CN215888368U - 一种自适应量程的基桩检测仪 - Google Patents

一种自适应量程的基桩检测仪 Download PDF

Info

Publication number
CN215888368U
CN215888368U CN202122169485.5U CN202122169485U CN215888368U CN 215888368 U CN215888368 U CN 215888368U CN 202122169485 U CN202122169485 U CN 202122169485U CN 215888368 U CN215888368 U CN 215888368U
Authority
CN
China
Prior art keywords
embedded computer
module
foundation pile
adc
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202122169485.5U
Other languages
English (en)
Inventor
张喻
王承成
杨涛
杨春华
黄帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Y Link Wuhan Technology Co ltd
Original Assignee
Y Link Wuhan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Y Link Wuhan Technology Co ltd filed Critical Y Link Wuhan Technology Co ltd
Priority to CN202122169485.5U priority Critical patent/CN215888368U/zh
Application granted granted Critical
Publication of CN215888368U publication Critical patent/CN215888368U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本实用新型提供了一种自适应量程的基桩检测仪(1),其中,所述基桩检测仪包括:嵌入式计算机(101)、电源电路(102)、无线传输模块(103)、信号采集与调理模块(104)、液晶显示屏(105)和GPS模块(106)。本实用新型的基桩检测仪,对两路传感器数据进行融合处理,形成兼顾大小信号的最终数据,从而实现自适应量程功能,解决了传感器信号的非线性失真与噪声问题,同时对硬件电路规模过大,成本过高、功耗过大等问题,进行了优化改进,便于系统的微型化和规模化应用。

Description

一种自适应量程的基桩检测仪
技术领域
本实用新型涉及岩土工程检测技术领域,具体而言,涉及一种自适应量程的基桩检测仪。
背景技术
桩基作为建筑物基础构造形式的一种,埋于地下,属于隐蔽工程。准确判定桩基工程的质量对于确保建筑整体的质量、安全十分重要,根据《建筑桩基检测技术规范JGJ106-2014》,桩基检测的主要方法有静载试验、钻芯法、低应变法、高应变法、声波透射法等几种。其中,静载试验通常采用静载荷测试仪,低应变法通常采用基桩低应变检测仪,高应变法通常采用基桩高应变检测仪,声波透射法通常采用基桩超声波检测仪。这类基桩检测仪具备的共同特点是:均由一台带液晶显示屏的主机与一种或多种类型的传感器组成,检测人员通过操控主机,获取各传感器的实时数据,从而分析判断基桩的承载力或桩身的完整性。
在实际的工程应用中,上述基桩检测仪存在的问题是:1、检测人员在进行现场检测时,无法预知各类检测传感器接收到的能量大小,通常传感器接收到的信号电压范围在uV~10V不等,即动态范围达140dB以上。为了能够有效的采集到如此高动态范围的传感器信号,通常在基桩检测仪中,信号采集与调理模块需要增设一级或多级可调增益放大器,后端再搭配高精度的24Bit或32Bit ADC,才能确保采集到的传感器信号不失真的呈现给检测人员进行分析与判读。
因此,为了采集到比较好的传感器信号,在检测过程中,检测人员需要根据预先采集的传感器信号大小,手动反复调整放大倍数,直到将放大倍数调整到在不超过系统量程的前提条件下,确定最优放大倍数后,才能开始正常的检测。可见,这种手动设置放大倍数的方式,操作繁琐,而且对检测人员也有一定的专业技术要求。
2、为了优化检测人员操作体验,当前在基桩检测仪中,逐步实现了可自动调整放大倍数的功能,以自动适应传感器信号电压范围满足uV~10V性能要求。目前基桩检测仪自动调整放大倍数的功能采用如下两种技术方案:
方案1:通过瞬时浮点增益控制的方式实现,该方式虽然可以通过运算放大器自动增益控制电路实现放大倍数自动调整,达到了自适应量程的功能,但是,电路实现规模复杂,而且在每个相邻的增益码间,信号会出现非线性失真与噪声,虽然可以通过后续软件算法的优化处理等到缓解,但是波形失真会导致信号的完整性受影响,最终会影响检测结果的准确性。
方案2:通过在基桩检测仪中,增设三路信号采集与调理模块,其中三路信号增益分别设置为:衰减M倍、放大1倍、放大N倍,并选用多路ADC同步采集传感器信号,最终将三路传感器信号同步缓存,再通过采用幅值比较判读的方式,自动选择最优的一路数据作为最终检测数据。与方案1相比较,此方案虽然解决了传感器信号的非线性失真与噪声问题,同样硬件电路规模过大,成本过高、功耗过大,不利于系统的微型化和规模化应用。
实用新型内容
本实用新型解决的问题是:现有基桩检测仪传感器信号的非线性失真与噪声以及硬件电路规模过大,成本过高、功耗过大等问题。
为解决上述问题,本实用新型提供一种自适应量程的基桩检测仪1,其中,所述基桩检测仪包括:
嵌入式计算机101、电源电路102、无线传输模块103、信号采集与调理模块104、液晶显示屏105和GPS模块106;
所述嵌入式计算机101,用于数据接收、处理以及反馈;
所述电源电路102,与所述嵌入式计算机101、无线传输模块103以及信号采集与调理模块104相连接,用于向所述嵌入式计算机101、无线传输模块103以及信号采集与调理模块104提供电源;
所述无线传输模块103,与所述嵌入式计算机101通过USB总线连接,用于将所述嵌入式计算机101的待处理数据传输至后台服务器,并将后台服务器处理后的数据传输至所述嵌入式计算机101;
所述信号采集与调理模块104,与所述嵌入式计算机101通过SPI总线连接,用于通过部署在基桩桩顶上的传感器,对手锤锤击桩顶产生的信号进行采集和处理,并将经过处理后的数据传输至所述嵌入式计算机101;
所述液晶显示屏105,与所述嵌入式计算机101通过LVDS总线连接,用于显示交互界面;
所述GPS模块106,与所述嵌入式计算机101通过UART总线连接,用于通过GPS定位提供所述基桩检测仪的位置信息。
优选地,所述信号采集与调理模块104包括:
传感器信号输入模块200、AMP1 201、BPF1 202、AMP2 203、BPF2 204和ADC 205;
所述传感器信号输入模块200为安装在基桩桩顶上的传感器,用于采集信号;
所述AMP1 201、AMP2 203为精密运算放大器,用于将采集到的信号进行运算放大调理;
所述BPF1 202、BPF2 204为带通滤波器,用于允许特定频段的信号通过,同时屏蔽其他频段的信号;
所述ADC 205为模拟数字转换器,用于将模拟信号转换为数字信号;
所述传感器信号输入模块200的输出端分为两路,其中一路经所述AMP1201、BPF1202与所述ADC 205的一路输入端相连接,另外一路经所述AMP2203、BPF2 204与所述ADC205的另外一路输入端相连接。
优选地,其中一路信号增益设置为衰减M倍,另外一路设置为放大N倍。
优选地,所述ADC 205为双路24Bit ADC。
优选地,所述ADC 205转换后的信号传输至所述嵌入式计算机101进行融合处理,形成自适应量程的最终数据。
相对于现有技术,本实用新型所述的自适应量程的基桩检测仪具有以下有益效果:
(1)本实用新型的基桩检测仪,采用两路信号采集与调理模块,其中两路信号增益分别设置为:衰减M倍、放大N倍,并选用双路24Bit ADC同步采集传感器信号,并将两路传感器信号同步缓存,然后对两路传感器数据进行融合处理,形成兼顾大小信号的最终数据,从而实现自适应量程功能,解决了传感器信号的非线性失真与噪声问题;
(2)本实用新型的基桩检测仪,同时对硬件电路规模过大,成本过高、功耗过大等问题,进行了优化改进,便于系统的微型化和规模化应用。
附图说明
图1为本实用新型的自适应量程的基桩检测仪整体示意图;
图2为本实用新型的基桩检测仪中信号采集与调理模块示意图。
附图标记说明:
1、自适应量程的基桩检测仪;101、嵌入式计算机;102、电源电路;103、无线传输模块;104、信号采集与调理模块;105、液晶显示屏;106、GPS模块;200、传感器信号输入模块;201、AMP1;202、BPF1;203、AMP2;204、BPF2;205、ADC。
具体实施方式
为使本实用新型的上述目的、特征和优点能够更为明显易懂,下面结合附图对本实用新型的具体实施例做详细的说明。
实施例一
提供一种自适应量程的基桩检测仪1,如图1所示,其中,所述基桩检测仪包括:
嵌入式计算机101、电源电路102、无线传输模块103、信号采集与调理模块104、液晶显示屏105和GPS模块106;
所述嵌入式计算机101,用于数据接收、处理以及反馈;
所述电源电路102,与所述嵌入式计算机101、无线传输模块103以及信号采集与调理模块104相连接,用于向所述嵌入式计算机101、无线传输模块103以及信号采集与调理模块104提供电源;
所述无线传输模块103,与所述嵌入式计算机101通过USB总线连接,用于将所述嵌入式计算机101的待处理数据传输至后台服务器,并将后台服务器处理后的数据传输至所述嵌入式计算机101;
所述信号采集与调理模块104,与所述嵌入式计算机101通过SPI总线连接,用于通过部署在基桩桩顶上的传感器,对手锤锤击桩顶产生的信号进行采集和处理,并将经过处理后的数据传输至所述嵌入式计算机101;
所述液晶显示屏105,与所述嵌入式计算机101通过LVDS总线连接,用于显示交互界面;
所述GPS模块106,与所述嵌入式计算机101通过UART总线连接,用于通过GPS定位提供所述基桩检测仪的位置信息。
其中,如图2所示,所述信号采集与调理模块104包括:
传感器信号输入模块200、AMP1 201、BPF1 202、AMP2 203、BPF2 204和ADC 205;
所述传感器信号输入模块200为安装在基桩桩顶上的传感器,用于采集信号;
所述AMP1 201、AMP2 203为精密运算放大器,用于将采集到的信号进行运算放大调理;
所述BPF1 202、BPF2 204为带通滤波器,用于允许特定频段的信号通过,同时屏蔽其他频段的信号;
所述ADC 205为模拟数字转换器,用于将模拟信号转换为数字信号;
所述传感器信号输入模块200的输出端分为两路,其中一路经所述AMP1201、BPF1202与所述ADC 205的一路输入端相连接,另外一路经所述AMP2203、BPF2 204与所述ADC205的另外一路输入端相连接。
其中,其中一路信号增益设置为衰减M倍,另外一路设置为放大N倍。
其中,所述ADC 205为双路24Bit ADC。
其中,所述ADC 205转换后的信号传输至所述嵌入式计算机101进行融合处理,形成自适应量程的最终数据。
本实施例中的基桩检测仪,采用两路信号采集与调理模块,其中两路信号增益分别设置为:衰减M倍、放大N倍,并选用双路24Bit ADC同步采集传感器信号,并将两路传感器信号同步缓存,然后对两路传感器数据进行融合处理,形成兼顾大小信号的最终数据,从而实现自适应量程功能,本基桩检测仪解决了背景技术方案1中提到的传感器信号的非线性失真与噪声问题,同时对方案2中的硬件电路规模过大,成本过高、功耗过大等问题,进行了优化改进,便于系统的微型化和规模化应用。
实施例二
提供一种数据处理方法,其采用了如实施例一所述的自适应量程的基桩检测仪1,其中,包括如下步骤:
S1.传感器信号输入模块200通过部署在基桩桩顶上的传感器,对手锤锤击桩顶产生的信号进行采集;
S2.信号采集与调理模块104分为两路,其中两路信号增益分别设置为:衰减M倍、放大N倍,并采用双路24Bit ADC同步采集传感器信号,并将两路传感器信号同步缓存;
S3.嵌入式计算机101结合缓存的两路传感器信号原始数据,以放大N倍的一路数据作为基准,找出幅值最大且未超出量程的数据点索引Index(n);
S4.定位到数据点索引Index(n+m);
S5.以此数据索引点Index(n+m),作为分段数据融合的临界点,此临界点前段数据采用衰减M倍的数据替换,同时将各数据点乘以M倍作为融合前数据A;后段数据采用放大N倍的数据替换,同时将各数据点除以N倍作为融合前数据B;
S6.将融合前数据A与融合前数据B进行数据融合。
其中,步骤S4中m=64,此时融合效果最佳。
本实施例中的方法,采用两路信号采集与调理模块,其中两路信号增益分别设置为:衰减M倍、放大N倍,并选用双路24Bit ADC同步采集传感器信号,并将两路传感器信号同步缓存,然后对两路传感器数据进行融合处理,形成兼顾大小信号的最终数据,从而实现自适应量程功能,本方法解决了背景技术方案1中提到的传感器信号的非线性失真与噪声问题,同时对方案2中的硬件电路规模过大,成本过高、功耗过大等问题,进行了优化改进,便于系统的微型化和规模化应用。
虽然本实用新型披露如上,但本实用新型的保护范围并非仅限于此。本领域技术人员在不脱离本实用新型的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本实用新型的保护范围。

Claims (5)

1.一种自适应量程的基桩检测仪(1),其特征在于,所述基桩检测仪包括:
嵌入式计算机(101)、电源电路(102)、无线传输模块(103)、信号采集与调理模块(104)、液晶显示屏(105)和GPS模块(106);
所述嵌入式计算机(101),用于数据接收、处理以及反馈;
所述电源电路(102),与所述嵌入式计算机(101)、无线传输模块(103)以及信号采集与调理模块(104)相连接,用于向所述嵌入式计算机(101)、无线传输模块(103)以及信号采集与调理模块(104)提供电源;
所述无线传输模块(103),与所述嵌入式计算机(101)通过USB总线连接,用于将所述嵌入式计算机(101)的待处理数据传输至后台服务器,并将后台服务器处理后的数据传输至所述嵌入式计算机(101);
所述信号采集与调理模块(104),与所述嵌入式计算机(101)通过SPI总线连接,用于通过部署在基桩桩顶上的传感器,对手锤锤击桩顶产生的信号进行采集和处理,并将经过处理后的数据传输至所述嵌入式计算机(101);
所述液晶显示屏(105),与所述嵌入式计算机(101)通过LVDS总线连接,用于显示交互界面;
所述GPS模块(106),与所述嵌入式计算机(101)通过UART总线连接,用于通过GPS定位提供所述基桩检测仪的位置信息。
2.根据权利要求1所述的自适应量程的基桩检测仪(1),其特征在于,所述信号采集与调理模块(104)包括:
传感器信号输入模块(200)、AMP1(201)、BPF1(202)、AMP2(203)、BPF2(204)和ADC(205);
所述传感器信号输入模块(200)为安装在基桩桩顶上的传感器,用于采集信号;
所述AMP1(201)、AMP2(203)为精密运算放大器,用于将采集到的信号进行运算放大调理;
所述BPF1(202)、BPF2(204)为带通滤波器,用于允许特定频段的信号通过,同时屏蔽其他频段的信号;
所述ADC(205)为模拟数字转换器,用于将模拟信号转换为数字信号;
所述传感器信号输入模块(200)的输出端分为两路,其中一路经所述AMP1(201)、BPF1(202)与所述ADC(205)的一路输入端相连接,另外一路经所述AMP2(203)、BPF2(204)与所述ADC(205)的另外一路输入端相连接。
3.根据权利要求2所述的自适应量程的基桩检测仪(1),其特征在于,其中一路信号增益设置为衰减M倍,另外一路设置为放大N倍。
4.根据权利要求2所述的自适应量程的基桩检测仪(1),其特征在于,所述ADC(205)为双路24Bit ADC。
5.根据权利要求2所述的自适应量程的基桩检测仪(1),其特征在于,所述ADC(205)转换后的信号传输至所述嵌入式计算机(101)进行融合处理,形成自适应量程的最终数据。
CN202122169485.5U 2021-09-06 2021-09-06 一种自适应量程的基桩检测仪 Active CN215888368U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202122169485.5U CN215888368U (zh) 2021-09-06 2021-09-06 一种自适应量程的基桩检测仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202122169485.5U CN215888368U (zh) 2021-09-06 2021-09-06 一种自适应量程的基桩检测仪

Publications (1)

Publication Number Publication Date
CN215888368U true CN215888368U (zh) 2022-02-22

Family

ID=80336976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202122169485.5U Active CN215888368U (zh) 2021-09-06 2021-09-06 一种自适应量程的基桩检测仪

Country Status (1)

Country Link
CN (1) CN215888368U (zh)

Similar Documents

Publication Publication Date Title
Sleeman et al. Three-channel correlation analysis: A new technique to measure instrumental noise of digitizers and seismic sensors
CN107144719A (zh) 一种高精度微弱信号测试仪及测试方法
CN104730573B (zh) 一种高动态范围的微震信号采集方法及设备
CN109991480B (zh) M-Bus信号仪表在有意辐射干扰下的检测装置及方法
CN109001997B (zh) 一种防干扰的环境信息采集系统
CN102969996B (zh) 非线性超声检测仪模拟放大电路的实现方法及装置
CN113737867A (zh) 一种自适应量程的基桩检测仪及其数据处理方法
CN103439411B (zh) 多跨孔超声波检测系统及其检测方法
CN100487493C (zh) 一种大地电磁阻抗测量方法
CN215888368U (zh) 一种自适应量程的基桩检测仪
CN104062004B (zh) 一种极弱光信号探测装置及方法
EP1841101A3 (en) Optical transmission system
JPH0394178A (ja) 高周波信号測定装置
KR20100104209A (ko) 이중 a/d 변환기를 갖는 실시간 지진 신호 측정 장치 및 그 측정 방법
CN109164427A (zh) 一种雷达接收机噪声功率的检测方法
CN202502254U (zh) 一种电法仪
CN101738436B (zh) 一种提高中厚板自动探伤信号信噪比的系统和方法
CN203908675U (zh) 一种极弱光信号探测装置
CN113644997A (zh) 一种电磁环境检测方法、装置和系统
CN102721631A (zh) 一种直接测量超声波衰减量的方法
CN105445549A (zh) 一种微弱电磁信号频谱测量方法
CN114878698B (zh) 基于声发射信号功率的岩石裂纹扩展获取方法
CN117664361B (zh) 一种非接触式红外温度检测装置
CN108362924A (zh) 示波器波形放大显示方法和系统、计算机存储介质及设备
CN212989685U (zh) 一种偶极发射换能器测试装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant