CN217276795U - Temperature field, speed field and solid field coupling experimental system - Google Patents
Temperature field, speed field and solid field coupling experimental system Download PDFInfo
- Publication number
- CN217276795U CN217276795U CN202220975945.5U CN202220975945U CN217276795U CN 217276795 U CN217276795 U CN 217276795U CN 202220975945 U CN202220975945 U CN 202220975945U CN 217276795 U CN217276795 U CN 217276795U
- Authority
- CN
- China
- Prior art keywords
- field
- transparent
- fluid
- solid
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007787 solid Substances 0.000 title claims abstract description 40
- 230000008878 coupling Effects 0.000 title claims abstract description 30
- 238000010168 coupling process Methods 0.000 title claims abstract description 30
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 30
- 239000012530 fluid Substances 0.000 claims abstract description 79
- 238000010438 heat treatment Methods 0.000 claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 230000002708 enhancing effect Effects 0.000 claims abstract description 3
- 239000007788 liquid Substances 0.000 claims abstract description 3
- 238000002474 experimental method Methods 0.000 claims abstract 3
- 239000000463 material Substances 0.000 claims description 9
- 238000005057 refrigeration Methods 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000001808 coupling effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000827 velocimetry Methods 0.000 description 1
Images
Landscapes
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
Abstract
本实用新型提供一种温度场、速度场、固体场耦合的实验系统,用于解决现有技术中温度场、速度场、固体场的“热‑流‑固”强耦合问题,包括:透明实验段,换热系统和水泵,所述透明实验段、所述换热系统和所述水泵通过管道连接形成循环系统,所述透明实验段包括透明流体腔、加热系统和扰流组件,所述透明流体腔内部用于供流体流通,所述加热系统用于对所述透明流体腔内的流体进行加热,所述扰流组件包括刚性件和柔性件,所述柔性件连接在所述刚性件上,所述扰流组件用于增强所述透明流体腔的热对流来实现增强换热,所述换热系统用于对所述透明流体腔的液体进行换热冷却。
The utility model provides an experimental system for coupling a temperature field, a velocity field and a solid field, which is used to solve the "heat-fluid-solid" strong coupling problem of the temperature field, the velocity field and the solid field in the prior art, including: a transparent experiment Section, heat exchange system and water pump, the transparent experimental section, the heat exchange system and the water pump are connected by pipes to form a circulation system, the transparent experimental section includes a transparent fluid cavity, a heating system and a turbulence component, the transparent experimental section The interior of the fluid chamber is used for fluid circulation, the heating system is used for heating the fluid in the transparent fluid chamber, the turbulence component includes a rigid part and a flexible part, and the flexible part is connected to the rigid part , the turbulence component is used for enhancing the heat convection of the transparent fluid cavity to realize enhanced heat exchange, and the heat exchange system is used for exchanging heat and cooling the liquid in the transparent fluid cavity.
Description
技术领域technical field
本实用新型涉及热流固耦合领域,特别是涉及一种温度场、速度场、固体场耦合的实验系统。The utility model relates to the field of thermal fluid-solid coupling, in particular to an experimental system for coupling a temperature field, a velocity field and a solid field.
背景技术Background technique
目前尚未有可实现同时测量温度场、速度场、固体场的耦合系统,特别是温度场、速度场、固体场的“热-流-固”强耦合系统。现有对“热-流-固”强耦合系统测量的相关技术和存在缺点:通过PIV(Partical Image Velocimetry:粒子图像处理技术)仅能获得流场的速度矢量图但无法实时识别柔性体变形来得到固体场,温度场测量中接触式测量会改变流场导致温度场随之变化,且传统的非接触测温大多为表面温度,无法得到流动实时的截面温度分布,且难以实现非接触式测量下温度和速度场的同时获得。At present, there is no coupled system that can measure temperature field, velocity field and solid field at the same time, especially the "thermal-fluid-solid" strong coupling system of temperature field, velocity field and solid field. Existing related technologies and shortcomings for the measurement of "thermal-fluid-solid" strong coupling system: Through PIV (Partical Image Velocimetry: particle image processing technology), only the velocity vector diagram of the flow field can be obtained, but the deformation of the flexible body cannot be recognized in real time. To obtain the solid field, the contact measurement in the temperature field measurement will change the flow field and cause the temperature field to change accordingly, and the traditional non-contact temperature measurement is mostly the surface temperature, which cannot obtain the real-time cross-sectional temperature distribution of the flow, and it is difficult to achieve non-contact measurement. Simultaneous acquisition of temperature and velocity fields.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本实用新型的目的在于提供一种温度场、速度场、固体场耦合的实验系统,用于解决现有技术中强流下固体场、速度场、温度场耦合的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of this utility model is to provide a temperature field, velocity field, solid field coupling experimental system, for solving the solid field, velocity field, temperature field coupling under strong flow in the prior art The problem.
为实现上述目的及其他相关目的,本实用新型提供一种温度场、速度场、固体场耦合的实验系统,包括透明实验段,换热系统和水泵,所述透明实验段、所述换热系统和所述水泵通过管道连接形成循环系统,所述透明实验段包括透明流体腔、加热系统和扰流组件,所述透明流体腔内部用于供流体流通,所述加热系统用于对所述透明流体腔内的流体进行加热,所述扰流组件包括刚性件和柔性件,所述柔性件连接在所述刚性件上,所述扰流组件用于增强所述透明流体腔的热对流来实现增强换热,所述换热系统用于对所述透明流体腔的液体进行换热冷却。In order to achieve the above purpose and other related purposes, the present utility model provides a temperature field, velocity field, solid field coupling experimental system, including a transparent experimental section, a heat exchange system and a water pump, the transparent experimental section, the heat exchange system A circulation system is formed by connecting with the water pump through pipes, the transparent experimental section includes a transparent fluid chamber, a heating system and a spoiler component, the interior of the transparent fluid chamber is used for fluid circulation, and the heating system is used for the transparent The fluid in the fluid cavity is heated, the turbulence assembly includes a rigid part and a flexible part, the flexible part is connected to the rigid part, and the turbulence assembly is used to enhance the thermal convection of the transparent fluid cavity to achieve To enhance heat exchange, the heat exchange system is used for heat exchange cooling of the liquid in the transparent fluid cavity.
可选地,所述透明流体腔由亚克力材料或者透明玻璃材料构成。Optionally, the transparent fluid cavity is made of acrylic material or transparent glass material.
可选地,所述加热系统包括导热件、发热件和直流稳压电源,所述发热件和所述直流稳压源电连接形成通电回路,所述导热件用于将所述发热件的热量传递给所述透明流体腔内的流体。Optionally, the heating system includes a heat-conducting component, a heat-generating component, and a DC stabilized power supply, the heat-generating component and the DC stabilized-voltage power supply are electrically connected to form an energizing circuit, and the heat-conducting component is used to dissipate the heat of the heat-generating component. to the fluid in the transparent fluid cavity.
可选地,所述导热件上为刻有均匀沟槽的铜板,所述发热件置于所述铜板沟槽内。Optionally, the heat-conducting member is a copper plate engraved with a uniform groove, and the heating member is placed in the groove of the copper plate.
可选地,还包括测温元件,所述测温元件用于所述透明流体腔内的流体内部温度及所述导热件与流体接触表面的温度。Optionally, a temperature measuring element is also included, and the temperature measuring element is used for the internal temperature of the fluid in the transparent fluid cavity and the temperature of the contact surface of the heat conducting member and the fluid.
可选地,所述扰流组件在所述透明流体腔内可更换。Optionally, the spoiler assembly is replaceable in the transparent fluid cavity.
可选地,所述柔性件和所述刚性件可拆卸连接。Optionally, the flexible member and the rigid member are detachably connected.
可选地,所述换热系统包括换热器和制冷装置,所述换热器与所述换热板通过导管相连。Optionally, the heat exchange system includes a heat exchanger and a refrigeration device, and the heat exchanger is connected with the heat exchange plate through a conduit.
可选地,还包括流量计和阀门,所述流量计在所述透明实验段进口处,所述阀门用于控制所述透明流体腔内流量。Optionally, a flow meter and a valve are also included, the flow meter is located at the inlet of the transparent experimental section, and the valve is used to control the flow rate in the transparent fluid cavity.
可选地,所述流量计为非接触式流量计,所述非接触式流量计用于测量所述透明流体腔内流量。Optionally, the flowmeter is a non-contact flowmeter, and the non-contact flowmeter is used to measure the flow rate in the transparent fluid cavity.
如上所述,本实用新型的实现温度场、速度场、固体场耦合的实验系统,至少具有以下有益效果:As mentioned above, the experimental system for realizing the coupling of temperature field, velocity field and solid field according to the present invention has at least the following beneficial effects:
1.在所述透明实验段内流体通过所述水泵达到预定压力,经过所述流量计测得流量,并由所述换热系统达到预定流体温度,通过所述加热系统吸收热量,由于所述扰流系统的对流增强作用,使得所述流体在透明实验腔内形成“热-流-固”强耦合,在所述换热系统释放热量形成循环系统;1. In the transparent experimental section, the fluid reaches a predetermined pressure through the water pump, the flow rate is measured by the flow meter, and the temperature of the fluid is reached by the heat exchange system, and heat is absorbed by the heating system. The convection enhancement effect of the turbulence system makes the fluid form "heat-fluid-solid" strong coupling in the transparent experimental cavity, and releases heat in the heat exchange system to form a circulation system;
2.所述透明流体腔由亚克力或者透明玻璃材料构成,使得“热-流-固”耦合作用下的温度场、速度场、固体场能同时被测量;2. The transparent fluid cavity is made of acrylic or transparent glass material, so that the temperature field, velocity field, and solid field under the coupling action of "heat-fluid-solid" can be measured simultaneously;
3.所述刚性件和所述柔性件可拆卸连接,可用于对于不同形状、材质、间距对热流固耦合作用影响的探究;3. The rigid part and the flexible part can be detachably connected, which can be used to investigate the influence of different shapes, materials and spacing on the heat-fluid-structure coupling effect;
4.通过所述流量计对所述透明流体腔内流体流量测量和所述阀门对所述透明流体腔体内流量大小的控制,以及对所述直流稳压电源电压的控制来实现对温度的控制,以及所属扰流件来实现固体场的控制,有利于探究强流作用下温度场、速度场、固体场的耦合。4. The temperature control is realized through the flow measurement of the fluid in the transparent fluid cavity by the flowmeter, the control of the flow rate in the transparent fluid cavity by the valve, and the control of the voltage of the DC stabilized power supply. , and the associated spoiler to realize the control of the solid field, which is conducive to exploring the coupling of temperature field, velocity field and solid field under the action of strong current.
附图说明Description of drawings
图1显示为本实用新型实现温度场、速度场、固体场耦合的实验系统的结构示意图。FIG. 1 shows a schematic structural diagram of an experimental system for realizing the coupling of temperature field, velocity field and solid field according to the present invention.
图2显示为本实用新型的透明实验段结构示意的示意图。FIG. 2 is a schematic diagram showing the structure of the transparent experimental section of the present invention.
图3显示为本实用新型的加热件的示意图。FIG. 3 shows a schematic diagram of the heating element of the present invention.
元件标号说明:流量计1,透明实验段2,直流稳压电源3,阀门4,水泵5,换热器6,制冷装置7,透明流体腔体21,稳流腔22,可移动盖板23,刚性件24,柔性件25,导热件26,连接孔261,发热件262。Component label description:
具体实施方式Detailed ways
以下由特定的具体实施例说明本实用新型的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本实用新型的其他优点及功效。The embodiments of the present invention are described below by specific embodiments, and those who are familiar with the technology can easily understand other advantages and effects of the present invention from the contents disclosed in this specification.
请参阅图1至图3。须知,本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本实用新型可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本实用新型所能产生的功效及所能达成的目的下,均应仍落在本实用新型所揭示的技术内容能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本实用新型可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本实用新型可实施的范畴。See Figures 1 through 3. It should be noted that the structures, proportions, sizes, etc. shown in the accompanying drawings of this specification are only used to cooperate with the contents disclosed in the specification, so as to be understood and read by those who are familiar with this technology, and are not used to limit the implementation of the present invention. condition, therefore does not have technical substantive significance, any modification of structure, the change of proportional relationship or the adjustment of size, without affecting the effect that the utility model can produce and the purpose that can be achieved, all should still fall within the present utility model. The scope of the technical content disclosed by the new model can be covered. At the same time, the terms such as "up", "down", "left", "right", "middle" and "one" quoted in this specification are only for the convenience of description and clarity, and are not used to limit this specification. The applicable scope of the utility model and the change or adjustment of its relative relationship shall be regarded as the applicable scope of the present utility model without substantially changing the technical content.
以下各个实施例仅是为了举例说明。各个实施例之间,可以进行组合,其不仅仅限于以下单个实施例展现的内容。The following examples are for illustration only. Combinations can be made between the various embodiments, which are not limited to the contents presented in the following single embodiment.
请参阅图1至图2,本实用新型提供一种温度场、速度场、固体场耦合的实验系统,包括透明实验段2、水泵5、换热器6和制冷装置7,所述换热器6和所述制冷装置7由导管连接形成换热系统,所述透明实验段2、所述水泵5和所述换热系统由导管连接形成水路循环系统,所述透明实验段2包括透明实验腔体、扰流组件和加热系统,所述扰流组件由刚性件24和柔性件25组成,柔性件25固定于刚性件24上,用于干扰所述透明流体腔体21内流体形成流固耦合,同时,在所述透明实验段2内流体通过所述加热系统吸收热量,使得所述流体在透明流体腔体21内形成温度场、速度场、固体场耦合,所述流体再通过所述水泵作用到达换热系统,在所述换热系统中释放热量形成热量循环系统。Please refer to FIG. 1 to FIG. 2 , the present invention provides an experimental system for coupling the temperature field, the velocity field and the solid field, including a transparent
本实施例中,请参阅图2,所述透明流体腔体21可以选择为亚克力或者透明玻璃材料,使得热流固耦合的温度场、速度场、固体场能同时被测量,所述透明流体腔体21顶部可以选择可移动盖板23,所述透明流体腔体21底部为导热件26,所述透明流体腔体21前部设置稳流腔22,所述透明流体腔体21后部设置扰流组件,所述导热件26将发热件的热量传递给所述流体,所述流体通过所述稳流腔22得到稳定的流速再与所述扰流组件作用形成稳定的“热-流-固”耦合,所述可移动盖板23便于所述扰流组件的拆卸。In this embodiment, please refer to FIG. 2 , the
本实施例中,请参阅图3,所述导热件26左右两测均匀间隔处刻有所述连接孔261,通过所述连接孔261和螺栓、防水密封圈等元件配合,从而将所述导热件26固定在所述透明流体腔体21上,所述导热件26上表面镀有绝缘层,所述绝缘层可以选择为绝缘胶带,防止所述导热件26与所述透明流体腔体21内流体接触使得所述加热系统短路,所述导热件26下表面刻有均匀凹槽,所述加热件262置于均匀凹槽内,所述发热组件262可以选择为发热丝,所述加热件262和所述直流稳压电源3通过导线连接形成所述加热系统,所述导热件26用于将所述发热件262的热量传递给所述透明流体腔21内的流体。In this embodiment, please refer to FIG. 3 , the
本实施案例中,请参阅图2,所述刚性件24可以选择为圆柱或三角柱形刚性件,所述柔性件25可以选择为长条形柔性薄片,所述刚性件24与所述透明流体腔体21可拆卸连接,具体可拆卸连接实现的方式不是本申请的重点,本申请仅以举例说明,比如可以通过卡接方式实现可拆卸,可用于对于不同形状和材质刚性扰流件对热流固耦合作用影响的探究,所述柔性件25固定在刚性件24后,所述刚性件24和所述柔性件25可拆卸连接,此处可拆卸连接可以通过绑带或者夹持等方式实现,流体通过所述刚性件24和所述柔性件25的振动绕流作用形成“热-流-固”强耦合。In this embodiment, please refer to FIG. 2 , the
本实施案例中,请参阅图2,为进一步探究所述刚性件24和所述柔性件23增强所述透明流体腔21体内流体对流作用,可以选择为不同尺存、形状和与所述导热件26表面距离的所述刚性件与所述透明流体腔21体进行卡接,可以选择不同尺寸、形状和物料性的柔性件与所述刚性件24进行连接。In this embodiment, please refer to FIG. 2 , in order to further explore the effect of the
本实施案例中,请参阅图3,所述导热件26可以选择为厚度均匀的铜板,所述铜板使得所述发热丝热量均匀传递至所述透明流体腔体21内流体。In this embodiment, please refer to FIG. 3 , the
本实施案例中,所述直流稳压电源3可以选择为可编程直流稳压电源,为使得所述透明流体腔内流体温度在一定范围内稳定,可以选择测温元件对所述透明流体腔内流体温度进行测量,并通过导线将数据反馈到所述可编程直流稳压电源,通过负反馈作用使得所述实验腔内流体温度稳定在一定范围内。In this embodiment, the DC regulated
本实施案例中,请参阅图1,所述换热器6和制冷装置7通过管道相连接形成换热系统,所述制冷装置7可以根据实际要求选择,所述制冷装置7如何实现制冷是现有技术此处不再赘述,流体通过所述加热系统吸收热量后再通过所述换热系统释放热量,再次进入到循环系统中。In this embodiment, please refer to FIG. 1 , the
本实施案例中,请参阅图1,为了控制所述透明实验段2内流体流速,在所述透明实验段2流体入口处设置了所述流量计1,所述流量计1可以选择为无接触式流量计,所述无接触式流量计可以选择为超声流量计,使得所测试流体流量数据灵敏且精确,依据所述流量计1的测量数据,通过所述阀门4对所述透明实验段2内流量进行控制。In this embodiment, please refer to FIG. 1 , in order to control the fluid flow rate in the transparent
综上所述,本实用新型在实验段通过透明实验腔体、扰流组件和加热系统的结合,使得流体在透明实验段内形成温度场、速度场、固体场的耦合,方便了对温度场、速度场、固体场的同时测量。当需要分析对不同形状或者材质的刚性件对热流固耦合作用影响时,其可以更加便捷对透明实验腔体内部的扰流组件进行替换。同时,通过调节电源电压实现对加热铜板温度的控制,通过流量计和阀门实现对于透明实验腔体内流量的测量和控制,可以实现强流下温度场、速度场、固体场的耦合效果。所以,本实用新型有效克服了现有技术中的种种缺点而具高度产业利用价值。To sum up, in the experimental section of the present invention, through the combination of the transparent experimental cavity, the turbulence component and the heating system, the fluid forms the coupling of the temperature field, the velocity field and the solid field in the transparent experimental section, which facilitates the analysis of the temperature field. , simultaneous measurement of velocity field and solid field. When it is necessary to analyze the influence of rigid parts of different shapes or materials on the heat-fluid-structure interaction, it can be more convenient to replace the turbulent components inside the transparent experimental cavity. At the same time, the temperature of the heated copper plate can be controlled by adjusting the power supply voltage, and the flow measurement and control of the flow in the transparent experimental cavity can be realized through the flow meter and valve. Therefore, the utility model effectively overcomes various shortcomings in the prior art and has high industrial utilization value.
上述实施例仅例示性说明本实用新型的原理及其功效,而非用于限制本实用新型。任何熟悉此技术的人士皆可在不违背本实用新型的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本实用新型所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本实用新型的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed by the present invention should still be covered by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220975945.5U CN217276795U (en) | 2022-04-26 | 2022-04-26 | Temperature field, speed field and solid field coupling experimental system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220975945.5U CN217276795U (en) | 2022-04-26 | 2022-04-26 | Temperature field, speed field and solid field coupling experimental system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN217276795U true CN217276795U (en) | 2022-08-23 |
Family
ID=82877773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220975945.5U Active CN217276795U (en) | 2022-04-26 | 2022-04-26 | Temperature field, speed field and solid field coupling experimental system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN217276795U (en) |
-
2022
- 2022-04-26 CN CN202220975945.5U patent/CN217276795U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106879227B (en) | A kind of micro-channel heat exchanger and fluid interchange experimental provision | |
Xiang et al. | High-performance thermal management system for high-power LEDs based on double-nozzle spray cooling | |
CN103616404B (en) | With the fluidic heat exchange of fluids experimental provision of ball-and-socket and/or the convex flowing control structure of ball | |
Azimy et al. | Experimental investigation of the effectiveness of ultrasounds on increasing heat transfer coefficient of heat exchangers | |
CN102262100A (en) | Novel thermal resistance and flow resistance test device for radiator | |
CN217276795U (en) | Temperature field, speed field and solid field coupling experimental system | |
CN114719912B (en) | Experimental system and measuring method for simultaneous measurement of multiple physical fields | |
CN108802089A (en) | A kind of microchannel nano-fluid enhanced heat exchange testing method | |
CN108802090B (en) | A microchannel nanofluid enhanced heat transfer test device | |
CN101806761B (en) | Instrument for measuring thermal conductivity coefficient of one-dimensional plane by using properties of graphite material | |
CN107213932A (en) | A multi-sample thermostat for small-angle scattering experiments | |
CN216560149U (en) | Visual electric field enhanced microchannel boiling heat transfer experimental device | |
CN119147585A (en) | 3DIC flow heat transfer testing device and method | |
CN202502171U (en) | Experimental device for thermoelectric power generation based on flowing heat source | |
CN211577034U (en) | Experimental device for measuring contact thermal resistance | |
CN114544141B (en) | Solid deformation field measuring method | |
CN116578138A (en) | Two-stage temperature control device suitable for optical chip | |
CN113670809A (en) | A corrosion electrochemical measurement device and measurement method coupling heat transfer and flow field | |
CN217103069U (en) | Heating device in magnetic field environment | |
CN107271476B (en) | Motor iron core axial heat conductivity coefficient testing device and testing method | |
CN205192995U (en) | Measure coefficient of heat transfer device of metal sheet surface to medium | |
CN113959904B (en) | A visual electric field enhanced microchannel boiling heat transfer experimental device | |
CN218212975U (en) | A test device for hydrate inhibition characteristics of solid surface | |
CN203629864U (en) | Experiment instrument for research on heat-dissipation efficiency of heat pipe type radiator | |
CN118882387A (en) | A variable thermal resistance heat conducting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |