CN216174279U - Weft steel bar sorting mechanism for mesh row welding machine - Google Patents

Weft steel bar sorting mechanism for mesh row welding machine Download PDF

Info

Publication number
CN216174279U
CN216174279U CN202122710302.6U CN202122710302U CN216174279U CN 216174279 U CN216174279 U CN 216174279U CN 202122710302 U CN202122710302 U CN 202122710302U CN 216174279 U CN216174279 U CN 216174279U
Authority
CN
China
Prior art keywords
sorting
weft
driving
bar
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202122710302.6U
Other languages
Chinese (zh)
Inventor
仝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Zhongke Kuntai Assembly Construction Technology Co ltd
Original Assignee
Qingdao Zhongke Kuntai Assembly Construction Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Zhongke Kuntai Assembly Construction Technology Co ltd filed Critical Qingdao Zhongke Kuntai Assembly Construction Technology Co ltd
Priority to CN202122710302.6U priority Critical patent/CN216174279U/en
Application granted granted Critical
Publication of CN216174279U publication Critical patent/CN216174279U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wire Processing (AREA)

Abstract

The utility model discloses a weft steel bar sorting mechanism for a mesh sheet row welding machine, which comprises a rack, a weft steel bar stacking area with a certain inclination angle, a sorting assembly connected to the bottom of the weft steel bar stacking area, and a sorting driving assembly used for driving the sorting assembly to operate. The sorting assembly comprises two corresponding stepped fixed sorting frames, a stepped movable transmission frame matched with the fixed sorting frames and a lifting driving part connected between the fixed sorting frames and the movable transmission frame and used for driving the movable transmission frame to run. This mechanism simple structure, can be quick sort weft reinforcing bar fast, sort efficient and accurate.

Description

Weft steel bar sorting mechanism for mesh row welding machine
Technical Field
The utility model belongs to the field of reinforcing mesh processing devices, relates to a gang welding machine, and particularly relates to a weft reinforcing steel bar sorting mechanism for a mesh gang welding machine.
Background
In recent years, with the rapid development of the construction industry including high-rise buildings, building bridges, subway mines and other industries, the demand of the steel bar mesh is continuously increased, the steel bar mesh is made by crosswise welding warp steel bars and weft steel bars, and the steel bar mesh is widely applied to prefabricated components in the construction industry.
The weft steel bar conveying device is an important component of a steel bar row welding machine and is used for conveying single weft steel bars to a welding position at a constant speed and accurately, so that the warp steel bars and the weft steel bars are welded together to form a steel bar mesh. Along with the continuous increase of reinforcing bar net piece demand, need high-efficient quick single weft reinforcing bar to sort out in piling from the weft reinforcing bar to guarantee subsequent use.
SUMMERY OF THE UTILITY MODEL
Aiming at the problems, the utility model provides the weft steel bar sorting mechanism for the mesh row welding machine, which can be used for quickly sorting out piles of weft steel bars, and is simple in structure and high in sorting efficiency.
In order to solve the technical problems, the utility model adopts the technical scheme that: a weft steel bar sorting mechanism for a mesh sheet gang welding machine comprises a rack, a weft steel bar stacking area with a certain inclination angle, sorting assemblies correspondingly arranged and connected to the bottom of the weft steel bar stacking area, and a sorting driving assembly used for driving the sorting assemblies to run; the sorting assembly comprises two corresponding stepped fixed sorting frames, a stepped movable transmission frame matched with the fixed sorting frames and a lifting driving part connected between the fixed sorting frames and the movable transmission frame and used for driving the movable transmission frame to run.
Preferably, the weft reinforcing steel bar stacking area comprises stacking plates and limiting plates which are positioned at two ends of the stacking plates and used for limiting two ends of the weft reinforcing steel bar.
Preferably, the lifting driving part includes a rotating shaft coupled to the fixed sorting frame by a bearing, and an eccentric member coupled to the rotating shaft, and the moving transfer frame is coupled to the eccentric member.
Preferably, the eccentric member is an eccentric wheel or an eccentric rod.
Preferably, the sorting driving assembly comprises a first driven wheel connected to the lifting driving part, a first driving wheel matched with the first driven wheel, a first chain connected between the first driven wheel and the first driving wheel, a fifth driving device used for driving the first driving wheel to rotate, and a driving rotating rod used for connecting two first driving wheels.
Preferably, the machine further comprises an auxiliary sorting assembly arranged on the machine frame, and the auxiliary sorting assembly comprises a fixed rod arranged on the machine frame, a plurality of sorting assemblies arranged on the fixed rod, and a sorting driving assembly connected to the sorting assemblies.
Preferably, a certain angle is formed between the top end of the fixed sorting frame and the horizontal plane, so that the weft steel bars can slide conveniently.
Preferably, the ladder on the fixed sorting frame reduces from bottom to top in proper order, and the top ladder only holds a weft reinforcing bar.
Preferably, the fifth driving device is a second servo motor.
The weft steel bar sorting mechanism for the mesh row welding machine has the beneficial effects that: through the matching use of the fixed sorting frame and the movable transmission frame, single weft steel bars are quickly sorted from the weft steel bar stacking area; the steps on the fixed sorting frame are arranged to be sequentially reduced from bottom to top, so that the condition that the steel bars moving to the topmost end are only single steel bars is ensured; the servo motor drives the eccentric wheel to rotate, so that the speed of steel bar sorting can be controlled.
Drawings
FIG. 1 is a perspective view of a mesh row welder;
FIG. 2 is a front view of a mesh row welder;
FIG. 3 is a top view of a mesh row welder;
FIG. 4 is a perspective view of the warp rebar delivery mechanism;
FIG. 5 is a front view of the warp rebar delivery mechanism;
FIG. 6 is a top view of the warp rebar delivery mechanism;
FIG. 7 is an enlarged view of the structure of portion A in FIG. 6;
FIG. 8 is a cross-sectional view of a clamping assembly in the warp rebar delivery mechanism;
FIG. 9 is a perspective view of the weft rebar sorting mechanism;
FIG. 10 is a front view of the weft rebar sorting mechanism;
FIG. 11 is a cross-sectional view in the rear view of the weft rebar sorting mechanism;
FIG. 12 is a perspective view of a single weft bar shifting mechanism;
FIG. 13 is a cross-sectional view of a single weft bar shifting mechanism;
FIG. 14 is an enlarged view of section H of FIG. 13 showing the use of the single bar shifting mechanism;
FIG. 15 is a perspective view of the welding mechanism;
FIG. 16 is a left side view of the welding mechanism;
FIG. 17 is an enlarged view of area B of FIG. 15;
FIG. 18 is a schematic view of a torch;
FIG. 19 is a cross-sectional view of the torch;
FIG. 20 is a perspective view of the net pulling mechanism;
FIG. 21 is a top view of the net pulling mechanism;
FIG. 22 is an enlarged view of the structure of portion C of FIG. 21;
FIG. 23 is a perspective view of the truss attachment mechanism;
FIG. 24 is a front view of the truss mounting mechanism;
FIG. 25 is a schematic view of the structure of the mobile clamping assembly in the truss attachment mechanism;
FIG. 26 is a schematic view of the construction of the spot welding assembly in the truss attachment mechanism;
FIG. 27 is an enlarged view of portion D of FIG. 24;
fig. 28 is an enlarged view of portion E of fig. 25;
fig. 29 is an enlarged view of portion F of fig. 24;
FIG. 30 is a perspective view of the bending mechanism;
FIG. 31 is a front view of the bending mechanism;
FIG. 32 is a sectional view taken along the direction a in FIG. 30;
fig. 33 is an enlarged view of portion G in fig. 30.
Detailed Description
The utility model will be described in further detail with reference to the accompanying figures 1-33 of the specification.
As shown in fig. 1-33, a mesh sheet is weft reinforcing bar letter sorting mechanism for welding machine, which comprises a frame 1, a warp reinforcing bar conveying mechanism 2 for transporting warp reinforcing bars, a weft reinforcing bar sorting mechanism 3 for sorting out single weft reinforcing bars in sequence, a single weft reinforcing bar transfer mechanism 4 for transferring weft reinforcing bars sorted by the weft reinforcing bar sorting mechanism, a welding mechanism 5 for welding warp reinforcing bars and weft reinforcing bars, a net pulling mechanism 6 for driving a mesh sheet to run, a truss mounting mechanism 7 for mounting a truss, a reinforcing bar bending mechanism 8 for bending reinforcing bars or mesh sheets, and a controller.
As shown in fig. 4 to 8, the warp reinforcing bar conveying mechanism 2 is located above the frame 1, and includes a connecting plate 21 located on the frame 1, a plurality of slide locking assemblies 22 located on the connecting plate 21, a clamping assembly 23 located on the slide locking assemblies 22 for fixing and releasing a warp reinforcing bar, a reciprocating driving assembly 24 for driving the connecting plate 21 to reciprocate, a reinforcing bar supporting assembly 25 connected to the connecting plate 21 for supporting the warp reinforcing bar, and a movable limiting assembly 26 for making one end of the warp reinforcing bar, into which the warp reinforcing bar extends, be located on the same vertical plane.
The sliding locking assembly 22 includes a first guide rail 221 located on the connecting plate 21, and a plurality of first sliders 222 with a self-locking function located on the first guide rail 221, which is prior art and will not be described herein. Through being equipped with two sets of slip locking Assembly, make the device can adapt to the production of the net piece of more specifications, through be equipped with the scale on connecting plate 1, make things convenient for the regulation of first slider 222 position.
The clamping assembly 23 includes a mounting block 231 with a steel bar through hole for placing the warp steel bar on the first slider 222, a guide cylinder 232 connected to the mounting block 231 and adapted to the steel bar through hole, a channel 233 in the mounting block 231 and communicated with the steel bar through hole, a first cylinder 234 at one end of the channel 233, and a tightening block 235 connected to an output shaft of the first cylinder 234, wherein a delivery shaft of the first cylinder 234 is located in the channel 233. The first cylinder 234 tightly supports the warp steel bars in the mounting block 231, so that a part of the supporting block 235 on the first cylinder 234 is positioned in the channel 233, and when the reciprocating driving assembly 24 drives the warp steel bars to move, the supporting block 235 can protect the output shaft of the first cylinder 234 from being damaged in the moving process, and the service life of the first cylinder 234 is prolonged. Be equipped with anti-skidding rubber pad on the tight piece 235 in top, when can increase and the frictional force between the warp reinforcing bar, prevent that rigid contact from causing the injury to warp reinforcing bar and tight piece 235 in top.
The reciprocating driving assembly 24 includes a first rack 241 and a second rail 242 located at both sides of the surface of the frame 1, a second slider 243 connected to the second rail 242, a first gear 244 adapted to the first rack 241, and a first servo motor 245 for driving the first gear 244 to rotate, and the connecting plate 21 is connected between the second sliders 243.
The reinforcing bar support assembly 25 includes a sliding support plate 251 coupled to the two second sliders 243, a plurality of rotating rods 252 coupled to the sliding support plate 251 through bearings, and a movable guide groove 253 provided along a circumference of the rotating rods 252 for guiding the warp reinforcing bars. Through being equipped with steel bar support assembly 25, after operation a period, the warp reinforcing bar can not lead to deformation because of the rear does not support, also can not produce the damage to first cylinder 234 because of dragging of warp reinforcing bar simultaneously. Warp reinforcing bar is at the in-process of carrying, and displacement can take place for inevitable, through being equipped with portable guide way 253, can restrict the direction of warp reinforcing bar, makes the transport of warp reinforcing bar more accurate high-efficient.
The movable limiting component 26 comprises a second cylinder 261 correspondingly arranged, and a baffle 262 connected to the second cylinder 261. When warp reinforcing bar stretched into in settling the piece 231, because manual input may have certain error, cause the initiating terminal of warp reinforcing bar to be in same vertical plane, seriously influenced the accurate nature of row's welder later stage work, through being equipped with baffle 262, can make warp reinforcing bar initiating terminal be in same vertical plane.
When the reciprocating driving assembly 24 is restored to the original position, the warp steel bars which have moved forward are less in support, and are easy to deform, as shown in the figure, as a more preferred embodiment, the warp steel bar conveying mechanism 2 further comprises two jacking support assemblies 27 which are located below the frame 1 and can move up and down for supporting the warp steel bars, wherein each jacking support assembly 27 comprises a jacking support 271, a third guide rail 272 located on the jacking support 271, a third sliding block 273 adapted to the third guide rail 272, a support rod 274 connected to the third sliding block 273, and a third air cylinder 275 of which two ends are respectively hinged to the jacking support 271 and the third sliding block 273. When the reciprocating driving assembly 24 drives the clamping assembly 23 to retract and return to the original position, the jacking support assembly 27 ascends to support the part of the warp steel bar which moves forward, so that the warp steel bar is prevented from deforming.
When the warp steel bar conveying mechanism 2 starts to operate, the controller sends a signal to the clamping assembly 23 to enable the clamping assembly to start to operate and clamp warp steel bars (the controller controls the moving or rotating distance of the clamping assembly or the components through controlling the operating time of the assemblies or the like, the same is the same as the above in the following similar situation), then the controller sends a signal to the reciprocating driving assembly 24 to enable the reciprocating driving assembly to start to operate after sending a signal to the movable limiting assembly 26 to move downwards, when the reciprocating driving assembly 24 operates to a certain position, the controller sends a signal to the clamping assembly 23 and the reciprocating driving assembly 24 to enable the reciprocating driving assembly 24 to recover the original position, meanwhile, in the process that the reciprocating driving assembly 24 recovers the original position, the controller sends a signal to the jacking supporting assembly 27 to enable the jacking supporting assembly to sequentially move upwards, when the reciprocating driving assembly 24 recovers the original position, the controller sends a signal to the clamping assembly 23 and the reciprocating driving assembly 24 to enable the reciprocating driving assembly 24 to start to operate (after the clamping assembly 23 completely clamps, the reciprocating drive assembly 24 starts to operate), during the operation of the reciprocating drive assembly 24, the controller sends a signal to the jacking support assembly 27 to restore the jacking support assembly to the original position, and the reciprocating motion is carried out, so that the warp steel bars are conveyed.
Warp reinforcing bar is after carrying, needs the device to carry out the transport of weft reinforcing bar, and this process mainly divide into two steps, divide into to carry out the weft reinforcing bar letter sorting mechanism 3 of letter sorting and the weft reinforcing bar that is used for storing the back weft reinforcing bar of letter sorting and dials a single reinforcing bar and dial send mechanism 4.
As shown in fig. 9-11, the weft reinforcing bar sorting mechanism 3 is located above the rack, and includes a weft reinforcing bar stacking area 31 with a certain inclination angle, sorting assemblies 32 correspondingly disposed on both sides of the rack for individually sorting the weft reinforcing bars in the weft reinforcing bar stacking area 31, an auxiliary sorting assembly 33 for making the sorting effect of the sorting assembly 32 better, and a sorting driving assembly 34 for driving the sorting assembly 32 and the auxiliary sorting assembly 33 to operate.
The weft steel bar stacking area 31 is a stacking plate which is 10-45 degrees away from the horizontal plane, the weft steel bars can continuously slide downwards within the included angle range, one end of the stacking plate is provided with a fixed limiting plate used for limiting the position of the weft steel bars, the other end of the stacking plate is provided with a movable limiting plate, and the position of the movable limiting plate is adjusted according to the length of the weft steel bars, so that the regularity of the weft steel bars is guaranteed.
The sorting assembly 32 includes two corresponding stepped fixed sorting racks 321, stepped movable transmission racks 322 adapted to the fixed sorting racks 321, and a lifting driving component 323 connected between the fixed sorting racks 321 and the movable transmission racks 322 for driving the movable transmission racks 322 to operate. The top end of the fixed sorting frame 321 is an inclined plane with an included angle of 10-45 degrees with the horizontal plane, so that the weft steel bars can conveniently slide down. The lifting driving part 323 includes 2 rotating shafts 3231 coupled to the fixed sorting frame 321 through bearings, and an eccentric member 3232 coupled to the rotating shafts 3231, the moving transmission frame 322 is coupled to the eccentric member 3232, and the eccentric member 3232 is an eccentric wheel, an eccentric rod, or the like having a certain eccentric position with the rotating shafts 3231.
The sorting driving assembly 34 includes a first driven wheel 341 correspondingly disposed on the rotating shaft 3231, a first driving wheel 342 adapted to the first driven wheel 341, a first chain 343 connected between the first driven wheel 341 and the first driving wheel 342, a second servo motor 344 for driving the first driving wheel 342 to rotate, and a driving rotating rod 345 connected between the two first driving wheels 342.
Since the weft reinforcing bars have a certain length, in order to prevent the weft reinforcing bars from being deformed during the sorting process, there are provided auxiliary sorting assemblies 33 including a fixing rod 331 positioned on the rack, 3 sorting assemblies 32 positioned on the fixing rod 331, and a sorting driving assembly 34 (excluding the second servo motor 344 here) connected to the sorting assemblies 32.
Meanwhile, in order to make the weft reinforcing bars more stable during the transportation process, each step surface of the fixed sorting rack 321 and the movable transporting rack 322 is set to have an inclination angle of 5-15 degrees with respect to the horizontal plane. In order to make the weft steel bar finally sorted one, the ladder structure on the fixed sorting frame 321 is set to be gradually reduced from bottom to top, so that the top ladder can only accommodate one weft steel bar.
The weft steel bars finally sorted by the weft steel bar sorting mechanism 3 can fall into the single weft steel bar poking and conveying mechanism 4 for conveying the single steel bars. As shown in fig. 12 to 14, the single weft steel bar picking mechanism 4 is located above the machine frame 1, and includes a fixing frame 43 located on the machine frame 1, a weft steel bar discharging area 41 connected to the fixing frame 43 and having a certain inclination angle, where the single weft steel bar is placed side by side, a spacing column 42 located below the weft steel bar discharging area 41 and used for supporting the weft steel bar, a plurality of hooks 44 hinged to the fixing frame 43 and used for hooking the weft steel bar at the lowest position of the weft steel bar discharging area, a rotating wheel 45 with protrusions and used for making the hooks 44 move up and down, and a rotation driving assembly 46 for driving the rotating wheel 45 to rotate. In order to allow the hook 44 to fall down quickly, a spring 47 is provided between the holder 43 and the hook 44.
The reinforcing bar discharging section 41 includes a lower guide frame 411 composed of vertical plates connected to each other and arranged in parallel, an upper guide frame 412 arranged corresponding to the lower guide frame 411, and a distance adjusting assembly 413 connected to the upper guide frame 412. The length of the upper guide frame is smaller than that of the lower guide frame, the limiting column 42 is located on the lower guide frame, and the specific position is the lower end of the upper guide frame and the distance of one reinforcing steel bar is prolonged. When the runner rotates to the convex part and contacts with the hook 44, the hook 44 jacks up the lowest weft steel bar to enable the weft steel bar to slide off, and when other positions of the runner 44 contact with the hook 44, the height of the hook 44 is lower than that of the lower guide plate and does not contact with the weft steel bar. The interval adjustment assembly 413 includes a hollow link 4131 coupled between the fixed frames 43, a fixing plate 4132 fixed to an upper surface of the hollow link 4131, a bolt 4133 penetrating both ends of the fixing plate 4132 and coupled to the upper guide frame 411, and a nut 4134. In order to control the number of weft reinforcing bars in the reinforcing bar discharging area 41, the reinforcing bar discharging area is provided with a detecting device for detecting the number of weft reinforcing bars, namely a first infrared detecting device and a second infrared detecting device for detecting the maximum number and the minimum number of weft reinforcing bars respectively.
The rotary driving assembly 46 includes a rotary shaft 461 connected to the rotary wheel 45, and a third servo motor 462 for driving the rotary shaft 461 to rotate.
When the weft steel bar sorting mechanism 3 and the single weft steel bar picking mechanism 4 operate, the controller sends a signal to the second servo motor 344 to enable the second servo motor to start operating, and simultaneously sends a signal to the third servo motor 462 to enable the third servo motor to start operating, when the first infrared detection device detects that the number of the weft steel bars reaches the maximum value, the controller sends a signal to the controller, the controller receives the signal and then sends a signal to the second servo motor 344 to enable the second servo motor 344 to stop operating, when the second infrared detection device detects that the number of the weft steel bars reaches the minimum value, the controller sends a signal to the controller, and the controller sends a signal to the second servo motor 344 to enable the second servo motor 344 to start operating, so that sorting and picking of the single weft steel bars are achieved.
The weft steel bars sliding down through the single weft steel bar poking and feeding mechanism 4 directly fall into the welding mechanism 5 to weld the warp steel bars and the weft steel bars.
As shown in fig. 15-19, the welding mechanism 5 is connected to the single weft bar picking mechanism 4, and includes a connecting bracket 51 located above the rack, a plurality of sliding locking assemblies (which are prior art and not described in detail herein) with sliding and locking functions located on the connecting bracket 51, a welding gun 52 connected to the sliding locking assemblies, a welding base 53 with a groove corresponding to the position of the welding gun 52 (the welding base 53 is connected to the rack through the sliding locking assemblies), an internal conical guiding cylinder 54 connected to the welding base 53 for guiding the warp bars, and a magnet 55 for fixing the weft bars. The two adjacent welding guns 52 form a welding loop, which is respectively connected with a positive lead 56 and a negative lead 57, and every six adjacent welding guns 52 are connected to a transformer 58. When gang welding is performed, a first set of welding guns on each transformer 58 spot weld, and then the other sets of welding guns spot weld in turn. When the transformer 58 is connected with more welding guns, the melting condition of each welding point is easy to be inconsistent, and the quality of the mesh sheet is difficult to control, so that the quality of the mesh sheet is ensured by adopting the connection mode. In order to make the spot welding position more accurate, a photoelectric switch 59 is provided on the welding mechanism, which can measure the distance that the warp steel bar moves, and thus control the time and position during welding.
In the use of welder 52, because the reinforcing bar surface is the arc, at welder 52 extrusion welding's in-process, the phenomenon that welder 52 output shaft sideslips very easily takes place, can cause the output shaft to take place the skew like this, reduces welder 52's life, can produce a large amount of heats simultaneously in the welding process, and this also can cause the harm to welder 52, can have the potential safety hazard even. Therefore, the welding gun 52 comprises a fourth cylinder 531, a limiting protection component 532 connected to the fourth cylinder 531 for protecting the output shaft of the fourth cylinder 531, a circulating water cooling component 533 connected to the limiting protection component 532, and a welding head 534 with a groove connected to the circulating water cooling component 533. The limiting protection component 532 comprises a connecting block 5321, a through hole 5322 penetrating through the connecting block 5321 and used for accommodating the motion of the output shaft of the fourth cylinder 531, a moving shaft 5323 connected to the output shaft of the fourth cylinder 531, a limiting through hole 5324 arranged in parallel with the through hole 5322, and a limiting shaft 5325 positioned in the limiting through hole 5324. The circulating water cooling assembly 533 comprises a containing block 5331 with a cylindrical hollow structure inside, a water inlet 5332 and a water outlet 5333 arranged on the containing block 5331, and a water pipe 5334 with one end connected to the water inlet 5332 and the other end extending to the bottom of the cylindrical hollow structure of the containing block 5331. In order to improve the utilization rate of cooling water, as a more preferable scheme, a water inlet tangent to the cylindrical hollow structure is formed in the bottom of the accommodating block 5331, a water outlet is formed in the upper portion of the accommodating block, a water delivery pipe is not adopted, when the cooling water storage device is used, the input cooling water flows along the circumferential direction of the cylindrical hollow structure, certain directivity is achieved, and the utilization rate of the cooling water can be improved.
Because warp reinforcing bar conveying mechanism 2 is when centre gripping warp reinforcing bar, can reserve out a section of warp reinforcing bar at the front end, when this warp reinforcing bar of reserving out is too long, warp reinforcing bar conveying mechanism 2 is in the in-process of transportation, this section of warp reinforcing bar can take place to vibrate and deformation, can damage the first cylinder 234 in the centre gripping subassembly 23 to a certain extent on the one hand, on the other hand is when deepening into the guide cylinder 54 in welding mechanism 5, cause the warp reinforcing bar to be difficult to accurate male phenomenon easily, therefore, when warp reinforcing bar conveying mechanism 2 centre gripping warp reinforcing bar, the warp reinforcing bar that the front end was reserved should be shorter, in order to guarantee that it can not take place deformation in transportation process. And when the warp reinforcing bar elongation is shorter, probably can not reach the welded position, consequently need centre gripping subassembly 23 and reciprocating drive subassembly 24 to resume the normal position and carry out the secondary transportation, at the in-process that resumes the normal position, because the warp reinforcing bar is not fixed, the displacement takes place easily, consequently need be equipped with a plurality of compressing tightly revolving cylinder 5101 that are used for fixed warp reinforcing bar on welding mechanism 5, and connect in compressing tightly revolving cylinder 5101 output shaft compressing bar 5102, when the warp reinforcing bar carries out the secondary transportation, the controller sends the signal to compressing tightly revolving cylinder 5101 and makes its compress tightly the weft reinforcing bar that has stretched into, when the warp reinforcing bar transports again, the controller sends the signal to compressing tightly revolving cylinder 5101 and makes its normal position resume.
When the welding mechanism 5 operates, the weft steel bars falling off from the single weft steel bar poking and conveying mechanism 4 are fixed on the welding base 53 through the magnet 55, when the photoelectric switch 59 detects that the input quantity of the warp steel bars reaches a preset value, a signal is sent to the controller, the controller sends a signal to the fourth air cylinder to enable the fourth air cylinder to start to operate (the controller controls six welding guns connected with each transformer to perform welding in three batches in sequence), in the welding process, the controller sends a signal to other mechanisms to enable the six welding guns to stop operating, and after the welding is completed, the controller sends a signal to the other mechanisms to enable the six welding guns to continue to operate.
When the welding mechanism 5 finishes welding the first weft steel bar, the movement of the mesh sheet can be realized by the mesh pulling mechanism 6, as shown in fig. 20-22, the mesh pulling mechanism 6 is located below the rack 1, and includes a connecting rod 62 connected to the rack 1 through a mesh pulling driving assembly 61, a draw hook 64 connected to the mesh pulling driving assembly 61 through a rotating assembly 63, and a fifth cylinder 65 with two ends hinged to the draw hook 64 and the rotating assembly 63 respectively. The net-pulling driving assembly 61 includes a fourth guide rail and a fourth slider (which are prior art and not described herein) disposed at two sides of the frame 1 for guiding and supporting, a second rack 611, a second gear 612, and a fourth servo motor 613 for driving the second gear 612 to rotate. The rotating assembly 63 is a rotating rod 631 connected to the net pulling driving assembly 61 through a bearing, and a plurality of connecting rod supports 632 connected to the rotating rod, and the pulling hook 64 is connected to the rotating rod 631. The rack 1 is provided with a plurality of net piece supporting brackets 66 which are consistent with the movement direction of the net pulling driving assembly 61 and are used for supporting the net pieces.
After the net pulling mechanism is operated, a truss needs to be welded on the net piece, and as shown in fig. 23-29, the truss installation mechanism 7 comprises a truss storage area 71 which is positioned at one side of the machine frame 1 and used for placing the truss, a movable clamping assembly 72 which is used for moving the truss from the truss storage area 71 to the net piece, a truss spot welding assembly 73 which is used for welding the truss on the net piece, and a net piece conveying assembly 74 which drives the net piece to move. The truss storage area 71 includes two correspondingly disposed fifth sliding rails 711, a fifth sliding block 712 adapted to the fifth sliding rails 711, a placement frame 713 located on the fifth sliding block 712 and used for placing a truss, and a driving device (which is prior art and is not described herein again) for driving the fifth sliding block 712 to operate.
The movable clamping assembly 72 includes a supporting frame 721, a sliding member 722 positioned on the supporting frame 721, and a clamping member 723 connected to the sliding member 722 and capable of moving up and down. The sliding member 722 includes a sixth guide rail 7221 on the supporting frame 721, a third rack 7222, a third gear 7223 fitted to the third rack 7222, a sixth slider 7224 coupled to the sixth guide rail 7221, and a fifth servo motor 7225 coupled to the sixth slider 7224 for driving the third gear 7223 to rotate.
The clamping member 723 includes a fixing block 7231 having a through hole, a moving rod 7232 having a sawtooth on a surface thereof and located in the through hole, a fourth gear adapted to the moving rod 7232, a sixth servo motor 7233 (which is related to the prior art and is not described herein) for driving the fourth gear to rotate, a straight rod 7234 connected to the bottom of the moving rod 7232, and a pneumatic finger 7237 located on the straight rod 7234. In order to improve the stability of the clamping member 723 in the process of clamping the truss, a limiting support member 724 is arranged on the sixth slider 7224, and includes a support plate 7241 connected to the sixth slider 7224, limiting holes located at two ends of the support plate 7241, and a limiting rod 7242 located in the limiting holes, wherein the fixing block 7231 is located on the support plate 7241, and the lower end of the limiting rod 7242 is connected to the straight rod 7234.
The truss spot welding assembly 73 comprises a spot welding support 731 erected above the rack, and two rows of welding guns 52 (the welding guns are the same as the welding guns 52 in the welding mechanism and are not described herein) connected to the spot welding support 731 through a sliding locking assembly (which is prior art and is not described herein), and the positions of the welding guns 52 are adapted to the positions of the truss to be spot-welded. For the convenience of spot welding, the truss spot welding assembly 73 is located behind the movable clamping assembly 72, and after the truss is placed on the mesh by the movable clamping assembly 72, the controller controls the mesh conveying assembly 74 to operate for a period of time, so that the truss moves to be right below the truss spot welding assembly 73, and the truss is welded by the up-and-down movement of the welding gun 52.
The mesh sheet conveying assembly 74 includes a plurality of rotating shafts 741 bearing-coupled to the frame 1, third driven wheels 742 coupled to the rotating shafts 741, third chains 743 coupled between the third driven wheels 742, and a seventh servo motor 744 for driving the third driven wheels 742 to rotate.
When the truss installation mechanism 7 operates, the controller sends a signal to the truss storage area 71 to enable the truss storage area to operate to a preset position, and simultaneously sends a signal to the mesh transmission assembly 74 to enable the truss transmission assembly to operate to the preset position and stop operating continuously, then the controller sends a signal to the sixth servo motor 7233 and the pneumatic finger 7237 in sequence, the pneumatic finger 7237 clamps the truss after the sixth servo motor 7233 operates to the preset position, then the controller sends a signal to the sixth servo motor 7233 to enable the sixth servo motor 7233 to recover the original position, simultaneously sends a signal to the fifth servo motor 7225 to enable the fifth servo motor 7225 to operate to the preset position, then the controller sends a signal to the sixth servo motor 7233 to enable the sixth servo motor 7233 to operate to the preset position to enable the truss to be placed on the mesh, simultaneously sends a signal to the pneumatic finger 7237 and the sixth servo motor 7233 to enable the truss to recover the original position, then the controller sends a signal to the mesh transmission assembly 74 to operate to the preset position (under the truss spot welding assembly 73) and stop operating continuously, the controller then sends a signal to the welding gun 52 to complete a spot welding process, and the controller sends a signal to the mesh delivery assembly 74 to continue operation.
When the reinforcing steel bars at two ends of the mesh sheet need to be bent, the reinforcing steel bar is bent by the reinforcing steel bar bending mechanism 8, as shown in fig. 30-33, the reinforcing steel bar bending mechanism 8 includes a frame 1 with a mesh sheet transmission assembly 74, a connecting plate 81 (the connecting plate 81 is not fixedly connected with the frame), a lifting assembly 82 (in the utility model, an air cylinder is used for providing driving power) for driving the connecting plate 81 to move up and down, a sliding plate 84 connected to the connecting plate 81 by a moving assembly 83, two seventh air cylinders 85 for driving the sliding plate 84 to move along the connecting plate 81, a plurality of reinforcing steel bar limiting and bending assemblies 86 connected to the sliding plate 84 by a sliding locking assembly, and a bending driving assembly 87 for driving warp reinforcing steel bars in the reinforcing steel bar limiting and bending assemblies 86 to bend.
The moving component 83 is a seventh guide rail, the length of the sliding plate 84 is less than that of the connecting plate 81, the sliding plate is driven by a seventh air cylinder 85 to move, and the moving distance of the sliding plate is controlled by controlling the driving time.
The reinforcing bar limiting and bending assembly 86 includes a fixing frame 861 connected to the sliding plate 84 through a sliding locking assembly (which is not described herein in detail in the prior art), and a limiting groove located on the fixing frame 861 and used for placing a warp reinforcing bar, wherein the limiting groove is composed of two protrusions 862 having an arc shape.
The bending driving assembly 87 comprises a mounting plate 870 positioned on two sides of the rack, a round rod 871 rotationally connected to the mounting plate 870 through a cam structure and matched with the two protrusions 862 in the shape of a circular arc, an eighth cylinder 872 hinged to the round rod 871, and a fixing seat 873 hinged to the bottom of the eighth cylinder 872. Since a large force is required when the reinforcing bars are bent, a reinforcing plate is provided on the round bar 871 in order to reinforce the strength of the round bar 871. The movement of the mesh in the rebar bending mechanism 8 is transmitted by the mesh transmission assembly 74.
The steel bar bending mechanism 8 can bend the warp steel bars at any position of the net piece while realizing bending of one end of the warp steel bars, so that the whole net piece is bent, and the application range of the mechanism is enlarged. In order to facilitate the bending of both ends of the mesh reinforcing steel bars, a reinforcing steel bar bending mechanism 8 is correspondingly arranged at the tail end of the rack.
When the steel bar bending mechanism operates, the mesh transmission assembly 74 drives the mesh to operate to a preset position and then stops operating, then the controller sends a signal to the jacking assembly 82 to enable the jacking assembly 82 to ascend to a set position, then the controller sends a signal to the seventh cylinder 85 on one side of the back face of the limiting groove to enable the seventh cylinder 85 to operate to the set position (at the moment, the warp steel bars are located in the limiting groove), finally the controller sends a signal to the eighth cylinder 872 to enable the eighth cylinder 872 to operate to the set position, and therefore the purpose of bending the steel bars is achieved.
When the whole mesh row welding machine operates, the controller sends a signal to the warp steel bar conveying mechanism 2 to input warp steel bars into the welding mechanism 5, and simultaneously sends a signal to the weft steel bar sorting mechanism 3 and the single weft steel bar poking mechanism 4 to poke weft steel bars into the welding mechanism, then the controller sends a signal to the welding mechanism 5 to weld, when the welding mechanism 5 finishes welding of a first row of welding spots, the controller sends a signal to the net pulling mechanism 6 to pull the meshes to transport, at the moment, the movement of the meshes can be carried out only through the net pulling mechanism 6, when the welding mechanism 5 welds, the net pulling mechanism 6, the warp steel bar conveying mechanism 2 and the single weft steel bar poking mechanism 4 stop operating, when the meshes move to the truss mounting mechanism 7, the controller sends a signal to the mesh transmission mechanism to realize the transportation of the meshes, and by controlling the operation time of the mesh transmission mechanism, the mesh sheet reaches a preset position, then a signal is sent to the truss installation mechanism 7 to install and weld the truss, and then the controller sends a signal to the bending mechanism 8 to realize bending of the mesh sheet.
It is noted that, herein, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Also, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Although embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the utility model, the scope of which is defined in the appended claims and their equivalents.

Claims (9)

1. The utility model provides a mesh piece is weft reinforcing bar letter sorting mechanism for gang welding machine, includes the frame, its characterized in that: the sorting device also comprises a weft steel bar stacking area with a certain inclination angle, correspondingly arranged sorting assemblies for carrying out single sorting on the weft steel bars in the weft steel bar stacking area, and a sorting driving assembly for driving the sorting assemblies to run; the sorting assembly comprises two corresponding stepped fixed sorting frames, a stepped movable transmission frame matched with the fixed sorting frames and a lifting driving part connected between the fixed sorting frames and the movable transmission frame and used for driving the movable transmission frame to run.
2. The weft bar sorting mechanism for the mesh row welding machine according to claim 1, wherein: the weft steel bar stacking area comprises stacking plates and limiting plates which are located at two ends of the stacking plates and used for limiting two ends of the weft steel bars.
3. The weft bar sorting mechanism for the mesh row welding machine according to claim 1, wherein: the lifting driving part comprises a rotating shaft connected to the fixed sorting frame through a bearing and an eccentric component connected to the rotating shaft, and the movable transmission frame is connected to the eccentric component.
4. The weft bar sorting mechanism for the mesh row welder of claim 3, wherein: the eccentric component is an eccentric wheel or an eccentric rod.
5. The weft bar sorting mechanism for the mesh row welding machine according to claim 1, wherein: the sorting driving assembly comprises a first driven wheel connected to the lifting driving part, a first driving wheel matched with the first driven wheel, a first chain connected between the first driven wheel and the first driving wheel, a fifth driving device used for driving the first driving wheel to rotate, and a driving rotating rod used for connecting two first driving wheels.
6. The weft bar sorting mechanism for the mesh row welding machine according to claim 1, wherein: still including being located the supplementary letter sorting subassembly in the frame, including being located the dead lever in the frame, be located a plurality of letter sorting subassemblies on the dead lever to and connect the letter sorting drive assembly on letter sorting subassembly.
7. The weft bar sorting mechanism for the mesh row welding machine according to claim 1, wherein: a certain angle is formed between the top end of the fixed sorting frame and the horizontal plane, so that the weft steel bars can slide conveniently.
8. The weft bar sorting mechanism for the mesh row welding machine according to claim 1, wherein: the ladder on the fixed sorting frame is reduced from bottom to top in proper order, and the uppermost ladder only holds a weft reinforcing bar.
9. The weft bar sorting mechanism for the mesh row welder of claim 5, wherein: and the fifth driving device is a second servo motor.
CN202122710302.6U 2021-11-08 2021-11-08 Weft steel bar sorting mechanism for mesh row welding machine Active CN216174279U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202122710302.6U CN216174279U (en) 2021-11-08 2021-11-08 Weft steel bar sorting mechanism for mesh row welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202122710302.6U CN216174279U (en) 2021-11-08 2021-11-08 Weft steel bar sorting mechanism for mesh row welding machine

Publications (1)

Publication Number Publication Date
CN216174279U true CN216174279U (en) 2022-04-05

Family

ID=80904570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202122710302.6U Active CN216174279U (en) 2021-11-08 2021-11-08 Weft steel bar sorting mechanism for mesh row welding machine

Country Status (1)

Country Link
CN (1) CN216174279U (en)

Similar Documents

Publication Publication Date Title
CN110480221B (en) Longitudinal short bar feeding and bar distributing device and method during welding of reinforcing bar meshes
CN116586868B (en) Reinforcing cage forming welding machine
CN108726171A (en) Tubing automatic charging device
CN216174279U (en) Weft steel bar sorting mechanism for mesh row welding machine
CN212823549U (en) Single weft steel bar poking and conveying mechanism for mesh strip welding machine
CN212977215U (en) Full-automatic truss installation mechanism for mesh row welding machine
KR102087725B1 (en) rebar structure automatic welding equipment
CN212823347U (en) Welding mechanism for mesh strip welding machine
CN219402908U (en) Reinforcing bar building carrier plate net piece welding equipment
CN212823550U (en) Welding gun with protection and cooling functions
CN112027617A (en) Longitudinal rib conveying device of automatic mesh welding machine
CN115780958B (en) Automatic welding continuous production line
CN114012003A (en) Reinforcing steel bar bending mechanism for mesh row welding machine
CN114055019A (en) Full-automatic truss installation mechanism for mesh row welding machine
CN213894213U (en) Continuous feeding equipment for collecting pipes
CN114056919A (en) Warp reinforcing steel bar conveying mechanism for preventing reinforcing steel bar from bending for mesh row welding machine
CN209006909U (en) A kind of straight steel bar automatic soldering device
CN114055020A (en) Full-automatic mesh row welding machine
CN109533988A (en) Three-dimensional row posture turntable high position palletizing system and palletizing method
CN212400395U (en) Mask ear belt welding machine
CN210001086U (en) Blanking stacking device of numerical control cutting machine
CN210848557U (en) Feeding mechanism of automatic pipe cutting system
CN213410187U (en) Transverse bar blanking device of reinforcing mesh welding machine
CN212330445U (en) Compact tubular product loading attachment
CN112474939A (en) Bending device for steel structure machining

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant