CN217059061U - Intelligent handheld Raman spectrometer - Google Patents

Intelligent handheld Raman spectrometer Download PDF

Info

Publication number
CN217059061U
CN217059061U CN202220729666.0U CN202220729666U CN217059061U CN 217059061 U CN217059061 U CN 217059061U CN 202220729666 U CN202220729666 U CN 202220729666U CN 217059061 U CN217059061 U CN 217059061U
Authority
CN
China
Prior art keywords
module
laser
raman
lens
light path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202220729666.0U
Other languages
Chinese (zh)
Inventor
李学恩
王红星
彭同友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Automation of Chinese Academy of Science
Original Assignee
Institute of Automation of Chinese Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Automation of Chinese Academy of Science filed Critical Institute of Automation of Chinese Academy of Science
Priority to CN202220729666.0U priority Critical patent/CN217059061U/en
Application granted granted Critical
Publication of CN217059061U publication Critical patent/CN217059061U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The utility model belongs to the technical field of optical analysis instruments, aims at solving the problems of low focusing efficiency and low safety level of a handheld Raman spectrometer in the prior art, and particularly relates to an intelligent handheld Raman spectrometer which comprises a Raman spectrum main body, a control module, a laser module, a light path system, an adjusting module and a signal acquisition and processing module; the optical path system comprises a dichroic mirror and a Raman gathering lens; the end part of the Raman spectrum main body is provided with a laser lens; in a working state, the emitted light beam is reflected to a measured object through the light path system and the laser lens, and the light beam received by the measured object and Raman light generated by the measured object are collected to the signal acquisition processing module through the light path system; the control module acquires the light path information of the light path system in real time so as to control the adjusting module to adjust the distance between the dichroic mirror and the Raman gathering lens in real time when the light path information is abnormal. The utility model discloses can finely tune the optics subassembly is automatic, effectively improve the precision, resolution ratio and the detection efficiency that detect.

Description

Intelligent handheld Raman spectrometer
Technical Field
The utility model belongs to the technical field of optical analysis instrument, concretely relates to intelligence hand-held type raman spectroscopy appearance.
Background
Raman is a light scattering technique. When a laser light source irradiates an object, high-intensity incident light of the laser light source is scattered by molecules, most scattered light has the same wavelength as incident laser light, and the scattering is called Rayleigh scattering; there is also a very small portion of scattered light, differing from the incident light in wavelength and whose change in wavelength is determined by the chemical structure of the test sample (the so-called scattering substance), which is called raman scattering. The interaction between light and chemical bonds within the material can reflect detailed information on the chemical structure, phase and morphology, crystallinity, and molecular interactions of the sample, and thus raman spectroscopy has the ability to "fingerprint" as an identification substance and can analyze the identification substance without damage. Thousands of spectra are contained in a Raman spectrum database, and spectral data matched with the analyzed substance is found through rapid search, so that the Raman spectrum of the analyzed substance can be identified and mainly used for identifying the substance, the research of a molecular structure can be realized, and the nondestructive qualitative and quantitative analysis can be carried out on a sample.
The handheld Raman spectrometer disclosed by the prior art is used for assembling and adjusting an optical path through an adjusting mechanism, the optical path adjustment is realized in a disassembling and assembling mode, and intelligent and convenient focusing cannot be realized; in addition, for the application of non-laboratory, in the complicated environment that personnel flow, laser irradiation can produce harm to the human body, it is disclosed in the prior art to be provided with laser safety lock device control laser emitter time of launching laser and avoid laser to the radiation and the injury of personnel on every side, but when laser emitter launches laser, if someone is facing to laser or personnel mistake open laser safety lock device, can inevitably lead to the fact the damage to the human body equally.
SUMMERY OF THE UTILITY MODEL
In order to solve the above problems, that is, to solve the problems of low focusing efficiency and low safety level of the handheld raman spectrometer in the prior art, the utility model provides an intelligent handheld raman spectrometer, which comprises a raman spectrum main body, a control module, a laser module, an optical path system, an adjusting module and a signal acquisition and processing module, wherein the control module, the laser module, the optical path system, the adjusting module and the signal acquisition and processing module are all arranged inside the raman spectrum main body;
the laser module, the light path system, the adjusting module and the signal acquisition and processing module are in signal connection with the control module;
the light path system comprises a dichroic mirror and a Raman gathering lens, and the dichroic mirror and the Raman gathering lens are in signal connection with the adjusting module;
a laser lens is arranged at the end part of the Raman spectrum main body;
the laser module is configured to emit a light beam; in a working state, the emitted light beam is reflected to a measured object through the light path system and the laser lens, and the Raman light generated by the interaction between the light beam received by the measured object and the measured object is collected to the signal acquisition processing module through the light path system again; the control module acquires the light path information of the light path system in real time so as to control the adjusting module to adjust the distance between the dichroic mirror and the Raman gathering lens in real time when the light path information is abnormal.
In some preferred embodiments, a connecting piece fixed with the raman spectrum main body is arranged at the bottom of the laser lens, one end of the connecting piece is provided with a self-rotating external thread section, the other end of the connecting piece is provided with an accommodating chamber, and a ball clamping limiting groove is arranged on the inner periphery of the accommodating chamber;
one end of the laser lens is arranged in the accommodating cavity, and a clamping ball matched with the clamping ball limiting groove is arranged on the peripheral side of the laser lens; a sampling and gathering lens is arranged in the other end of the laser lens;
a groove and a threaded hole matched with the self-rotating external threaded section are formed in the end part of the Raman spectrum main body, and the threaded hole is formed in one side of the groove;
when the laser lens is in a working state, the self-rotating external thread section is meshed with the threaded hole, the clamping ball is in a compressed state under the action of the clamping ball limiting groove, and the longitudinal axis of the laser lens is consistent with that of the Raman spectrum main body;
when the laser lens is in a non-working state, the clamping ball pops out of the clamping ball limiting groove, and the laser lens is horizontally placed to the groove in a rotating mode.
In some preferred embodiments, an opening and closing cover detachably arranged with the groove is further arranged outside the groove.
In some preferred embodiments, the signal acquisition and processing module comprises a CCD sensor and a CCD processor, and the CCD processor is in signal connection with the CCD sensor;
the CCD sensor is configured to convert the Raman light signal into an electrical signal and send the electrical signal to the CCD processor;
the CCD processor is configured to process the electrical signal and transmit the processed electrical signal to the control module.
In some preferred embodiments, the optical path system further includes a first optical fiber, a second optical fiber, a sampling and focusing lens, an optical filter, and a focusing lens, and laser emitted by the laser module is transmitted to the sampling and focusing lens through the first optical fiber and reaches an object to be measured; and Raman light generated by the reaction of the laser on the object to be measured and the chemical bond is transmitted to the second path of optical fiber through the sampling and gathering lens, then transmitted to the dichroic mirror through the optical filter and the gathering lens, and acquired by the CCD sensor through the Raman gathering lens.
In some preferred embodiments, a human body proximity sensor is arranged inside the groove, and the human body proximity sensor is in signal connection with the control module;
the human body proximity sensor is configured to acquire human body information in a preset range in real time;
when the human body proximity sensor detects that human body information exists in a preset range, the control module controls the laser module to stop emitting laser.
In some preferred embodiments, a micro-printing module in signal connection with the control module is arranged inside the Raman spectrum main body;
a roll paper containing chamber is formed in the Raman spectrum main body, and an openable printer upper cover is arranged on the outer side of the roll paper containing chamber;
the outside of stock form accommodation chamber still is provided with the exit slot, the exit slot with the printer upper cover borders on the setting.
In some preferred embodiments, the adjustment module is a micro stepper motor.
In some preferred embodiments, the control module is further provided with a security authentication module;
the security authentication module is configured to determine whether the mobile terminal has an access right based on input information of the mobile terminal.
In some preferred embodiments, the control module has WIFI, and/or bluetooth wireless communication capabilities.
1) The utility model provides a raman spectroscopy appearance that intelligence touch-control was focused, low cost, small in size, have the safety protection effect, this spectrum appearance can effectively improve measurement personnel's monitoring efficiency, increases measurement personnel's self security, can make the spectral technique towards more convenient, safe direction development.
2) The utility model discloses can realize the automatic fine setting of optical assembly focus, effectively improve detection efficiency.
3) The utility model discloses can realize the laser lens protection of raman spectroscopy, effectively protect the camera lens, guarantee the high accuracy that uses repeatedly.
4) Through the utility model discloses can effectively protect human body or other biology, the laser of the laser instrument transmission of effective prevention detection material can effectively be protected to the not enough or improper inspection personnel of operation of experience to the burn of human body.
Drawings
Other features, objects and advantages of the present application will become more apparent upon reading of the following detailed description of non-limiting embodiments thereof, made with reference to the accompanying drawings in which:
fig. 1 is a schematic perspective view of an embodiment of the present invention;
FIG. 2 is a schematic view of the rear side of the FIG. 1;
fig. 3 is a partial schematic view of a groove in the present invention;
fig. 4 is a schematic diagram of a laser lens according to the present invention;
fig. 5 is a schematic half-sectional view of a laser lens and a groove in the present invention;
FIG. 6 is a schematic view of the structure of the present invention;
fig. 7 is a schematic diagram of the hardware framework of the present invention;
fig. 8 is a schematic diagram of the software and hardware system of the present invention.
The description of the reference numbers follows in order:
1. a capacitive screen; 2. a paper outlet; 3. an upper cover of the printer; 4. a laser lens; 5. switching a key; 6. returning to the function key; 7. a main page function key; 8. a menu function key; 9. an LED lamp; 10. a rear camera; 11. an alarm loudspeaker; 12. a non-slip mat; 13. hanging drop holes; 14. a groove; 15. sampling a gathering lens; 16. blocking the ball; 17. a spinning external thread section; 18. a human body proximity sensor.
Detailed Description
In order to make the embodiments, technical solutions and advantages of the present invention more obvious, the technical solutions of the present invention will be described clearly and completely with reference to the accompanying drawings. It should be understood by those skilled in the art that these embodiments are only for explaining the technical principle of the present invention, and are not intended to limit the scope of the present invention.
The utility model discloses an intelligent handheld Raman spectrometer, which comprises a Raman spectrum main body, a control module, a laser module, a light path system, an adjusting module and a signal acquisition and processing module, wherein the control module, the laser module, the light path system, the adjusting module and the signal acquisition and processing module are all arranged in the Raman spectrum main body; the laser module, the light path system, the adjusting module and the signal acquisition and processing module are in signal connection with the control module. The light path system comprises a dichroic mirror and a Raman gathering lens, and the dichroic mirror and the Raman gathering lens are in signal connection with the adjusting module; the end part of the Raman spectrum main body is provided with a laser lens; the laser module is configured to emit a light beam; in a working state, the emitted light beam is reflected to a measured object through the light path system and the laser lens, and the Raman light generated by the interaction between the light beam received by the measured object and the measured object is collected to the signal acquisition processing module through the light path system again; the control module acquires the light path information of the light path system in real time so as to control the adjusting module to adjust the distance between the dichroic mirror and the Raman gathering lens in real time when the light path information is abnormal. The utility model discloses a scheme can be finely tuned optical assembly is automatic, can effectively improve the precision and the resolution ratio that detect to and measurement personnel's detection efficiency.
The invention will be further described with reference to the following examples in conjunction with the accompanying drawings.
Referring to fig. 1 to 8, the utility model discloses an intelligent handheld raman spectrometer, which comprises a raman spectrum main body, a control module, a laser module, an optical path system, an adjusting module and a signal acquisition and processing module, wherein the control module, the laser module, the optical path system, the adjusting module and the signal acquisition and processing module are all arranged in the raman spectrum main body; the laser module, the light path system, the adjusting module and the signal acquisition and processing module are in signal connection with the control module.
The optical path system comprises a dichroic mirror and a Raman gathering lens, and the dichroic mirror and the Raman gathering lens are in signal connection with the adjusting module.
The end part of the Raman spectrum main body is provided with a laser lens 4; the bottom of the laser lens is provided with a connecting piece fixed with the Raman spectrum main body, one end of the connecting piece is provided with a self-rotating external thread section 17, the other end of the connecting piece is provided with an accommodating chamber, and the inner peripheral side of the accommodating chamber is provided with a ball clamping limiting groove; one end of the laser lens is arranged in the accommodating cavity, and a clamping ball 16 matched with the clamping ball limiting groove is arranged on the peripheral side of the laser lens; a sampling and gathering lens 15 is arranged in the other end of the laser lens; the end of the Raman spectrum main body is provided with a groove 14 and a threaded hole matched with the self-rotating external threaded section, and the threaded hole is formed in one side of the groove.
When the laser lens is in a working state (namely, in a straight state), the self-rotating external thread section is meshed with the threaded hole, the clamping ball is in a compressed state under the action of the clamping ball limiting groove, and the longitudinal axis of the laser lens is consistent with that of the Raman spectrum main body; when the laser lens is in a non-working state, the clamping ball pops out of the clamping ball limiting groove, and the laser lens is horizontally placed to the groove in a rotating mode.
The laser module is configured to emit a light beam.
In a working state, the emitted light beam is reflected to a measured object through the light path system and the laser lens, and the Raman light generated by the interaction between the light beam received by the measured object and the measured object is collected to the signal acquisition processing module through the light path system again; the control module acquires the light path information of the light path system in real time so as to control the adjusting module to adjust the distance between the dichroic mirror and the Raman gathering lens in real time when the light path information is abnormal.
The outside of recess still is provided with and opens and close the lid with what recess detachable set up, and back in the recess is put to laser lens tie, and usable open and close is covered in order to protect the interior sampling gathering camera lens of laser lens not drawn flower, ash fall, has just so guaranteed that raman spectroscopy appearance detection effect avoids the influence of sampling gathering camera lens. When the Raman spectrometer needs to be used, the opening and closing cover is opened, the laser lens is rotated to be straight towards one side, the clamping ball is in a compressed state by being slightly pressed by a hand, and the laser lens is rotated anticlockwise until the laser lens cannot be rotated.
Specifically, the signal acquisition processing module comprises a CCD sensor and a CCD processor, and the CCD processor is in signal connection with the CCD sensor; the CCD sensor is configured to convert the Raman light signal into an electric signal and send the electric signal to the CCD processor; the CCD processor is configured to process the electrical signal and to transmit the processed electrical signal to the control module.
The optical path system further comprises a first path of optical fiber, a second path of optical fiber, a sampling and gathering lens, an optical filter and a gathering lens, and laser emitted by the laser module is transmitted to the sampling and gathering lens through the first path of optical fiber and reaches a measured object; the Raman light generated by the reaction of the laser on the object to be measured and the chemical bond is transmitted to the second path of optical fiber through the sampling and gathering lens, then transmitted to the dichroic mirror through the optical filter and the gathering lens, and acquired by the CCD sensor through the Raman gathering lens.
Further, a human body proximity sensor 18 is arranged in the groove and is in signal connection with the control module; the human body proximity sensor is configured to acquire human body information in a preset range in real time; when the human body proximity sensor detects that human body information exists in a preset range, the control module controls the laser module to stop emitting laser; starting a laser lens to emit laser to irradiate on a substance for detection under the condition that human body information is not detected; therefore, the detection process becomes safer, and the harm to detection personnel is effectively reduced.
Furthermore, a micro-printing module in signal connection with the control module is arranged inside the Raman spectrum main body; a roll paper accommodating chamber is formed in the Raman spectrum main body, and a printer upper cover 3 which can be opened and closed is arranged on the outer side of the roll paper accommodating chamber; the outer side of the roll paper accommodating chamber is also provided with a paper outlet 2 which is arranged adjacent to the upper cover of the printer.
Further, control module's preceding be equipped with capacitive screen 1, and the capacitive screen is embedded into the front of raman spectrum main part and leans on the below, and the capacitive screen has three auxiliary function button, is respectively: a return function key 6, a main page function key 7 and a menu function key 8, wherein a switch key 5 is arranged on the left side of the Raman spectrum main body and used for controlling a switch power supply of the Raman spectrometer; and a USB data interface is arranged on one side opposite to the top of the Raman spectrum main body and can be used for charging the Raman spectrometer and interacting data with a computer.
Furthermore, the signal acquisition processing module is connected with the control module through a data line, the control module is connected with the capacitive screen through a signal line, and the signal calculated by the signal acquisition processing module is filtered by the control module again to remove background noise and is displayed on the capacitive screen in a waveform form.
The control module is connected with a printer device (namely a micro-printing module) through a data line, Raman spectrum waveforms displayed on the capacitive screen can be stored in a picture file form or printed by clicking a button beside the capacitive screen, the printer device starts to print after obtaining picture information and a control instruction, and printed paper version waveforms can be printed out from the paper outlet so as to be visually observed.
The back of the Raman spectrum main body is provided with an LED lamp 9 for night operation; the rear camera 10 is arranged on the right side of the LED lamp 9 and parallel to the LED lamp, so that the special photographing requirement can be met; the rear half part of the back of the Raman spectrum main body is provided with an alarm loudspeaker 11 with a warning function, and when the detected substance is a harmful substance, the alarm loudspeaker can give out warning sound; an anti-slip pad 12 is arranged below the loudspeaker, so that the anti-slip function of the Raman spectrometer can be improved; the bottom of the Raman spectrum main body is provided with a pendant hole 13, so that the Raman spectrum main body is convenient to hang and carry.
Preferably, the adjusting module is a micro stepper motor.
Furthermore, the control module is also provided with a safety authentication module; the security authentication module is configured to determine whether the mobile terminal has an access right based on input information of the mobile terminal.
Specifically, the control module can carry a mobile phone android system, the android system is provided with a file management system, and besides the acquired Raman spectrum data, data shared by other devices (mobile phones or similar devices) can be stored.
Preferably, the control module has WIFI and/or Bluetooth wireless communication functions.
Furthermore, the charging mode of the intelligent handheld Raman spectrometer is divided into a USB charging mode and a wireless charging mode; the USB charger can be charged through a common USB wire, and the wireless charging is designed by adopting an electromagnetic induction principle and needs to be carried out by means of a special charging base; the charging base is internally provided with a power transmission coil, the Raman spectrometer is internally provided with a power receiving coil, when the power transmission coil is connected with alternating current with certain frequency, the alternating current magnetic field enables the power receiving coil to generate induced current, and therefore electric energy can be wirelessly supplied to the Raman spectrometer.
The USB interface at the bottom of the Raman spectrometer is connected with a computer end, so that files of the Raman spectrometer can be read out, and the Raman spectrometer has a charging function.
Furthermore, the laser module and the C signal acquisition and processing module are both provided with refrigeration pieces.
It should be noted that in the description of the present invention, the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc. indicating the directions or positional relationships are based on the directions or positional relationships shown in the drawings, which are only for convenience of description, and do not indicate or imply that the device or element must have a specific orientation, be constructed and operated in a specific orientation, and thus, should not be construed as limiting the present invention. Furthermore, the terms "first," "second," and "third" are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
Furthermore, it should be noted that, unless otherwise explicitly stated or limited in the description of the present invention, the terms "mounted," "connected" and "connected" are to be construed broadly and may be, for example, fixedly connected, detachably connected or integrally connected; can be mechanically or electrically connected; they may be connected directly or indirectly through intervening media, or they may be interconnected between two elements. The specific meaning of the above terms in the present invention can be understood by those skilled in the art according to specific situations.
The terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, article, or apparatus.
So far, the technical solutions of the present invention have been described in connection with the preferred embodiments shown in the drawings, but it is easily understood by those skilled in the art that the scope of the present invention is obviously not limited to these specific embodiments. Without departing from the principle of the present invention, a person skilled in the art can make equivalent changes or substitutions to the related technical features, and the technical solutions after these changes or substitutions will fall within the protection scope of the present invention.

Claims (10)

1. An intelligent handheld Raman spectrometer is characterized by comprising a Raman spectrum main body, a control module, a laser module, an optical path system, an adjusting module and a signal acquisition and processing module, wherein the control module, the laser module, the optical path system, the adjusting module and the signal acquisition and processing module are all arranged in the Raman spectrum main body;
the laser module, the light path system, the adjusting module and the signal acquisition and processing module are all in signal connection with the control module;
the light path system comprises a dichroic mirror and a Raman gathering lens, and the dichroic mirror and the Raman gathering lens are in signal connection with the adjusting module;
the end part of the Raman spectrum main body is provided with a laser lens;
the laser module is configured to emit a light beam; in a working state, the emitted light beam is reflected to a measured object through the light path system and the laser lens, and Raman light generated by interaction of the light beam received by the measured object and the measured object is collected to the signal acquisition processing module through the light path system again; the control module acquires the light path information of the light path system in real time so as to control the adjusting module to adjust the distance between the dichroic mirror and the Raman gathering lens in real time when the light path information is abnormal.
2. The intelligent handheld Raman spectrometer of claim 1, wherein a connecting piece fixed with the Raman spectrum main body is arranged at the bottom of the laser lens, a self-rotating external thread section is arranged at one end of the connecting piece, an accommodating chamber is arranged at the other end of the connecting piece, and a ball clamping limiting groove is arranged on the inner peripheral side of the accommodating chamber;
one end of the laser lens is arranged in the accommodating cavity, and a clamping ball matched with the clamping ball limiting groove is arranged on the peripheral side of the laser lens; a sampling and gathering lens is arranged in the other end of the laser lens;
a groove and a threaded hole matched with the self-rotating external threaded section are formed in the end part of the Raman spectrum main body, and the threaded hole is formed in one side of the groove;
when the laser lens is in a working state, the self-rotating external thread section is meshed with the threaded hole, the clamping ball is in a compressed state under the action of the clamping ball limiting groove, and the longitudinal axis of the laser lens is consistent with that of the Raman spectrum main body;
when the laser lens is in a non-working state, the clamping ball pops out of the clamping ball limiting groove, and the laser lens is horizontally placed to the groove in a rotating mode.
3. The intelligent handheld raman spectrometer of claim 2, wherein an open-close cover detachably disposed with the groove is further disposed outside the groove.
4. The intelligent handheld raman spectrometer of claim 1, wherein the signal acquisition and processing module comprises a CCD sensor and a CCD processor, the CCD processor being in signal connection with the CCD sensor;
the CCD sensor is configured to convert the Raman light signal into an electrical signal and send the electrical signal to the CCD processor;
the CCD processor is configured to process the electrical signal and transmit the processed electrical signal to the control module.
5. The intelligent handheld Raman spectrometer according to claim 4, wherein the optical path system further comprises a first optical fiber, a second optical fiber, a sampling and focusing lens, an optical filter and a focusing lens, and the laser emitted by the laser module is transmitted to the sampling and focusing lens through the first optical fiber and reaches an object to be measured; and Raman light generated by the reaction of the laser on the object to be measured and the chemical bond is transmitted to the second path of optical fiber through the sampling and gathering lens, then transmitted to the dichroic mirror through the optical filter and the gathering lens, and acquired by the CCD sensor through the Raman gathering lens.
6. The intelligent handheld Raman spectrometer of claim 3, wherein a human body proximity sensor is disposed inside the groove, and the human body proximity sensor is in signal connection with the control module;
the human body proximity sensor is configured to acquire human body information in a preset range in real time;
when the human body proximity sensor detects that human body information exists in a preset range, the control module controls the laser module to stop emitting laser.
7. The intelligent handheld Raman spectrometer of claim 1, wherein a micro-printing module in signal connection with the control module is disposed inside the Raman spectrum main body;
a roll paper accommodating chamber is formed in the Raman spectrum main body, and an openable printer upper cover is arranged on the outer side of the roll paper accommodating chamber;
the outside of stock form accommodation chamber still is provided with the exit slot, the exit slot with the printer upper cover borders on the setting.
8. The intelligent handheld raman spectrometer of claim 1, wherein the conditioning module is a micro stepper motor.
9. The intelligent handheld raman spectrometer of claim 1, wherein the control module is further provided with a security authentication module;
the security authentication module is configured to judge whether the mobile terminal has the access right based on the input information of the mobile terminal.
10. The intelligent handheld raman spectrometer of claim 9, wherein the control module has WIFI, and/or bluetooth wireless communication capabilities.
CN202220729666.0U 2022-03-30 2022-03-30 Intelligent handheld Raman spectrometer Active CN217059061U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202220729666.0U CN217059061U (en) 2022-03-30 2022-03-30 Intelligent handheld Raman spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202220729666.0U CN217059061U (en) 2022-03-30 2022-03-30 Intelligent handheld Raman spectrometer

Publications (1)

Publication Number Publication Date
CN217059061U true CN217059061U (en) 2022-07-26

Family

ID=82466610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202220729666.0U Active CN217059061U (en) 2022-03-30 2022-03-30 Intelligent handheld Raman spectrometer

Country Status (1)

Country Link
CN (1) CN217059061U (en)

Similar Documents

Publication Publication Date Title
US8873042B2 (en) Method for automatically calibrating a Raman spectrum detection system and Raman spectrum detection system
US9869636B2 (en) Device for evaluation of fluids using electromagnetic energy
KR101941135B1 (en) A universal rapid diagnostic test reader with trans-visual sensitivity
US9316581B2 (en) Method, apparatus, and article to facilitate evaluation of substances using electromagnetic energy
CN201819884U (en) Raman spectrum detection system
US9255900B2 (en) Hand held toxicity tester
CN107860473A (en) A kind of intelligent handhold spectrometer based on cloud data
CN105431727B (en) For exerting a force to the method and apparatus on sample to use electromechanical components to detect
EP3304013B1 (en) Improved raman spectroscopy system
US7714302B2 (en) Apparatus for detecting laser-stimulated luminescent radiation
US10007920B2 (en) Device and method for detection of counterfeit pharmaceuticals and/or drug packaging
KR101984016B1 (en) Spectrometer for object compositional analysis and electronic apparatus comprising the same
CN206540831U (en) handheld Raman spectrum detecting device
CN217059061U (en) Intelligent handheld Raman spectrometer
CN102608095A (en) Method for automatically calibrating Raman spectrum detection system by utilizing standard sample
CN114754871A (en) Intelligent handheld Raman spectrometer
CN110118766A (en) Hand-held general matter analysis system
EP2049877A2 (en) Programmable raman transducer
CN207600949U (en) A kind of modularization up-conversion fluorescence chromatographic test paper excitation apparatus
CN109688971B (en) Tartar detection device and toothbrush
US11946805B2 (en) Spectrometer apparatus and a corresponding method for operating a spectrometer apparatus
CN217277887U (en) Remote miniature Raman spectrometer with automatic protection function
KR101886348B1 (en) Handheld fluorescence reader
CN209485990U (en) A kind of desk-top Raman detector
CN208255076U (en) Dual-purpose type diamond detector

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant