CN216560249U - 一种光纤光声气体传感系统 - Google Patents

一种光纤光声气体传感系统 Download PDF

Info

Publication number
CN216560249U
CN216560249U CN202122837284.8U CN202122837284U CN216560249U CN 216560249 U CN216560249 U CN 216560249U CN 202122837284 U CN202122837284 U CN 202122837284U CN 216560249 U CN216560249 U CN 216560249U
Authority
CN
China
Prior art keywords
optical fiber
photoacoustic gas
photoacoustic
sensing system
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202122837284.8U
Other languages
English (en)
Inventor
马凤翔
陈珂
朱太云
李辰溪
赵新瑜
赵跃
朱峰
杭忱
袁小芳
曹骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd
Original Assignee
Dalian University of Technology
Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology, Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd filed Critical Dalian University of Technology
Priority to CN202122837284.8U priority Critical patent/CN216560249U/zh
Application granted granted Critical
Publication of CN216560249U publication Critical patent/CN216560249U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型公开了一种光纤光声气体传感系统,包括光纤光声气体传感器、窄线宽光源、掺铒光纤放大器、光纤、光纤耦合器、宽谱光源、解调仪和上位机,所述光纤光声气体传感器包括两个法布里‑珀罗腔,所述窄线宽光源输出特定波长的激光并通过掺铒光纤放大器进行光放大,放大后的激光经过光纤传输到光纤光声气体传感器中,目标气体在光纤光声气体传感器中发生光声效应,宽谱光源发出的宽谱光经过光纤耦合器后进入到光纤光声气体传感器,返回的干涉信号经由光纤耦合器传输到解调仪,解调仪将信号传输给上位机进行显示;本实用新型的优点在于:提供一种光纤光声气体传感系统。

Description

一种光纤光声气体传感系统
技术领域
本实用新型涉及光学微量气体检测技术领域,更具体涉及一种光纤光声气体传感系统。
背景技术
微量气体检测技术可用于气体泄漏监测、变压器油中溶解气体分析、气体绝缘设备的特征气体分析等应用中。光声光谱气体检测方法由于其气体选择性强、灵敏度高、本质安全和响应速度快等特点,在电力、化工和医疗等领域已成为一种极具竞争力的气体检测技术。
光声光谱气体检测技术是一种利用光声效应测量气体浓度的方法,气体光声效应是指气体分子吸收光能产生周期性无辐射弛豫的现象,在宏观上表现为气体压力的周期性变化。光声光谱气体检测技术是一种间接吸收光谱测量方法,依据气体光声效应,通过光声池将气体吸收的光能转换为声压力波信号,再利用光纤光声传感器对声波信号进行检测,从而测定目标气体的浓度。由于光声光谱气体测量技术无背景的光谱测量的优势,可以实现极高的极限检测灵敏度,基于光声光谱气体测量技术的光纤气体传感系统属于行业研究热点。
实用新型内容
本实用新型所要解决的技术问题在于提供一种基于光声光谱气体测量技术的光纤气体传感系统。
本实用新型通过以下技术手段实现解决上述技术问题的:一种光纤光声气体传感系统,包括光纤光声气体传感器、窄线宽光源、掺铒光纤放大器、光纤、光纤耦合器、宽谱光源、解调仪和上位机,所述光纤光声气体传感器包括两个法布里-珀罗腔,所述窄线宽光源输出特定波长的激光并通过掺铒光纤放大器进行光放大,放大后的激光经过光纤传输到光纤光声气体传感器中,目标气体在光纤光声气体传感器中发生光声效应,宽谱光源发出的宽谱光经过光纤耦合器后进入到光纤光声气体传感器,返回的干涉信号经由光纤耦合器传输到解调仪,解调仪将信号传输给上位机进行显示。
本实用新型提供一种基于光声光谱气体测量技术的光纤气体传感系统,目标气体在光纤光声气体传感器中发生光声效应,宽谱光源发出的宽谱光经过光纤耦合器后进入到光纤光声气体传感器,返回的干涉信号经由光纤耦合器传输到解调仪,解调仪将信号传输给上位机进行显示。
进一步地,所述光纤光声气体传感器包含2个光纤陶瓷插针、1个扩散孔、2个声波敏感膜片、1个光声气室、2个平面反射镜和1个外壳,所述2个光纤陶瓷插针平行设置于外壳内部的左侧,与2个光纤陶瓷插针的右端面垂直的设置一个声波敏感膜片,该声波敏感膜片的右侧预设距离平行设置另外一个声波敏感膜片,两个声波敏感膜片之间形成光声气室,光声气室的上方竖直向上设置扩散孔,所述扩散孔与外界连通,所述2个平面反射镜呈预设角度放置在外壳内部的右侧且夹角正对着所述声波敏感膜片。
所述目标气体经扩散孔扩散进入到光声气室内,窄线宽光源发射的光束经上方的光纤陶瓷插针入射到光声气室内激发产光声效应,下方的光纤陶瓷插针与两个声波敏感膜片的内表面分别构成两个法布里-珀罗腔,光声效应使光声气室内气体发生周期性热膨胀,使声波敏感膜片发生受迫振动,从而引起法布里-珀罗腔的腔长变化。
进一步地,所述声波敏感膜片是透明薄膜,且两个声波敏感膜片的右侧表面均镀有增透膜。
进一步地,所述2个声波敏感膜片直径均为8~12mm且2个声波敏感膜片的间距0.4~0.6mm。
进一步地,所述光声气室的直径为8~12mm,高度为0.4~0.6mm。
进一步地,位于外壳下方的光纤陶瓷插针对准声波敏感膜片的中心位置。
进一步地,窄线宽光源是中心波长为1532.6nm,波长可调谐范围为0.6nm的DFB激光器。
进一步地,所述掺铒光纤放大器的最大输出功率为400mW。
进一步地,所述扩散孔的直径为0.1~0.3mm。
进一步地,所述两个平面反射镜呈直角放置。
本实用新型的优点在于:
(1)本实用新型提供一种基于光声光谱气体测量技术的光纤气体传感系统,目标气体在光纤光声气体传感器中发生光声效应,宽谱光源发出的宽谱光经过光纤耦合器后进入到光纤光声气体传感器,返回的干涉信号经由光纤耦合器传输到解调仪,解调仪将信号传输给上位机进行显示。
(2)本实用新型目标气体在光纤光声气体传感器中发生光声效应,不存在暴露在外的声音敏感元件,不容易受到机械损伤,从而不影响传感器的寿命。
附图说明
图1为本实用新型实施例所公开的一种光纤光声气体传感系统的系统结构示意图。
图2为本实用新型实施例所公开的一种光纤光声气体传感系统中光纤光声气体传感器的结构示意图。
图中:1光纤光声气体传感器;2驱动电路;3窄线宽光源;4掺铒光纤放大器;5光纤;6光纤耦合器;7宽谱光源;8解调仪;9上位机;10光纤陶瓷插针;11扩散孔;12声波敏感膜片;13光声气室;14平面反射镜;15外壳。
具体实施方式
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
如图1所示,一种光纤光声气体传感系统,包括光纤光声气体传感器1、驱动电路2、窄线宽光源3、掺铒光纤放大器4、光纤5、光纤耦合器6、宽谱光源7、解调仪8和上位机9。
结合图2,所述光纤光声气体传感器1包含2个光纤陶瓷插针10、1个扩散孔11、2个声波敏感膜片12、1个光声气室13、2个平面反射镜14和1个外壳15,所述2个光纤陶瓷插针10平行设置于外壳15内部的左侧,与2个光纤陶瓷插针10的右端面垂直的设置一个声波敏感膜片12,该声波敏感膜片12的右侧预设距离平行设置另外一个声波敏感膜片12,两个声波敏感膜片12之间形成光声气室13,光声气室13的上方竖直向上设置扩散孔11,所述扩散孔11与外界连通,所述2个平面反射镜14呈预设角度放置在外壳15内部的右侧且夹角正对着所述声波敏感膜片12。所述目标气体经扩散孔11扩散进入到光声气室13内,窄线宽光源3发射的光束经上方的光纤陶瓷插针10入射到光声气室13内激发产光声效应,下方的光纤陶瓷插针10与两个声波敏感膜片12的内表面分别构成两个法布里-珀罗腔,光声效应使光声气室13内气体发生周期性热膨胀,使声波敏感膜片12发生受迫振动,从而引起法布里-珀罗腔的腔长变化。位于外壳15下方的光纤陶瓷插针10对准声波敏感膜片12的中心位置。发生光声效应的光声气室13直径为10mm,高度为0.5mm;待测气体通过扩散孔11进入到光声气室13中,扩散孔11直径为0.2mm,用于隔绝环境中的高频噪声。
继续参阅图1,窄线宽光源3是中心波长为1532.6nm、波长可调谐范围为0.6nm的DFB激光器,在驱动电路2的调制下发出特定波长的激光,由最大输出功率400mW的掺铒光纤放大器4进行光放大;放大后的激光通过光纤5传输到光纤光声气体传感器1中,在光声气室13内发生光声效应;宽谱光源7发出的宽谱光经过光纤耦合器6后,通过位于声波敏感膜片12中心位置的光纤陶瓷插针10进入到光纤光声气体传感器1,再将携带干涉信息的光重新耦合到光纤陶瓷插针10,进入光纤耦合器6后传输到解调仪8进行信号处理,最后将信号传输给上位机9进行处理和显示。
其中,所述声波敏感膜片12是透明薄膜,且两个声波敏感膜片12的右侧表面均镀有增透膜,尽可能的降低远端反射面引起的干扰,提高光纤光声气体传感器1的光谱采集信噪比。声波敏感膜片12直径为10mm,两膜片间距0.5mm;扩散孔11用于连接光声气室13与外界环境并且隔离外界高频噪声,扩散孔11直径为0.2mm;两个平面反射镜14呈直角放置,激发光透过声波敏感膜片12后由两面反射镜反射回到光声气室13中,所述的两个平面反射镜14呈90°放置,激励光经两次反射后返回到光声气室13内,有利于增加气体吸收程,加强光声信号,同时,改变激光路径可以有效避免入射后的激光通过光纤5返回后对仪器造成损坏。
所述法布里-珀罗腔对应的干涉谱表示为:
Figure BDA0003361760500000061
其中,I0(λ)为入射光的功率谱,γ为条纹精细度,d0为静态F-P腔长,λ为入射光波长,Δd为动态腔长变化量。当光声信号作用于两个声波敏感膜片12时,F-P腔(法布里-珀罗腔)的腔长会随着声波敏感膜片12的受迫振动发生变化,动态腔长变化量Δd与声波强度成正比。利用白光干涉解调技术从F-P干涉光谱中解调腔长信息即可得到声波信息,进而获取气体的浓度信息。
目标气体由扩散孔11进入到光声气室13内,被调制的光声激发光经掺铒光纤激光放大器后通过上方的光纤陶瓷插针10入射到光声气室13内,照射目标气体。目标气体在激发光的照射下发生光声效应,引起光声气室13内气体的周期性热膨胀。两个声波敏感膜片12在光声信号的作用下发生受迫振动,且振动方向相反。当外界的振动和噪声作用于光纤光声气体传感器1上时,同样会引起声波敏感膜片12的振动,但此时两个声波敏感膜片12振动方向相同。在声波敏感膜片12发生受迫振动时,两个F-P腔的腔长信息会同时耦合进光纤陶瓷插针10,并传输给解调仪8。将两个腔长携带的光声信号及振动、噪声信息相减,会使得光声信号的强度叠加,同时使振动与噪声信号相消,在增强光声信号的同时实现了抗干扰。同时,利用扩散孔11结合外壳15的结构,外部高频率的噪声也能有效被隔离,进一步降低噪声对气体浓度测量的干扰。
需要说明的是,本实用新型只保护硬件架构,对于法布里-珀罗腔对应的干涉谱的解调过程以及对振动、噪声等处理均不做保护。
以上实施例仅用以说明本实用新型的技术方案,而非对其限制;尽管参照前述实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的精神和范围。

Claims (10)

1.一种光纤光声气体传感系统,其特征在于,包括用于接收目标气体并发生光声效应及接收宽谱光并原路返回干涉信号的光纤光声气体传感器、用于输出特定波长的激光的窄线宽光源、用于光放大的掺铒光纤放大器、光纤、光纤耦合器、用于发出宽谱光的宽谱光源、解调仪和上位机,所述光纤光声气体传感器包括两个法布里-珀罗腔,所述窄线宽光源、掺铒光纤放大器、光纤、光纤光声气体传感器顺序连接,宽谱光源、光纤耦合器及光纤光声气体传感器顺序连接,光纤光声气体传感器、光纤耦合器及解调仪顺序连接,解调仪与上位机连接。
2.根据权利要求1所述的一种光纤光声气体传感系统,其特征在于,所述光纤光声气体传感器包含2个光纤陶瓷插针、1个扩散孔、2个声波敏感膜片、1个光声气室、2个平面反射镜和1个外壳,所述2个光纤陶瓷插针平行设置于外壳内部的左侧,与2个光纤陶瓷插针的右端面垂直的设置一个声波敏感膜片,该声波敏感膜片的右侧预设距离平行设置另外一个声波敏感膜片,两个声波敏感膜片之间形成光声气室,光声气室的上方竖直向上设置扩散孔,所述扩散孔与外界连通,所述2个平面反射镜呈预设角度放置在外壳内部的右侧且夹角正对着所述声波敏感膜片。
3.根据权利要求2所述的一种光纤光声气体传感系统,其特征在于,所述声波敏感膜片是透明薄膜,且两个声波敏感膜片的右侧表面均镀有增透膜。
4.根据权利要求2所述的一种光纤光声气体传感系统,其特征在于,所述2个声波敏感膜片直径均为8~12mm且2个声波敏感膜片的间距0.4~0.6mm。
5.根据权利要求2所述的一种光纤光声气体传感系统,其特征在于,所述光声气室的直径为8~12mm,高度为0.4~0.6mm。
6.根据权利要求2所述的一种光纤光声气体传感系统,其特征在于,位于外壳下方的光纤陶瓷插针对准声波敏感膜片的中心位置。
7.根据权利要求2所述的一种光纤光声气体传感系统,其特征在于,所述窄线宽光源是中心波长为1532.6nm,波长可调谐范围为0.6nm的DFB激光器。
8.根据权利要求2所述的一种光纤光声气体传感系统,其特征在于,所述掺铒光纤放大器的最大输出功率为400mW。
9.根据权利要求2所述的一种光纤光声气体传感系统,其特征在于,所述扩散孔的直径为0.1~0.3mm。
10.根据权利要求2所述的一种光纤光声气体传感系统,其特征在于,所述两个平面反射镜呈直角放置。
CN202122837284.8U 2021-11-18 2021-11-18 一种光纤光声气体传感系统 Active CN216560249U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202122837284.8U CN216560249U (zh) 2021-11-18 2021-11-18 一种光纤光声气体传感系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202122837284.8U CN216560249U (zh) 2021-11-18 2021-11-18 一种光纤光声气体传感系统

Publications (1)

Publication Number Publication Date
CN216560249U true CN216560249U (zh) 2022-05-17

Family

ID=81573593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202122837284.8U Active CN216560249U (zh) 2021-11-18 2021-11-18 一种光纤光声气体传感系统

Country Status (1)

Country Link
CN (1) CN216560249U (zh)

Similar Documents

Publication Publication Date Title
CN113252572B (zh) 一种光纤尖式光声气体传感系统及方法
CN114062273B (zh) 一种抗干扰光纤光声气体传感系统及方法
CN101887009B (zh) 基于光学声波传感器的本征安全光声光谱气体监测系统
CN110346302B (zh) 基于聚一氯对二甲苯的膜片共振式气体传感器及检测系统
CN103439268B (zh) 基于自混合的高灵敏度膜片式光声光谱传感器
CN104931427A (zh) 一种基于光路多次反射的光声气体探测装置
CN111829981B (zh) 一种基于tdlas的气体外差检测装置及检测方法
CN112033908B (zh) 一种单光源光纤光声气体传感系统及方法
CN209911225U (zh) 一种co和co2痕量检测装置
CN201749080U (zh) 基于分布反馈光纤激光器的光声光谱气体检测系统
CN112924388A (zh) 正交双通道声学谐振模块及包括该模块的装置
CN101936878B (zh) 基于分布反馈光纤激光器的光声光谱气体检测系统
CN201034929Y (zh) 光纤气体传感器
CN216560249U (zh) 一种光纤光声气体传感系统
Bi et al. Trace gas detection system based on photoacoustic and photothermal spectroscopy using ring fiber laser and quartz tuning fork
CN201637668U (zh) 基于光学声波传感器的本征安全光声光谱气体监测系统
CN103438916A (zh) 基于可饱和吸收光纤的光纤光栅波长解调装置
CN217033601U (zh) 一种六氟化硫分解产物分布式在线监测系统
CN214702149U (zh) 一种同时监测温度和应变的光纤传感器
Fu et al. Dual-channel fiber ultrasonic sensor system based on fiber Bragg grating in an erbium-doped fiber ring laser
Yang et al. Detection of Dissolved Gas in Transformer Oil Based on All-Optical Photoacoustic Spectroscopy
CN211576347U (zh) 一种干涉式光纤布拉格光栅声发射信号传感系统
CN113281262A (zh) 基于无源音叉的全光纤双气体同步探测光声光谱系统及其探测方法
Zheng et al. Tunable fiber ring laser absorption spectroscopic sensors for gas detection
CN113029957A (zh) 一种基于倏逝波的气体传感器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant