CN216744811U - Refrigerant circulation system and air conditioning unit - Google Patents
Refrigerant circulation system and air conditioning unit Download PDFInfo
- Publication number
- CN216744811U CN216744811U CN202220181338.1U CN202220181338U CN216744811U CN 216744811 U CN216744811 U CN 216744811U CN 202220181338 U CN202220181338 U CN 202220181338U CN 216744811 U CN216744811 U CN 216744811U
- Authority
- CN
- China
- Prior art keywords
- heating mode
- circulation system
- refrigerant circulation
- compressor
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
本实用新型涉及一种冷媒循环系统和空调机组,其中冷媒循环系统包括压缩机和第一控制阀,压缩机包括进口和补气口,第一控制阀设置于补气口和进口之间的连接通路上,其中,冷媒循环系统具有第一加热模式,在第一加热模式下,第二膨胀阀关闭,第一膨胀阀和第一控制阀均打开,补气口、第一控制阀和进口依次连通形成第一自循环通路,用以提高压缩机的内部温度。
The utility model relates to a refrigerant circulation system and an air conditioning unit, wherein the refrigerant circulation system includes a compressor and a first control valve, the compressor includes an inlet and an air supply port, and the first control valve is arranged on the connection passage between the air supply port and the inlet , wherein the refrigerant circulation system has a first heating mode. In the first heating mode, the second expansion valve is closed, the first expansion valve and the first control valve are both open, and the air supply port, the first control valve and the inlet are connected in sequence to form the first expansion valve. A self-circulation passage for increasing the internal temperature of the compressor.
Description
技术领域technical field
本实用新型涉及空调技术领域,尤其涉及一种冷媒循环系统和空调机组。The utility model relates to the technical field of air conditioners, in particular to a refrigerant circulation system and an air conditioner unit.
背景技术Background technique
随着国家“碳中和”的不断深入与细化,光伏热泵多联机已成为节能减排的重要实现方式之一。由于光伏热泵多联机主要依靠“光变电”能源方式实现机组的运转,因此降低了国家电网的用电量,也降低了火力发电时碳的排放量。With the continuous deepening and refinement of the country's "carbon neutrality", the multi-connection of photovoltaic heat pumps has become one of the important ways to achieve energy conservation and emission reduction. Since the multi-connection of photovoltaic heat pumps mainly relies on the "photovoltaic conversion" energy method to realize the operation of the unit, the electricity consumption of the national grid is reduced, and the carbon emission during thermal power generation is also reduced.
但是,在实际使用过程中,光伏多联机经常出现长时间不制热的现象。However, in the actual use process, the photovoltaic multi-connection often does not heat for a long time.
需要说明的是,公开于本实用新型背景技术部分的信息仅仅旨在增加对本实用新型的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。It should be noted that the information disclosed in the background of the present utility model is only intended to increase the understanding of the general background of the present utility model, and should not be construed as an acknowledgement or implied in any form that the information constitutes the knowledge of those skilled in the art. well-known prior art.
实用新型内容Utility model content
本实用新型实施例提供一种冷媒循环系统和空调机组,解决相关技术中由于外机长时间处于低温环境、用户使用习惯制约或者外机中存留大量液态冷媒等原因造成的空调机组长时间不制热的问题。The embodiments of the present utility model provide a refrigerant circulation system and an air conditioning unit, which solve the problems in the related art that the air conditioning unit cannot be operated for a long time due to the outdoor unit being in a low temperature environment for a long time, the user's usage habits are restricted, or a large amount of liquid refrigerant is stored in the outer unit. heat problem.
根据本实用新型的第一个方面,提供一种冷媒循环系统,包括:According to the first aspect of the present utility model, a refrigerant circulation system is provided, comprising:
压缩机,包括进口和补气口;和compressors, including inlet and make-up ports; and
第一控制阀,设置于进口与补气口之间的连接通路上;The first control valve is arranged on the connection passage between the inlet and the air supply port;
其中,冷媒循环系统具有第一加热模式,在第一加热模式下,第一控制阀打开,补气口、第一控制阀和进口依次连通形成第一自循环通路。The refrigerant circulation system has a first heating mode. In the first heating mode, the first control valve is opened, and the air supply port, the first control valve and the inlet are connected in sequence to form a first self-circulation passage.
在一些实施例中,冷媒循环系统还包括设置于补气口和第一控制阀之间的第一膨胀阀。In some embodiments, the refrigerant circulation system further includes a first expansion valve disposed between the supplemental air port and the first control valve.
在一些实施例中,冷媒循环系统还包括室外换热器和气液分离器,压缩机还包括出口,在第一加热模式下,出口、室外换热器、第一控制阀、气液分离器和进口依次连通形成第二自循环通路。In some embodiments, the refrigerant circulation system further includes an outdoor heat exchanger and a gas-liquid separator, the compressor further includes an outlet, and in the first heating mode, the outlet, the outdoor heat exchanger, the first control valve, the gas-liquid separator and The inlets are connected in sequence to form a second self-circulation passage.
在一些实施例中,冷媒循环系统还包括供电源,压缩机包括转子和定子,冷媒循环系统具有第二加热模式,在第二加热模式下,供电源与定子电连通,以使定子的绕组通电并散发热量。In some embodiments, the refrigerant circulation system further includes a power supply, the compressor includes a rotor and a stator, the refrigerant circulation system has a second heating mode, and in the second heating mode, the power supply is in electrical communication with the stator to energize windings of the stator and dissipate heat.
在一些实施例中,冷媒循环系统还包括控制装置,控制装置与第一控制阀和供电源信号连接,控制装置用于将冷媒循环系统调节至第一加热模式或第二加热模式。In some embodiments, the refrigerant circulation system further includes a control device, the control device is signally connected to the first control valve and the power supply, and the control device is used to adjust the refrigerant circulation system to the first heating mode or the second heating mode.
在一些实施例中,冷媒循环系统还包括加热带,加热带包裹于冷媒循环系统的待加热部位的外周,冷媒循环系统具有第三加热模式,在第三加热模式下,加热带启动,以通过加热带对待加热部位进行加热。In some embodiments, the refrigerant circulation system further includes a heating belt, the heating belt is wrapped around the outer periphery of the part to be heated in the refrigerant circulation system, the refrigerant circulation system has a third heating mode, and in the third heating mode, the heating belt is activated to pass The heating belt heats the part to be heated.
在一些实施例中,待加热部位包括压缩机的底部;或者,冷媒循环系统还包括与出口连通的油气分离器,待加热部位包括油气分离器的底部;或者,冷媒循环系统还包括与进口连通的气液分离器,待加热部位包括气液分离器的底部。In some embodiments, the part to be heated includes the bottom of the compressor; or, the refrigerant circulation system further includes an oil-gas separator that communicates with the outlet, and the part to be heated includes the bottom of the oil-gas separator; or, the refrigerant circulation system further includes an oil-gas separator that communicates with the inlet. The gas-liquid separator, the part to be heated includes the bottom of the gas-liquid separator.
在一些实施例中,冷媒循环系统还包括控制装置,控制装置与第一控制阀和加热带信号连接,控制装置用于将冷媒循环系统调节至第一加热模式或者第三加热模式。In some embodiments, the refrigerant circulation system further includes a control device, the control device is signally connected to the first control valve and the heating belt, and the control device is used to adjust the refrigerant circulation system to the first heating mode or the third heating mode.
在一些实施例中,冷媒循环系统还包括控制装置和加热带,加热带包裹于冷媒循环系统的待加热部位的外周,冷媒循环系统具有第三加热模式,在第三加热模式下,加热带启动,以通过加热带对待加热部位进行加热,控制装置与第一控制阀、供电源和加热带信号连接,控制装置用于将冷媒循环系统调节至第一加热模式、第二加热模式或者第三加热模式。In some embodiments, the refrigerant circulation system further includes a control device and a heating belt, the heating belt is wrapped around the outer periphery of the part to be heated in the refrigerant circulation system, the refrigerant circulation system has a third heating mode, and in the third heating mode, the heating belt is activated , in order to heat the part to be heated by the heating belt, the control device is connected with the first control valve, the power supply and the heating belt signal, and the control device is used to adjust the refrigerant circulation system to the first heating mode, the second heating mode or the third heating mode model.
根据本实用新型的第二个方面,提供一种空调机组,包括上述的冷媒循环系统。According to a second aspect of the present invention, an air conditioning unit is provided, including the above-mentioned refrigerant circulation system.
基于上述技术方案,本实用新型实施例通过设置第一自循环通路,可以在室内机保持不工作的状态下,通过室外机的部分管路自循环,实现对压缩机的加热功能,有效提高压缩机的内部温度,快速驱动室外换热器等部件中存留的液态冷媒流动,从而在室外温度较低、用户习惯晚上关机或空调机组被长时间放置等情况出现时能够缩短空调机组开始制热的时间,也有利于保护压缩机,提高压缩机的使用寿命。Based on the above technical solutions, by setting the first self-circulation passage in the embodiment of the present invention, it is possible to realize the heating function of the compressor through the self-circulation of part of the pipeline of the outdoor unit when the indoor unit is kept in a non-working state, and effectively improve the compression rate. It can quickly drive the flow of the liquid refrigerant remaining in the outdoor heat exchanger and other components, so as to shorten the time for the air conditioning unit to start heating when the outdoor temperature is low, the user is accustomed to shutting down the air conditioning unit at night, or the air conditioning unit is left for a long time. Time is also conducive to protecting the compressor and improving the service life of the compressor.
附图说明Description of drawings
此处所说明的附图用来提供对本实用新型的进一步理解,构成本申请的一部分,本实用新型的示意性实施例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。在附图中:The accompanying drawings described here are used to provide further understanding of the present invention and constitute a part of the present application. The schematic embodiments and descriptions of the present invention are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached image:
图1为本实用新型冷媒循环系统一个实施例的原理图。FIG. 1 is a schematic diagram of an embodiment of the refrigerant circulation system of the present invention.
图2为本实用新型冷媒循环系统一个实施例的控制流程图。FIG. 2 is a control flow chart of an embodiment of the refrigerant circulation system of the present invention.
图3为本实用新型冷媒循环系统一个实施例中第二加热模式的控制流程图。FIG. 3 is a control flow chart of the second heating mode in an embodiment of the refrigerant circulation system of the present invention.
图中:In the picture:
1、压缩机;2、室内换热器;3、室外换热器;4、过冷器;5、第一膨胀阀;6、第一控制阀;7、第二膨胀阀;81、第一加热带;82、第二加热带;83、第三加热带;9、气液分离器;10、油气分离器;11、控制装置;12、光伏发电装置;13、负载;14、四通阀;15、第三膨胀阀;16、第四膨胀阀;17、第二控制阀;18、第三控制阀。1, compressor; 2, indoor heat exchanger; 3, outdoor heat exchanger; 4, subcooler; 5, first expansion valve; 6, first control valve; 7, second expansion valve; 81, first Heating belt; 82, second heating belt; 83, third heating belt; 9, gas-liquid separator; 10, oil and gas separator; 11, control device; 12, photovoltaic power generation device; 13, load; 14, four-way valve ; 15, the third expansion valve; 16, the fourth expansion valve; 17, the second control valve; 18, the third control valve.
具体实施方式Detailed ways
下面将结合本实用新型实施例中的附图,对实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。The technical solutions in the embodiments will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
在本实用新型的描述中,需要理解的是,术语“中心”、“横向”、“纵向”、“前”、“后”、“左”、“右”、“上”、“下”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型保护范围的限制。In the description of the present invention, it should be understood that the terms "center", "horizontal", "longitudinal", "front", "rear", "left", "right", "upper", "lower", The orientations or positional relationships indicated by "vertical", "horizontal", "top", "bottom", "inside", "outside", etc. are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present utility. The novel and simplified description does not indicate or imply that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as limiting the scope of protection of the present invention.
针对光伏多联机经常出现长时间不制热的现象,发明人进行了深入研究,发现出现这种现象的主要原因有:In view of the phenomenon that photovoltaic multi-connection often does not heat for a long time, the inventor has conducted in-depth research and found that the main reasons for this phenomenon are:
1、外机及管路长时间处于低温环境:多联机机组的外机一般都是放置在室外,且内外机连接管相对较长,尽管有保温棉包裹,但仍与低温环境直接接触;1. The outdoor unit and pipeline are in a low temperature environment for a long time: the outdoor unit of the multi-connected unit is generally placed outdoors, and the connecting pipe of the internal and external units is relatively long. Although it is wrapped with thermal insulation cotton, it is still in direct contact with the low temperature environment;
2、用户使用要求或习惯的制约:冬季气温偏低,有些商用场所会在下班后,将空调机组关机或是断电,直到次日白天再次开机,机组无法持续制热,机组快速冷却至环境温度,再次开机时机组长时间不制热;2. Restrictions by user requirements or habits: the temperature in winter is low, and some commercial places will shut down or power off the air conditioning unit after get off work until the next day when it is turned on again, the unit cannot continue to heat, and the unit quickly cools down to the environment temperature, the unit does not heat for a long time when it is turned on again;
3、长时间放置后,冷媒冷却,外机及长连管中存在大量液态冷媒,待次日开机后,首先要对外机及长连管中的液态冷媒进行加热,这个加热会很长,影响制热速度。3. After being placed for a long time, the refrigerant is cooled, and there is a large amount of liquid refrigerant in the external unit and the long connecting pipe. After starting the next day, the liquid refrigerant in the external unit and the long connecting pipe must be heated first. This heating will be very long and affect Heating speed.
基于以上发现,发明人认为,针对光伏热泵多联机机组长时间不制热的问题,最先要解决的是低温环境下长时间处于停机或断电状态的问题,具体分析如下:Based on the above findings, the inventor believes that for the problem that the photovoltaic heat pump multi-line unit does not heat for a long time, the first problem to be solved is the long-term shutdown or power-off state in a low temperature environment. The specific analysis is as follows:
A、低温不制热的原因:空气源热泵的制热是依靠压缩机产生高温高压的气态制冷剂,通过室内换热器将热量传递给室内。由于长时间低温放置后,大量冷媒变成了液态冷媒,压缩机产生的热量首先要对这部分液态冷媒进行加热,大大消耗了制热时间。而且,在极端低温情况下,由于环境温度低,造成系统低压过低,由于系统自身的保护功能会限制压缩机进一步升频,进一步造成制热的缓慢升温。A. Reasons for not heating at low temperature: The heating of the air source heat pump relies on the compressor to generate high temperature and high pressure gaseous refrigerant, and the heat is transferred to the room through the indoor heat exchanger. After being placed at a low temperature for a long time, a large amount of refrigerant becomes a liquid refrigerant, and the heat generated by the compressor must first heat this part of the liquid refrigerant, which greatly consumes the heating time. Moreover, in the case of extremely low temperature, due to the low ambient temperature, the low pressure of the system is too low, and the protection function of the system itself will limit the compressor to further increase the frequency, which will further cause the slow heating of the heating.
B、同时还会对压缩机造成较大的危害和影响:B. At the same time, it will also cause greater harm and impact on the compressor:
1、造成压缩机的润滑油被液态冷媒稀释,因液态冷媒不断向压缩机的内部迁移,且低温情况下,油与冷媒进行互溶,相当于稀释了油,因此会造成压缩启动时缺油,进而造成内部磨损;1. The lubricating oil of the compressor is diluted by the liquid refrigerant, because the liquid refrigerant continuously migrates to the inside of the compressor, and under the condition of low temperature, the oil and the refrigerant dissolve in each other, which is equivalent to diluting the oil, so it will cause oil shortage when the compression starts. resulting in internal wear;
2、延长达到制热效果的时间,由于首先要对液态冷媒进行加热,因此会直接影响舒适性;2. Extend the time to achieve the heating effect, because the liquid refrigerant must be heated first, so it will directly affect the comfort;
3、低温情况,也会造成油的粘度增大,进而造成压缩机内部磨损。3. The low temperature will also cause the viscosity of the oil to increase, which will cause the internal wear of the compressor.
比如,压缩机在低温待机阶段,随着压力及油温过热度的降低,油池中的制冷剂越多,溶解粘度越低,对压缩机的可靠性不利;在低温制热启动阶段,在启动时,压缩机的排气压力迅速上升,而压缩机的温度变化则相对较慢,因此启动后的一段时间内油温过热度较低;而在稳定运行阶段,压缩机的排油率较高,系统压差较大,存在无法顺利回油或液击的风险。For example, in the low temperature standby stage of the compressor, as the pressure and oil temperature superheat decrease, the more refrigerant in the oil pool, the lower the dissolved viscosity, which is detrimental to the reliability of the compressor; When starting, the discharge pressure of the compressor rises rapidly, and the temperature of the compressor changes relatively slowly, so the oil temperature superheat is low for a period of time after starting; while in the stable operation stage, the oil discharge rate of the compressor is relatively low. If the pressure is too high, the system pressure difference is large, and there is a risk of failure to return oil smoothly or liquid hammer.
为此,发明人对冷媒循环系统进行了改进。To this end, the inventor has improved the refrigerant circulation system.
如图1所示,在本实用新型提供的冷媒循环系统的一些实施例中,该冷媒循环系统包括压缩机1和第一控制阀6,压缩机1包括进口1a和补气口1c,第一控制阀6设置于进口1a与补气口1c之间的连接通路上。As shown in FIG. 1, in some embodiments of the refrigerant circulation system provided by the present invention, the refrigerant circulation system includes a
其中,冷媒循环系统具有第一加热模式,在第一加热模式下,第一控制阀6打开,补气口1c、第一控制阀6和进口1a依次连通形成第一自循环通路,冷媒循环系统中的冷媒在第一自循环通路中循环流动,以提高压缩机1的内部温度。Among them, the refrigerant circulation system has a first heating mode. In the first heating mode, the
在上述实施例中,通过设置第一自循环通路,可以在室内机保持不工作的状态下,通过室外机的部分管路自循环,实现对压缩机的加热功能,有效提高压缩机的内部温度,快速驱动室外换热器等部件中存留的液态冷媒流动,从而在室外温度较低、用户习惯晚上关机或冷媒循环系统被长时间放置等情况出现时能够缩短冷媒循环系统开始制热的时间,也有利于保护压缩机,提高压缩机的使用寿命。In the above embodiment, by setting the first self-circulation passage, the heating function of the compressor can be realized through the self-circulation of part of the pipeline of the outdoor unit when the indoor unit is kept in a non-working state, and the internal temperature of the compressor can be effectively increased , which can quickly drive the flow of the liquid refrigerant remaining in the outdoor heat exchanger and other components, so that the time for the refrigerant circulation system to start heating can be shortened when the outdoor temperature is low, the user is accustomed to shutting down at night, or the refrigerant circulation system is placed for a long time. It is also beneficial to protect the compressor and improve the service life of the compressor.
在一些实施例中,冷媒循环系统还包括第一膨胀阀5,第一膨胀阀5设置于补气口1c与第一控制阀6的连接通路上。通过设置第一膨胀阀5,可以用于改变第一自循环通路中的冷媒状态。In some embodiments, the refrigerant circulation system further includes a
在一些实施例中,冷媒循环系统还包括气液分离器9,气液分离器9的出口与压缩机1的进口1a连通。在第一自循环通路中,补气口1c、第一膨胀阀5、第一控制阀6、气液分离器9和进口1a依次连通.In some embodiments, the refrigerant circulation system further includes a gas-
在一些实施例中,冷媒循环系统还包括室外换热器3和气液分离器9,压缩机还包括出口1b,在第一加热模式下,出口1b、室外换热器3、第一控制阀6、气液分离器9和进口1a依次连通形成第二自循环通路。In some embodiments, the refrigerant circulation system further includes an
通过设置第二自循环通路,可以增大对压缩机1进行加热的流量,提高压缩机1的升温速度。By providing the second self-circulation passage, the flow rate for heating the
在一些实施例中,冷媒循环系统还包括室内换热器2和过冷器4,过冷器4连接于室内换热器2和室外换热器3之间,且过冷器4与压缩机1的补气口1c和进口1a分别连通。In some embodiments, the refrigerant circulation system further includes an
在一些实施例中,冷媒循环系统还包括第二膨胀阀7,第二膨胀阀7设置于过冷器4和室内换热器2之间的连接通路上。In some embodiments, the refrigerant circulation system further includes a
在一些实施例中,冷媒循环系统还包括供电源,压缩机1包括转子和定子,冷媒循环系统具有第二加热模式,在第二加热模式下,供电源与定子电连通,定子的绕组通电并散发热量,以提高压缩机1的内部温度。In some embodiments, the refrigerant circulation system further includes a power supply, the
通过设置供电源,可以在转子不动的情况下,通过给定子的绕组通电,使定子的绕组散发热量,用以加热压缩机1。By setting the power supply, the windings of the stator can be energized when the rotor does not move, so that the windings of the stator can dissipate heat to heat the
在一些实施例中,冷媒循环系统还包括控制装置11,控制装置11与第一控制阀6和供电源信号连接,控制装置11用于将冷媒循环系统调节至第一加热模式或第二加热模式。In some embodiments, the refrigerant circulation system further includes a
在一些实施例中,冷媒循环系统还包括加热带,加热带包裹于冷媒循环系统的待加热部位的外周,冷媒循环系统具有第三加热模式,在第三加热模式下,加热带启动,以通过加热带对待加热部位进行加热。In some embodiments, the refrigerant circulation system further includes a heating belt, the heating belt is wrapped around the outer periphery of the part to be heated in the refrigerant circulation system, the refrigerant circulation system has a third heating mode, and in the third heating mode, the heating belt is activated to pass The heating belt heats the part to be heated.
通过设置加热带,可以对待加热部位进行加热,从而提高压缩机的内部温度。By setting the heating belt, the part to be heated can be heated, thereby increasing the internal temperature of the compressor.
在一些实施例中,待加热部位包括压缩机1的底部;或者,冷媒循环系统还包括与出口1b连通的油气分离器10,待加热部位包括油气分离器10的底部;或者,冷媒循环系统还包括与进口1a连通的气液分离器9,待加热部位包括气液分离器9的底部。In some embodiments, the part to be heated includes the bottom of the
如图1所示,加热带包括第一加热带81、第二加热带82和第三加热带83,第一加热带81包裹于压缩机1的底部外周,第二加热带82包裹于气液分离器9的底部外周,第三加热带83包裹于油气分离器10的底部外周。As shown in FIG. 1 , the heating belt includes a
通过第一加热带81,可以直接对压缩机1进行加热,提高压缩机1的内部温度,使压缩机1内部的液态冷媒加速气化,提高冷媒循环系统的制热速度。通过第二加热带82可以对气液分离器9的底部进行加热,有利于加速气液分离器9内残留的冷媒的流动,进而加速压缩机1内冷媒的流动,提高压缩机1的内部温度。通过第三加热带83可以对油气分离器10的底部进行加热,有利于加速油气分离器10内残留的冷媒的流动,进而加速压缩机1内冷媒的流动,提高压缩机1的内部温度。The
在一些实施例中,冷媒循环系统还包括控制装置11,控制装置11与第一膨胀阀5、第一控制阀6、第二膨胀阀7和加热带信号连接,控制装置11用于将冷媒循环系统调节至第一加热模式或者第三加热模式。In some embodiments, the refrigerant circulation system further includes a
在一些实施例中,冷媒循环系统还包括控制装置11和加热带,加热带包裹于冷媒循环系统的待加热部位的外周,冷媒循环系统具有第三加热模式,在第三加热模式下,加热带启动,以通过加热带对待加热部位进行加热,控制装置11与第一控制阀6、供电源和加热带信号连接,控制装置11用于将冷媒循环系统调节至第一加热模式、第二加热模式或第三加热模式。In some embodiments, the refrigerant circulation system further includes a
在一些实施例中,可以同时打开第一加热模式和第三加热模式,或者同时打开第二加热模式和第三加热模式,第一加热模式和第二加热模式虽然不能同时使用,但是可以间隔使用。采用两种模式同时对压缩机1进行加热,从而有效提高加热效率,能够更加有效地缩短冷媒循环系统开始制热的时间。In some embodiments, the first heating mode and the third heating mode can be turned on at the same time, or the second heating mode and the third heating mode can be turned on at the same time. Although the first heating mode and the second heating mode cannot be used at the same time, they can be used at intervals . Using two modes to heat the
基于上述各个实施例中的冷媒循环系统,本实用新型还提供了一种空调机组,该空调机组包括上述的冷媒循环系统。Based on the refrigerant circulation systems in the above embodiments, the present invention further provides an air-conditioning unit, which includes the above-mentioned refrigerant circulation system.
本实用新型提供的冷媒循环系统的控制流程,包括:The control flow of the refrigerant circulation system provided by the utility model includes:
检测压缩机1的内部温度;Detect the internal temperature of
根据压缩机1的内部温度,选择加热模式;According to the internal temperature of
在选定的加热模式为第一加热模式时,打开第一控制阀6,使补气口1c、第一膨胀阀5、第一控制阀6和进口1a依次连通形成第一自循环通路,冷媒循环系统中的冷媒在第一自循环通路中循环流动。When the selected heating mode is the first heating mode, the
在一些实施例中,控制流程还包括:In some embodiments, the control flow further includes:
提供供电源,压缩机1包括转子和定子;To provide a power supply, the
在选定的加热模式为第二加热模式时,使供电源与定子电连通,定子的绕组通电并散发热量,以提高压缩机1的内部温度。When the selected heating mode is the second heating mode, the power supply is in electrical communication with the stator, the windings of the stator are energized and heat is dissipated, so as to increase the internal temperature of the
在一些实施例中,控制流程还包括:In some embodiments, the control flow further includes:
提供加热带,加热带包裹于冷媒循环系统的待加热部位的外周;Provide a heating belt, which is wrapped around the periphery of the part to be heated in the refrigerant circulation system;
在选定的加热模式为第三加热模式时,启动加热带,通过加热带对待加热部位进行加热。When the selected heating mode is the third heating mode, the heating belt is activated, and the part to be heated is heated by the heating belt.
在一些实施例中,根据压缩机1的内部温度,选择加热模式的操作包括:In some embodiments, according to the internal temperature of the
判断压缩机1的内部温度是否满足第一预设条件;Determine whether the internal temperature of the
当压缩机1的内部温度满足第一预设条件时,启动第二加热模式和第三加热模式;When the internal temperature of the
若不满足第一预设条件,则继续判断压缩机1的内部温度是否满足第二预设条件;If the first preset condition is not met, continue to judge whether the internal temperature of the
若满足第二预设条件,则启动第一加热模式和第三加热模式。If the second preset condition is satisfied, the first heating mode and the third heating mode are activated.
在一些实施例中,第一预设条件包括:在连续t2的时间内,压缩机1的内部温度大于或等于T2,且小于T1;第二预设条件包括:在连续t3的时间内,压缩机1的内部温度小于T2,其中,t1<t2<t3,T1>T2。In some embodiments, the first preset condition includes: in the continuous time of t2, the internal temperature of the
在一些实施例中,在判断压缩机1的内部温度是否满足第一预设条件之前,根据压缩机1的内部温度,选择加热模式的操作还包括:In some embodiments, before judging whether the internal temperature of the
判断冷媒循环系统是否满足第三预设条件;Determine whether the refrigerant circulation system satisfies the third preset condition;
当冷媒循环系统满足第三预设条件时,启动预热功能;When the refrigerant circulation system meets the third preset condition, start the preheating function;
预热功能开启后,判断压缩机1的内部温度是否满足第四预设条件;After the preheating function is turned on, determine whether the internal temperature of the
若压缩机1的内部温度满足第四预设条件,不启动任何加热模式;若压缩机1的内部温度不满足第四预设条件,则进入判断压缩机1的内部温度是否满足第一预设条件的步骤。If the internal temperature of the
在一些实施例中,冷媒循环系统包括提供电力的光伏发电装置12,第三预设条件包括:冷媒循环系统首次通电或者已通电且待机时间超过t0,而且光伏发电装置12发电电压不小于预设电压值;第四预设条件包括:在连续t1的时间内,压缩机1的内部温度不小于T1。In some embodiments, the refrigerant circulation system includes a photovoltaic
在一些实施例中,预设电压值可以为第一加热模式、第二加热模式或者第三加热模式启动时所需电压的90%。In some embodiments, the preset voltage value may be 90% of the voltage required when the first heating mode, the second heating mode or the third heating mode is activated.
在一些实施例中,根据压缩机1的内部温度,选择加热模式的操作还包括:In some embodiments, according to the internal temperature of the
启动第一加热模式和第三加热模式后,判断压缩机1的内部温度是否满足第五预设条件;After starting the first heating mode and the third heating mode, determine whether the internal temperature of the
在压缩机1的内部温度满足第五预设条件时,关闭预热功能。When the internal temperature of the
在一些实施例中,第五预设条件包括:In some embodiments, the fifth preset condition includes:
当第一加热模式和第三加热模式的工作时间达到t4时,压缩机1的内部温度与室外环境温度的差值大于T3;或者When the working time of the first heating mode and the third heating mode reaches t4, the difference between the internal temperature of the
在连续t4的时间内,压缩机1的内部温度不小于T4。During the continuous time of t4, the internal temperature of the
在一些实施例中,在第二加热模式下,控制流程还包括:In some embodiments, in the second heating mode, the control flow further includes:
当冷媒循环系统处于待机状态,室内机的制热需求为零,且压缩机1的连续停机时间小于t5时,则使供电源与定子之间的电连接断开;When the refrigerant circulation system is in the standby state, the heating demand of the indoor unit is zero, and the continuous shutdown time of the
当冷媒循环系统处于待机状态,在连续t6的时间内,压缩机1的内部温度大于或等于T5且小于T6,而且,压缩机1首次通电或者已通电且待机时间超过t7时,使供电源与定子电连通。When the refrigerant circulation system is in the standby state, the internal temperature of the
在一些实施例中,在第二加热模式下,控制流程还包括:In some embodiments, in the second heating mode, the control flow further includes:
启动第二加热模式后,在测量压缩机1的内部温度之前或者当压缩机1的内部温度与室外环境温度的差值不大于T7时,定子的绕组的通电电流满足:A1=a*T02+b*T0+c,其中T0为室外环境温度,a、b和c均为常数;After starting the second heating mode, before measuring the internal temperature of the
当压缩机1的内部温度与室外环境温度的差值大于T7时,定子的绕组的通电电流满足:A2=A0*(1+d),其中,A0为当前电流大小,d为压缩机1的内部温度的周期变换量,且d为常数。When the difference between the internal temperature of the
在本实用新型提供的各个实施例中,压缩机1的内部温度可以为压缩机1的顶部温度,压缩机1的顶部可以更加准确地反映压缩机1内部的实际温度,而且便于测量。In each embodiment provided by the present invention, the internal temperature of the
下面结合附图1和2对本实用新型冷媒循环系统和空调机组一个实施例的工作过程进行说明:Below in conjunction with accompanying drawing 1 and 2, the working process of one embodiment of the utility model refrigerant circulation system and air-conditioning unit will be described:
如图1所示,室外机包括压缩机1、室外换热器3、过冷器4、第一膨胀阀5、第一控制阀6、气液分离器9、油气分离器10、四通阀14、第三膨胀阀15和第四膨胀阀16。室内机包括多个室内换热器2和对应设置的多个第二膨胀阀7。压缩机1的底部外周包裹有第一加热带81。气液分离器9的底部外周包裹有第二加热带82。油气分离器10的底部外周包裹有第三加热带83。室内机和室外机之间的连接管路上设有第二控制阀17和第三控制阀18。As shown in Figure 1, the outdoor unit includes a
空调机组还包括控制装置11、光伏发电装置12和负载13。光伏发电装置12可以为空调机组提供电力。负载13可以为与控制装置11信号连接的部件,控制装置11可以对这些部件进行电气控制,比如,负载13可以为第一膨胀阀5、第二膨胀阀7、第三膨胀阀15、第四膨胀阀16、第一控制阀6、第二控制阀17、第三控制阀18、第一加热带81、第二加热带82和第三加热带83等。The air conditioning unit further includes a
在本实施例中,压缩机1为喷焓涡旋压缩机,其静涡盘的中间位置设有中压喷焓口,通过该补气口1c,可以吸入一部分中间压力的气体,与经过部分压缩的冷媒混合再压缩,以单台压缩机实现两级压缩,增加了冷凝器中的制冷剂流量,加大了主循环回路的焓差,从而大大提高压缩机的效率。In this embodiment, the
压缩机的定子绕组还可以通以励磁电流,即当转子不转动时,通过给定子绕组通电而使定子产生电磁热量,用以加热压缩机内部温度。The stator winding of the compressor can also be energized with excitation current, that is, when the rotor is not rotating, the stator can generate electromagnetic heat by energizing the stator winding to heat the internal temperature of the compressor.
当定子加热与加热带的生热量较慢后,可以启动压缩机1,通过第一自循环通路和第二自循环通路实现内部制冷剂循环产生热量,实现对压缩机1的加热。When the stator heating and the heat generation of the heating belt are relatively slow, the
如图1所示,在开启第一加热模式时,第一膨胀阀5开至最大开度;第一控制阀6处于上电状态,即开启状态;四通阀14处于断电状态,即关闭状态;第三膨胀阀15和第四膨胀阀16开至最大开度;第二膨胀阀7的开度开至零。压缩机1可以默认以H1运行,当压缩机1在连续一段时间内,高压传感器的检测温度不小于X1或低压传感器的检测温度不大于X2,则压缩机1的运行频率每次降低△H,但最低运行频率不低于H1。As shown in FIG. 1 , when the first heating mode is turned on, the
第一自循环通路的路径为:The path of the first self-circulation path is:
从压缩机1的补气进口1c喷出,到第一膨胀阀5,到第一控制阀6,再到气液分离器9,最后到压缩机1的吸气口。It is ejected from the
第二自循环通路的路径为:The path of the second self-circulation path is:
从压缩机的排气口喷出,到四通阀14,到室外换热器3,再到第四膨胀阀16,经过冷器4到第一控制阀6,再到气液分离器9,最后到压缩机1的吸气口。From the exhaust port of the compressor, it goes to the four-
对空调机组进行控制时,可以单独使用第一加热模式、第二加热模式或第三加热模式,也可以使用第一加热模式、第二加热模式和第三加热模式的组合模式,组合模式包括第一加热模式和第二加热模式的组合、第一加热模式和第三加热模式的组合、第二加热模式和第三加热模式的组合以及第一加热模式、第二加热模式和第三加热模式的组合。其中,第一加热模式和第三加热模式可以同时开启,第二加热模式和第三加热模式也可以同时开启,第一加热模式和第二加热模式虽然不能同时开启,但是可以间隔开启。When controlling the air-conditioning unit, the first heating mode, the second heating mode or the third heating mode can be used alone, or the combined mode of the first heating mode, the second heating mode and the third heating mode can be used, and the combined mode includes the first heating mode, the second heating mode and the third heating mode. A combination of a heating mode and a second heating mode, a combination of a first heating mode and a third heating mode, a combination of a second heating mode and a third heating mode, and a combination of the first heating mode, the second heating mode and the third heating mode combination. The first heating mode and the third heating mode can be turned on at the same time, and the second heating mode and the third heating mode can also be turned on at the same time. Although the first heating mode and the second heating mode cannot be turned on at the same time, they can be turned on at intervals.
比如,在一个实施例中,可以先同时启动第二加热模式和第三加热模式,这样可以通过双热源加热,有效提高加热效率,将存留于压缩机1底部的冷媒加热从油中析出;然后,在默认时间内,如果加热效果不明显,可以关闭第二加热模式,启动第一加热模式,通过压缩机自循环加热后的生热量高于定子加热,此时通过第一加热模式与第三加热模式双热源加热,可以进一步提高加热温度。压缩机自循环加热的原理与蒸汽压缩式制冷原理一致,即冷凝热一部分为电机耗功生热,另一部分为对气体压缩生热。For example, in one embodiment, the second heating mode and the third heating mode can be activated at the same time, which can effectively improve the heating efficiency through dual heat source heating, and heat the refrigerant stored at the bottom of the
下面介绍该实施例的工作过程:The working process of this embodiment is described below:
参考图2所示,当空调机组首次通电或者已通电且待机时间超过t0,而且光伏发电装置12发电电压不小于第一加热模式、第二加热模式或第三加热模式启动时所需电压的90%时,启动预热功能;Referring to Figure 2, when the air conditioner is powered on for the first time or has been powered on and the standby time exceeds t0, and the photovoltaic
预热功能开启后:After the preheat function is turned on:
1、若在连续t1的时间内,压缩机1的顶部温度不小于T1,则不启动任何加热模式;1. If the temperature of the top of the
2、若在连续t2的时间内,压缩机1的顶部温度大于或等于T2,且小于T1,则同时启动第二加热模式和第三加热模式;2. If the temperature of the top of the
3、若在连续t3的时间内,压缩机1的顶部温度小于T2,则同时启动第一加热模式和第三加热模式。3. If the temperature of the top of the
当空调机组满足以下两个条件中的任意一个时,关闭预热功能:When the air conditioning unit meets either of the following two conditions, the preheating function is turned off:
1当第一加热模式和第三加热模式的工作时间达到t4时,压缩机1的顶部温度与室外环境温度的差值大于T3;1 When the working time of the first heating mode and the third heating mode reaches t4, the difference between the top temperature of the
2在连续t4的时间内,压缩机1的顶部温度不小于T4。2. During the continuous time of t4, the temperature of the top of the
其中,如图3所示,关于第二加热模式的控制原理为:Among them, as shown in Figure 3, the control principle of the second heating mode is:
在进入第二加热模式的控制流程后,当空调机组处于待机状态,室内机的制热需求为零,且压缩机1的连续停机时间小于t5时,则使供电源与定子之间的电连接断开,即第二加热模式为关闭状态;After entering the control flow of the second heating mode, when the air conditioning unit is in the standby state, the heating demand of the indoor unit is zero, and the continuous shutdown time of the
当空调机组处于待机状态,在连续t6的时间内,压缩机1的顶部温度大于或等于T5且小于T6,而且,压缩机1首次通电或者已通电且待机时间超过t7时,使供电源与定子电连通,启动第二加热模式。When the air-conditioning unit is in the standby state, the top temperature of the
启动第二加热模式后,在测量压缩机1的内部温度之前或者当压缩机1的顶部温度与室外环境温度的差值不大于T7时,定子的绕组的通电电流满足:A1=a*T02+b*T0+c,其中T0为室外环境温度,a、b和c均为常数,比如,a=0.03,b=0.07,c=15;After starting the second heating mode, before measuring the internal temperature of the
当压缩机1的顶部温度与室外环境温度的差值大于T7时,定子的绕组的通电电流满足:A2=A0*(1+d),其中,A0为当前电流大小,d为压缩机1的内部温度的周期变换量,且d为常数,比如d=0.1。When the difference between the top temperature of
通过对本实用新型冷媒循环系统和空调机组多个实施例的说明,可以看到本实用新型冷媒循环系统和空调机组实施例增设了压缩机预热控制功能,可以有效提升压缩机的可靠性与使用寿命。Through the description of the various embodiments of the refrigerant circulation system and the air conditioning unit of the present invention, it can be seen that the compressor preheating control function is added to the embodiment of the refrigerant circulation system and the air conditioning unit of the present invention, which can effectively improve the reliability and use of the compressor. life.
本实用新型提供的空调机组可以为多联机,比如光伏多联机,也可以为其他结构的机组。由于光伏电来自太阳能,因此光伏多联机可以利用光伏电维持自身运转及实现预热功能,而不用消耗电网的电能。利用光伏多联机自身的预热功能,可以提高整机的可靠性,延长压缩机的使用寿命,加快低温下达到制热效果的时间。The air-conditioning unit provided by the utility model can be multi-connected, such as photovoltaic multi-connected, or can be a unit with other structures. Since the photovoltaic power comes from the sun, the photovoltaic multi-line can use the photovoltaic power to maintain its own operation and realize the preheating function without consuming the power of the grid. Using the preheating function of the photovoltaic multi-line itself can improve the reliability of the whole machine, prolong the service life of the compressor, and speed up the time to achieve the heating effect at low temperature.
最后应当说明的是:以上实施例仅用以说明本实用新型的技术方案而非对其限制;尽管参照较佳实施例对本实用新型进行了详细的说明,所属领域的普通技术人员应当理解:在不脱离本实用新型原理的前提下,依然可以对本实用新型的具体实施方式进行修改或者对部分技术特征进行等同替换,这些修改和等同替换均应涵盖在本实用新型请求保护的技术方案范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present utility model rather than limit them; although the present utility model has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that: Under the premise of not departing from the principles of the present invention, the specific embodiments of the present invention can still be modified or some technical features can be equivalently replaced, and these modifications and equivalent replacements should all be included in the scope of the technical solutions claimed by the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220181338.1U CN216744811U (en) | 2022-01-21 | 2022-01-21 | Refrigerant circulation system and air conditioning unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220181338.1U CN216744811U (en) | 2022-01-21 | 2022-01-21 | Refrigerant circulation system and air conditioning unit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN216744811U true CN216744811U (en) | 2022-06-14 |
Family
ID=81916306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220181338.1U Withdrawn - After Issue CN216744811U (en) | 2022-01-21 | 2022-01-21 | Refrigerant circulation system and air conditioning unit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN216744811U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114234385A (en) * | 2022-01-21 | 2022-03-25 | 珠海格力节能环保制冷技术研究中心有限公司 | Refrigerant circulating system, control method thereof and air conditioning unit |
CN115900021A (en) * | 2022-11-28 | 2023-04-04 | 海信空调有限公司 | Air conditioner and control method thereof |
-
2022
- 2022-01-21 CN CN202220181338.1U patent/CN216744811U/en not_active Withdrawn - After Issue
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114234385A (en) * | 2022-01-21 | 2022-03-25 | 珠海格力节能环保制冷技术研究中心有限公司 | Refrigerant circulating system, control method thereof and air conditioning unit |
CN114234385B (en) * | 2022-01-21 | 2025-03-04 | 珠海格力节能环保制冷技术研究中心有限公司 | Refrigerant circulation system and control method thereof, and air conditioning unit |
CN115900021A (en) * | 2022-11-28 | 2023-04-04 | 海信空调有限公司 | Air conditioner and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111720901B (en) | Air conditioner outdoor unit, air conditioner equipment and control method | |
CN216744811U (en) | Refrigerant circulation system and air conditioning unit | |
CN101846389B (en) | Air source heat pump water heater | |
CN107906640B (en) | Integrated cold accumulation air-conditioning system for data center and control method thereof | |
CN101929752A (en) | Refrigerant cycle natural cooling base station air conditioner and implementation method thereof | |
CN201885479U (en) | Variable frequency air cooling cold and hot water unit | |
CN201522101U (en) | Air source heat pump water heater | |
CN109210829B (en) | Multifunctional heat pump system | |
CN201539970U (en) | Water source heat pump water heater | |
WO2025092854A1 (en) | Air conditioning system and control method therefor | |
CN110986406A (en) | Multi-connection VRV device, control method and system for computer room | |
CN101440976A (en) | Energy storage enthalpy increasing heat pump heat supply system | |
CN211739528U (en) | Multi-split VRV device for machine room | |
CN100516676C (en) | Control method of energy-storage engine-driven air-conditioning device | |
CN103032938A (en) | Air conditioner and control method thereof | |
CN207865749U (en) | A kind of underload energy-saving air conditioning system | |
CN113639385B (en) | Air conditioner and control method thereof | |
CN114383334B (en) | Control method of refrigerant circulation system | |
CN114234385B (en) | Refrigerant circulation system and control method thereof, and air conditioning unit | |
CN213020412U (en) | Novel ground source heat pump unit | |
CN114754505A (en) | Cascade heat pump system and compressor control method thereof | |
CN220818126U (en) | Air conditioning system | |
CN221666323U (en) | An energy-saving variable frequency vortex air cooling and heat pump unit | |
CN118168071B (en) | Bidirectional heat balance energy recovery type energy storage energy-saving air conditioner host and working flow | |
CN216592044U (en) | Control device of evaporative cooling and mechanical refrigeration combined cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20220614 Effective date of abandoning: 20250304 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20220614 Effective date of abandoning: 20250304 |
|
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |