的滚珠与滚珠托盘通过球冠衬板接触连接。Further, a spherical cap lining plate is provided above the ball tray, the spherical cap lining plate is provided with a plurality of grooves for placing the balls, and the balls on the upper part of the ball tray are connected to the ball tray through the spherical cap lining plate.
进一步的,所述上法兰板通过地脚螺栓与建筑结构的柱体进行连接,下法兰板通过地脚螺栓与基础进行连接。Further, the upper flange plate is connected to the column of the building structure through anchor bolts, and the lower flange plate is connected to the foundation through anchor bolts.
与现有技术相比本实用新型有以下特点和有益效果:Compared with the prior art, the utility model has the following features and beneficial effects:
1、相较于普通支座的位移限值较小,本支座提供给上部附属结构较大的活动范围,以满足TMD发挥减震作用时所需要的行程。1. Compared with the lower displacement limit of the ordinary bearing, this bearing provides a larger range of motion for the upper auxiliary structure to meet the travel required for TMD to play a shock absorption role.
2、可以通过安装TMD大位移活动支座,利用建筑顶部附属结构的质量,组成一调谐质量阻尼系统,当地震发生时建筑顶部的附属结构可以有效避免发生鞭梢效应,并起到减震耗能的作用。2. By installing TMD large-displacement movable bearings, a tuned mass damping system can be formed by using the mass of the auxiliary structure at the top of the building. When an earthquake occurs, the auxiliary structure at the top of the building can effectively avoid the whiplash effect and play a role in shock absorption. function of energy.
3、本实用新型可以代替单摆的吊索,将建筑上部附属结构放置于支座之上,可以有效利用上部附属结构的质量,并且避免地震作用时的不利响应,形成一种安装方便、价格低廉、耗能能力好、耐久性优良的新型TMD装置,具有重大的工程意义。3. The utility model can replace the sling of a single pendulum, and place the upper auxiliary structure of the building on the support, which can effectively utilize the quality of the upper auxiliary structure, and avoid the adverse response during earthquake action, forming a convenient and inexpensive installation. A new type of TMD device with low cost, good energy consumption and excellent durability has great engineering significance.
附图说明Description of drawings
图1是本实用新型的剖面图;Fig. 1 is the sectional view of the present utility model;
图2是本实用新型的结构示意图。Figure 2 is a schematic structural diagram of the present invention.
其中附图标记为:1、粘滞阻尼器;2、SMA弹簧;3、上法兰板;4、滚珠;5、滑块;6、滚珠托盘;7、下法兰板;8、球冠衬板。The reference signs are: 1, viscous damper; 2, SMA spring; 3, upper flange plate; 4, ball; 5, slider; 6, ball tray; 7, lower flange plate; 8, spherical cap Liner.
具体实施方式Detailed ways
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention.
如图1至2所示,包括带有凹槽的下法兰板7、设置下法兰板7内的若干滚珠托盘6、设置在滚珠托盘6上端的若干滚珠4、设置在滚珠4上的上法兰板3、若干SMA弹簧2以及若干粘滞阻尼器1;若干滚珠托盘6均匀间隔设置,上法兰板3的尺寸大于滚珠托盘6间的间距;SMA弹簧2以及粘滞阻尼器1水平设置,两端分别与下法兰板7内壁和上法兰板3侧壁连接。As shown in Figures 1 to 2, it includes a
优选的,下法兰板7的侧壁上设置有若干可沿水平方向滑动的滑块5;任一滑块5均与一组SMA弹簧2和粘滞阻尼器1连接。Preferably, a number of
优选的,上法兰板3和下法兰板7的形状为正方形。Preferably, the shapes of the
优选的,SMA弹簧2、粘滞阻尼器1以及滑块5的数量为四的倍数。Preferably, the number of the
优选的,滚珠托盘6上方设置有一球冠衬板8,球冠衬板8设置有若干用于放置滚珠4的凹槽。Preferably, a spherical
优选的,上法兰板3通过地脚螺栓与建筑结构的柱体进行连接,下法兰板7通过地脚螺栓与基础进行连接。Preferably, the
本实用新型的工作原理:上法兰板3和下法兰板7分别与结构柱的节点板连接,通过改变SMA弹簧的刚度来调整TMD的振动周期;首先将上法兰板3通过地脚螺栓与柱体之间进行连接,然后将下法兰板7通过地脚螺栓与基础之间连接,再将上法兰板3置于下法兰板7的滚珠4上部居中位置,通过SMA弹簧2以及粘滞阻尼器1的两端分别与上法兰板3及下法兰板7进行连接。通过改变SMA弹簧2的刚度以调节TMD的自振周期,将TMD的周期调整至结构自振周期附近。常规状态下,本支座作为传统的支撑用支座进行使用;当发生地震时,上法兰板3与下法兰板7由于中间滚珠4的作用而产生较大的相对位移,TMD子结构与主结构发生相对位移,并产生相互作用力,由SMA弹簧2传递给主结构,从而抑制主结构振动的现象,起到减震耗能的作用。TMD子结构运动的行程受下法兰板7的边长控制,其位移限值可以大幅高于普通支座。The working principle of the utility model: the
显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202221608014.8U CN217557217U (en) | 2022-06-24 | 2022-06-24 | Checkerboard Tuned Mass Damper Mounts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202221608014.8U CN217557217U (en) | 2022-06-24 | 2022-06-24 | Checkerboard Tuned Mass Damper Mounts |
Publications (1)
Publication Number | Publication Date |
---|---|
CN217557217U true CN217557217U (en) | 2022-10-11 |
Family
ID=83503502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202221608014.8U Active CN217557217U (en) | 2022-06-24 | 2022-06-24 | Checkerboard Tuned Mass Damper Mounts |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN217557217U (en) |
-
2022
- 2022-06-24 CN CN202221608014.8U patent/CN217557217U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205639451U (en) | Friction -variable energy dissipation device | |
CN110552429B (en) | Three-dimensional seismic isolation and anti-sway device and method with self-balancing | |
CN104594504B (en) | A kind of multidimensional shock mount | |
CN112780093B (en) | A compact three-dimensional friction pendulum isolation bearing | |
CN106968499B (en) | A kind of horizontal direction negative stiffness device of subsidiary vertical shock-absorbing function | |
CN202298447U (en) | Micro particle damping support | |
CN104594520A (en) | Multi-dimensional adjustable collision energy dissipation device | |
CN204000585U (en) | A kind of friction pendulum damping supporting seat | |
CN206521692U (en) | A kind of friction energy-dissipating slide type Antivibration block device | |
CN204510476U (en) | A kind of multidimensional shock mount | |
CN106988429A (en) | A kind of multiple multidimensional earthquake damping and isolating mechanism | |
CN114059445B (en) | A combined bridge vibration isolation bearing | |
CN112160439A (en) | A rocking tuned mass damper | |
CN215106202U (en) | Suspended floor damping structure of high-rise building | |
CN204418411U (en) | The adjustable energy by collision vibration absorber of a kind of multidimensional | |
CN217557217U (en) | Checkerboard Tuned Mass Damper Mounts | |
CN108004916A (en) | A New Type of Omni-directional Torsional Energy Dissipating Damping Bearing | |
CN110616937A (en) | Variable-frequency curved-surface ball shock insulation support with viscous damper | |
CN205116464U (en) | Semi active contro damping wall based on electricity rheological damping | |
CN209066638U (en) | Double-layer friction pendulum vibration isolation bearing | |
CN202626826U (en) | Lead damper shock absorption/isolation basin type rubber supporting seat | |
CN108842920A (en) | A kind of assembled isolation structure | |
CN109881784B (en) | A camber-slip three-dimensional isolation bearing | |
CN107700913B (en) | Multidimensional high-performance damper | |
CN216664573U (en) | A Vertical Tuned Damping/Vibration Device with Quasi-Zero Stiffness Characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |