CN216390847U - 晶闸管和igbt混合的三相电机两相变频控制电路 - Google Patents

晶闸管和igbt混合的三相电机两相变频控制电路 Download PDF

Info

Publication number
CN216390847U
CN216390847U CN202122677377.9U CN202122677377U CN216390847U CN 216390847 U CN216390847 U CN 216390847U CN 202122677377 U CN202122677377 U CN 202122677377U CN 216390847 U CN216390847 U CN 216390847U
Authority
CN
China
Prior art keywords
circuit
thyristor
phase
diode
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202122677377.9U
Other languages
English (en)
Inventor
谢仕宏
梁荣茂
梁力
杨智浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202122677377.9U priority Critical patent/CN216390847U/zh
Application granted granted Critical
Publication of CN216390847U publication Critical patent/CN216390847U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

本实用新型属于属于交直交变频器技术领域,具体涉及一种晶闸管和IGBT混合的三相电机两相变频控制电路。现有的三相六开关变频器开关功率器件多,三相四开关逆变器开关功率器件少,电机转矩脉动较大,带载能力较低。本实用新型提供一种晶闸管和IGBT混合的三相电机两相变频控制电路,包括单片机、驱动电路、整流电路、泵升电压限制电路、滤波电路、电压采样电路、逆变电路,采用两相变频控制电机,以相位互差60°正弦调制波作脉宽调制,在变频电路中晶闸管和IGBT混合,减少了功率开关器件,有着更少的元件故障,极大地降低了生产成本和维护成本,实现了在两相控制下电动机的正常变频调速。

Description

晶闸管和IGBT混合的三相电机两相变频控制电路
技术领域
本实用新型属于交直交变频器技术领域,具体涉及一种晶闸管和IGBT混合的三相电机两相变频控制电路。
背景技术
目前,传统的电压源型交直交三相六开关变频器已经广泛应用在三相异步电动机的调速过程中,利用IGBT的特点传统拓扑结构能够满足大部分情况下的调速要求。基于此经典拓扑结构,进一步衍生出了减少IGBT的使用数量的三相四开关拓扑结构。因为仍然以电压源型逆变作为基本结构,三相四开关的调速方法可以由常规的控制策略改进得到。交流电机调速系统中应用的比较成熟的是V/F控制,V/F控制即依靠变电压变频率调节电动机转速,其基本思想就是以电机稳态方程为依据,基于恒定的气隙磁通,通过同比例调节电动机供电电压的幅值和频率实现压频比为恒定值的控制,又称为恒压频比控制,通常通过改变脉宽调制技术中的调制波从而改变逆变输出的电压和频率,该方法易于实现、可靠性较高,并且在三相电动机的两相四开关控制中依然适用。
当把负载的一相连接至母线电源中点,形成四开关逆变的拓扑结构时,母线供电电压减少了一半,不同的控制方法都受到了较大影响,这也是四开关逆变主要作为容错、短时应对策略的主要原因。正弦脉宽调制过程中直流电源电压的降低使得输出交流电有效值减少为原来的1/2;在空间电压矢量脉宽调制过程中:(1)由于开关管数量减少,三相四开关逆变器只能输出四个相位依次相差90°的基本电压矢量,对比传统六开关运行方式,空间电压矢量扇区由六个减少为四个,缺少零电压矢量,电压矢量的幅值不对称,在逆变过程中电压向量的切换不够平滑,逆变的输出不如六开关精细,导致电机转矩脉动较大;2)输出电压矢量的幅值降为原本的1/2,导致电机输出转矩急剧减少,带载能力降低,因此四开关调速的性能较传统的变频器下降较大。因此传统四开关逆变控制可以有效减少全控器件的使用,但仅能够作为六开关逆变发生故障时的应对方法。
发明内容
本实用新型的目的在于解决现有技术中的问题,提供一种晶闸管和IGBT混合的三相电机两相变频控制电路。
为达到上述目的,本实用新型采用以下技术方案予以实现:
一种晶闸管和IGBT混合的三相电机两相变频控制电路,包括单片机、驱动电路、整流电路、泵升电压限制电路、滤波电路、电压采样电路、逆变电路,所述整流电路、泵升电压限制电路、滤波电路依次连接,所述滤波电路的输出端分别与逆变电路的输入端、电机的W相连接,所述逆变电路的输出端与电机的U、V两相连接,
所述单片机的输出端与驱动电路的输入端连接,用于控制驱动电路产生7路PWM波,PWM1用于控制泵生电压限制电路,PWM2-PWM7用于控制逆变电路逆变,所述驱动电路分别与泵升电压限制电路的输入端、逆变电路的输入端连接,所述电压采样电路的输出端与单片机连接,所述电压采样电路的输入端与整流电路的输出端连接。
上述方案中,所述电压采样电路包括电阻R2、电阻R3和VSM025隔离型霍尔电压传感器,所述VSM025隔离型霍尔电压传感器的输入端接电阻R3的两端,所述VSM025隔离型霍尔电压传感器的输出端接单片机。
上述方案中,所述泵升电压限制电路包括IGBT1、电阻R1和二极管D1,所述IGBT1的集电极与二极管D1的阴极连接,所述IGBT1的门极接驱动电路的输出端,所述IGBT1的发射极分别接二极管D1的阳极和电阻R1。
上述方案中,所述滤波电路包括电容C1和电容C2,所述电容C1、C2串联,所述电容C1和电容C2的中点E与电机的W相连接,所述逆变电路输出的U、V两相电压相位互差60°。
上述方案中,所述逆变电路包括U相逆变电路和V相逆变电路,
所述U相逆变电路包括晶闸管VT1、晶闸管VT2、IGBT2、二极管D2、二极管D3、二极管D4、二极管D5和电容C3,所述IGBT2的门极接驱动电路的输出端,
所述晶闸管VT1的阴极分别与IGBT2的集电极、二极管D2的阳极连接,所述晶闸管VT1的门极与驱动电路的输出端连接,所述晶闸管VT1的阳极与二极管D2的阴极连接,
所述晶闸管VT2的阳极分别与IGBT2的发射极、二极管D5的阴极连接,所述晶闸管VT2的门极与驱动电路的输出端连接,所述晶闸管VT2的阴极与二极管D5的阳极连接,
所述IGBT2的集电极和发射极之间并联有电容C3,所述电机的U相接在二极管D3、D4之间;
所述V相逆变电路,包括晶闸管VT3、晶闸管VT4、IGBT3、二极管D6、二极管D7、二极管D8、二极管D9和电容C4,所述IGBT3的门极接驱动电路的输出端,
所述晶闸管VT3的阴极分别与IGBT3的集电极、二极管D6的阳极连接,所述晶闸管VT3的门极与驱动电路的输出端连接,所述晶闸管VT3的阳极与二极管D6的阴极连接,
所述晶闸管VT4的阳极分别与IGBT3的发射极、二极管D9的阴极连接,所述晶闸管VT4的门极与驱动电路的输出端连接,所述晶闸管VT4的阴极与二极管D9的阳极连接,
所述IGBT3的集电极和发射极之间并联有电容C4,所述电机的V相接在二极管D7、D8之间。
与现有技术相比,本实用新型具有以下有益效果:
本实用新型提供的一种晶闸管和IGBT混合的三相电机两相变频控制电路,采用两相变频控制电机,以相位互差60°正弦调制波作脉宽调制,在变频电路中晶闸管和IGBT混合,减少了传统交直交三相变频技术的开关器件,简化了电路结构,两相变频电路中有着更少的元件故障,极大地降低了生产成本和维护成本,实现了在两相控制下对电动机的正常变频调速,增加了电机工作的稳定性。
附图说明
图1为本实用新型的晶闸管和IGBT混合的三相电机两相变频控制电路的拓扑图;
图2为本实用新型的整流后直流母线的电压波形;
图3中(a)、(b)分别为本实用新型的三相电机转速波形与电流波形。
具体实施方式
下面结合附图对本实用新型做进一步详细描述:
本实用新型实施例提供的一种晶闸管和IGBT混合的三相电机两相变频控制电路,如图1所示,包括单片机、驱动电路、整流电路、泵升电压限制电路、滤波电路、电压采样电路、逆变电路,所述整流电路、泵升电压限制电路、滤波电路依次连接,所述滤波电路的输出端分别与逆变电路的输入端、电机的W相连接,所述逆变电路的输出端与电机的U、V两相连接,
所述单片机的输出端与驱动电路的输入端连接,用于控制驱动电路,所述驱动电路分别与泵升电压限制电路的输入端、逆变电路的输入端连接,所述电压采样电路的输出端与单片机连接,所述电压采样电路的输入端与整流电路的输出端连接。
所述电压采样电路包括电阻R2、电阻R3和VSM025隔离型霍尔电压传感器,所述VSM025隔离型霍尔电压传感器的输入端接电阻R3的两端,所述VSM025隔离型霍尔电压传感器的输出端接单片机,整流后直流母线的电压波形如图2所示,所述电压采样电路用于采集整流后输出的直流母线电压,并将数据发送给单片机,当超过限定值的时候,单片机控制驱动电路发出PWM信号控制IGBT1,实现泵升电压的限制。
所述泵升电压限制电路包括IGBT1、电阻R1和二极管D1,所述IGBT1的集电极与二极管D1的阴极连接,所述IGBT1的门极接驱动电路的输出端,所述IGBT1的发射极分别接二极管D1的阳极和电阻R1。
所述滤波电路包括电容C1和电容C2,所述电容C1、C2串联,所述电容C1和电容C2对整流电路输出的电压进行滤波,所述电容C1和电容C2的中点E与电机的W相连接,形成事实上的两相整体电源及负载,所述逆变电路输出的U、V两相电压相位互差60°。
所述逆变电路包括U相逆变电路和V相逆变电路,
所述U相逆变电路包括晶闸管VT1、晶闸管VT2、IGBT2、二极管D2、二极管D3、二极管D4、二极管D5和电容C3,所述IGBT2的门极接驱动电路的输出端,
所述晶闸管VT1的阴极分别与IGBT2的集电极、二极管D2的阳极连接,所述晶闸管VT1的门极与驱动电路的输出端连接,所述晶闸管VT1的阳极与二极管D2的阴极连接,
所述晶闸管VT2的阳极分别与IGBT2的发射极、二极管D5的阴极连接,所述晶闸管VT2的门极与驱动电路的输出端连接,所述晶闸管VT2的阴极与二极管D5的阳极连接,
所述IGBT2的集电极和发射极之间并联有电容C3,所述电机的U相接在二极管D3、D4之间;
所述V相逆变电路,包括晶闸管VT3、晶闸管VT4、IGBT3、二极管D6、二极管D7、二极管D8、二极管D9和电容C4,所述IGBT3的门极接驱动电路的输出端,
所述晶闸管VT3的阴极分别与IGBT3的集电极、二极管D6的阳极连接,所述晶闸管VT3的门极与驱动电路的输出端连接,所述晶闸管VT3的阳极与二极管D6的阴极连接,
所述晶闸管VT4的阳极分别与IGBT3的发射极、二极管D9的阴极连接,所述晶闸管VT4的阴极与二极管D9的阳极连接,所述晶闸管VT4的门极与驱动电路的输出端连接,
所述IGBT3的集电极和发射极之间并联有电容C4,所述电机的V相接在二极管D7、D8之间。
晶闸管VT1、VT2、VT3、VT4的关断由IGBT的开关控制,IGBT1、IGBT2、IGBT3的信号由单片机控制,
本实用新型实施例还提供了一种晶闸管和IGBT混合的三相电机两相变频控制电路的控制方法,参见图3,以电机W相的电压为参考势点,每一个IGBT的信号都由单片机进行控制,采用应用较为广泛的开环恒压频比控制方法,以相位互差60°正弦调制波作脉宽调制,单片机控制驱动电路产生7路PWM波,以相位互差60°正弦调制波作脉宽调制,PWM1作用于IGBT1控制泵生电压限制电路,PWM2-PWM7作用于IGBT2、晶闸管VT1、晶闸管VT2、晶闸管VT4、IGBT3、晶闸管VT3上进行逆变电路U、V两相逆变,输出两相幅值、频率可调,以参考相W为准相位互差60°的交流电压。
所述VSM025隔离型霍尔电压传感器测得的电压大于设定的安全电压时,驱动电路产生PWM1进行能耗制动,防止直流母线过电压,PWM3与PWM4为互补脉冲并且两者须有一定死区时间,PWM2生成方法:PWM2为PWM3和PWM4的“或”逻辑运算结果,注意晶闸管VT1、VT2为半控型器件,PWM3和PWM4的死区时间应大于IGBT2的关断时间,产生PWM7的正弦调制波应滞后产生PWM3的正弦调制波60°电角度,PWM5与PWM7为互补脉冲并且两者须有一定死区时间,PWM6产生方法:PWM6为PWM5和PWM7的“或”逻辑运算结果,注意晶闸管VT3、VT4为半控型器件,PWM5和PWM7的死区时间应大于IGBT3的关断时间。
逆变电路V相的控制过程与U相原理相同,以U相为例分析如下:
在电机U相电流流入的正半周,当晶闸管VT1、IGBT2开通时,晶闸管VT2关断,电流经晶闸管VT1→IGBT2→二极管D4流入电机U相,电容C3两端电压近似为零,当IGBT2关断时,晶闸管VT1给电容C3充电,电流流向为晶闸管VT1→电容C3→二极管D4流入电机U相,当电容C3电压上升到直流母线电压大小,晶闸管VT1的电流下降为零并关断,二极管D5、D4续流导通,U相电流流向为二极管D5→二极管D4流入电机U相;在电机U相电流流出的负半周,当IGBT2、晶闸管VT2导通时,电容C3两端电压近似为零,电流方向为电机U相→二极管D3→IGBT2→晶闸管VT2,当IGBT2关断时,电机U相电流向电容C3充电,电流流向为电机U相→二极管D3→电容C3→晶闸管VT2,当电容C3电压上升到直流母线电压大小,晶闸管VT2电流下降为零并关断,二极管D3、D2续流导通,U相电流流向为电机U相→二极管D3→二极管D2;所述逆变电路V相的控制过程与U相原理相同。
以上仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (5)

1.一种晶闸管和IGBT混合的三相电机两相变频控制电路,其特征在于,包括单片机、驱动电路、整流电路、泵升电压限制电路、滤波电路、电压采样电路、逆变电路,所述整流电路、泵升电压限制电路、滤波电路依次连接,所述滤波电路的输出端分别与逆变电路的输入端、电机的W相连接,所述逆变电路的输出端与电机的U、V两相连接,
所述单片机的输出端与驱动电路的输入端连接,用于控制驱动电路产生7路PWM波,PWM1用于控制泵生电压限制电路,PWM2-PWM7用于控制逆变电路逆变,所述驱动电路分别与泵升电压限制电路的输入端、逆变电路的输入端连接,所述电压采样电路的输出端与单片机连接,所述电压采样电路的输入端与整流电路的输出端连接。
2.根据权利要求所述1的一种晶闸管和IGBT混合的三相电机两相变频控制电路,所述电压采样电路包括电阻R2、电阻R3和VSM025隔离型霍尔电压传感器,所述VSM025隔离型霍尔电压传感器的输入端接电阻R3的两端,所述VSM025隔离型霍尔电压传感器的输出端接单片机。
3.根据权利要求所述1的一种晶闸管和IGBT混合的三相电机两相变频控制电路,其特征在于,所述泵升电压限制电路包括IGBT1、电阻R1和二极管D1,所述IGBT1的集电极与二极管D1的阴极连接,所述IGBT1的门极接驱动电路的输出端,所述IGBT1的发射极分别接二极管D1的阳极和电阻R1。
4.根据权利要求1所述的一种晶闸管和IGBT混合的三相电机两相变频控制电路,其特征在于,所述滤波电路包括电容C1和电容C2,所述电容C1、C2串联,所述电容C1和电容C2的中点E与电机的W相连接,所述逆变电路U、V两相输出电压相位互差60°。
5.根据权利要求1所述的一种晶闸管和IGBT混合的三相电机两相变频控制电路,其特征在于,所述逆变电路包括U相逆变电路和V相逆变电路,
所述U相逆变电路包括晶闸管VT1、晶闸管VT2、IGBT2、二极管D2、二极管D3、二极管D4、二极管D5和电容C3,所述IGBT2的门极接驱动电路的输出端,
所述晶闸管VT1的阴极分别与IGBT2的集电极、二极管D2的阳极连接,所述晶闸管VT1的门极与驱动电路的输出端连接,所述晶闸管VT1的阳极与二极管D2的阴极连接,
所述晶闸管VT2的阳极分别与IGBT2的发射极、二极管D5的阴极连接,所述晶闸管VT2的门极与驱动电路的输出端连接,所述晶闸管VT2的阴极与二极管D5的阳极连接,
所述IGBT2的集电极和发射极之间并联有电容C3,所述电机的U相接在二极管D3、D4之间,
所述V相逆变电路,包括晶闸管VT3、晶闸管VT4、IGBT3、二极管D6、二极管D7、二极管D8、二极管D9和电容C4,所述IGBT3的门极接驱动电路的输出端,
所述晶闸管VT3的阴极分别与IGBT3的集电极、二极管D6的阳极连接,所述晶闸管VT3的门极与驱动电路的输出端连接,所述晶闸管VT3的阳极与二极管D6的阴极连接,
所述晶闸管VT4的阳极分别与IGBT3的发射极、二极管D9的阴极连接,所述晶闸管VT4的门极与驱动电路的输出端连接,所述晶闸管VT4的阴极与二极管D9的阳极连接,
所述IGBT3的集电极和发射极之间并联有电容C4,所述电机的V相接在二极管D7、D8之间。
CN202122677377.9U 2021-11-03 2021-11-03 晶闸管和igbt混合的三相电机两相变频控制电路 Active CN216390847U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202122677377.9U CN216390847U (zh) 2021-11-03 2021-11-03 晶闸管和igbt混合的三相电机两相变频控制电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202122677377.9U CN216390847U (zh) 2021-11-03 2021-11-03 晶闸管和igbt混合的三相电机两相变频控制电路

Publications (1)

Publication Number Publication Date
CN216390847U true CN216390847U (zh) 2022-04-26

Family

ID=81250501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202122677377.9U Active CN216390847U (zh) 2021-11-03 2021-11-03 晶闸管和igbt混合的三相电机两相变频控制电路

Country Status (1)

Country Link
CN (1) CN216390847U (zh)

Similar Documents

Publication Publication Date Title
CN101499771B (zh) 三相电源能量反馈三相电机变频调速驱动器
US9641098B2 (en) Multi-level inverter apparatus and method
WO2021244669A1 (zh) 压缩机变频调速系统及直流母线电压的控制方法
Itoh et al. A novel five-level three-phase PWM rectifier with reduced switch count
CN104682736A (zh) 五电平整流器
CN105119536B (zh) 一种电机驱动器拓扑及其控制方法
CN109639160B (zh) 基于软开关技术的新型单向三相三电平整流器
CN103401267A (zh) 一种小型风力发电机并网电路
CN101599649B (zh) 直驱风力发电系统及系统中spwm逆变控制信号的调制方式
CN113659914A (zh) 一种用于高速开关磁阻电机的驱动电路及其控制方法
CN111416535A (zh) 一种三模态混合单相五电平整流器
CN104796019B (zh) 一种z源三电平pwm整流器及其控制方法
CN115296554A (zh) 一种高调制比混合式mmc及其控制方法
Ohnuma et al. Space vector modulation for a single phase to three phase converter using an active buffer
CN113965139A (zh) 晶闸管和igbt混合的三相电机两相变频控制电路及其方法
Li et al. PWAM controlled quasi-Z source motor drive
CN112072983A (zh) 一种电机驱动电路
CN216390847U (zh) 晶闸管和igbt混合的三相电机两相变频控制电路
CN115241926B (zh) 母线电压控制方法、母线平衡控制方法及其系统
CN114567191B (zh) 一种基于混合mmc的btb换流器及其控制方法
CN2160168Y (zh) 交流电机速度控制器
CN210041669U (zh) 用于六相电源的选相整流装置
Xu et al. A novel AC-DC converter for PMSG variable speed wind energy conversion systems
CN207782679U (zh) 一种混合开关三相逆变器
CN110867864A (zh) 一种有源三次谐波注入矩阵变换器离网运行控制方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant