CN214194138U - Combined bridge deck structure of large-span bridge - Google Patents

Combined bridge deck structure of large-span bridge Download PDF

Info

Publication number
CN214194138U
CN214194138U CN202023199157.1U CN202023199157U CN214194138U CN 214194138 U CN214194138 U CN 214194138U CN 202023199157 U CN202023199157 U CN 202023199157U CN 214194138 U CN214194138 U CN 214194138U
Authority
CN
China
Prior art keywords
steel
deck structure
transverse
bridge
orthotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202023199157.1U
Other languages
Chinese (zh)
Inventor
彭旭民
郭福宽
周尚猛
肖昌量
郝聪龙
崔冰
王朝
王伟
王岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Provincial Communications Planning And Design Institute Co ltd
Original Assignee
China Railway Major Bridge Engineering Group Co Ltd MBEC
China Railway Bridge Science Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Major Bridge Engineering Group Co Ltd MBEC, China Railway Bridge Science Research Institute Ltd filed Critical China Railway Major Bridge Engineering Group Co Ltd MBEC
Priority to CN202023199157.1U priority Critical patent/CN214194138U/en
Application granted granted Critical
Publication of CN214194138U publication Critical patent/CN214194138U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

The application relates to a combination bridge deck structure of long span bridge relates to bridge construction technical field, includes: an orthotropic plate; an ultra-high performance concrete layer laid on the orthotropic plate; connecting assembly buried in an ultra-high performance concrete layer, comprising: the steel plate groups are distributed at intervals along the transverse bridge direction, each steel plate group comprises a plurality of steel plates distributed at intervals along the bridge direction, the bottoms of the steel plates are fixedly connected to the orthotropic plates, and the tops of the steel plates are provided with a plurality of open grooves distributed at intervals along the bridge direction; the shear nails are vertically arranged on the orthotropic plate; the single-layer reinforcing mesh comprises a plurality of first transverse reinforcing steel bars and a plurality of longitudinal reinforcing steel bars, wherein the first transverse reinforcing steel bars and the longitudinal reinforcing steel bars are arranged in a criss-cross mode, and the first transverse reinforcing steel bars are placed in the open grooves. The composite bridge deck structure can improve the local mechanical property and the overall mechanical property of the orthotropic plates, does not obviously increase the weight of the composite bridge deck structure, and also improves the spanning capacity of the composite bridge deck structure.

Description

Combined bridge deck structure of large-span bridge
Technical Field
The application relates to the technical field of bridge construction, in particular to a combined bridge deck structure of a large-span bridge.
Background
The main beam form of the large-span bridge generally adopts a composite structure of a steel box girder and an orthotropic plate, and the orthotropic bridge deck has low rigidity and is variable, so that the phenomena of fatigue cracking and pavement layer damage are easy to occur.
In the related art, a steel-ultrahigh performance concrete combined bridge deck structure with a short reinforcing steel bar shear-resistant structure is disclosed, and the combined bridge deck structure comprises a steel bridge deck layer and an ultrahigh performance concrete layer poured above the steel bridge deck layer, wherein the steel bridge deck layer is fixedly connected with the short reinforcing steel bar shear-resistant structure, the short reinforcing steel bar shear-resistant structure comprises a plurality of short reinforcing steel bars fixedly connected to the upper surface of the steel bridge deck layer, the short reinforcing steel bars are horizontally arranged along the bridge direction, and the short reinforcing steel bar shear-resistant structure is embedded in the ultrahigh performance concrete layer. The combined bridge deck structure can reduce the thickness of the ultra-high performance concrete layer and reduce the dead weight of the bridge deck, and the shear key structure is small in size and simple in construction process, and is suitable for large-span flexible bridges sensitive to the dead weight of the bridges.
The arrangement of the short steel bars in the related technology improves the local rigidity of the orthotropic bridge deck, and can relieve the fatigue cracking problem to a certain extent, however, the technical scheme can not solve the problem of the overall rigidity of the orthotropic slab. Although the overall rigidity of the steel-concrete composite beam is high, the weight of the steel-concrete composite beam is also high, and the spanning capability is influenced to a certain extent.
Disclosure of Invention
The embodiment of the application provides a combination bridge deck structure of long span bridge to can't enough guarantee combination bridge deck structure integral rigidity simultaneously among the solution correlation technique, can not show the problem that increases weight again.
The embodiment of the application provides a combination bridge deck structure of long span bridge, includes:
an orthotropic plate;
an ultra-high performance concrete layer laid on the orthotropic plate;
the coupling assembling of burying in ultra high performance concrete layer, it includes:
the steel plate groups are distributed at intervals along the transverse bridge direction, each steel plate group comprises a plurality of steel plates distributed at intervals along the bridge direction, the bottoms of the steel plates are fixedly connected to the orthotropic plates, and the tops of the steel plates are provided with a plurality of open grooves distributed at intervals along the bridge direction;
the shear nails are vertically arranged on the orthotropic plates;
the single-layer reinforcing mesh comprises a plurality of first transverse reinforcing steel bars and a plurality of longitudinal reinforcing steel bars, wherein the first transverse reinforcing steel bars and the longitudinal reinforcing steel bars are arranged in a criss-cross mode, and the first transverse reinforcing steel bars are placed in the open grooves.
In some embodiments, the opening groove includes a circular through hole and an opening above the circular through hole, the opening is communicated with the circular through hole, and a diameter of the opening is smaller than a diameter of the circular through hole.
In some embodiments, the ultra-high performance concrete layer comprises steel fibers, and the length of the steel fibers is no more than 12 mm; meanwhile, the caliber of the opening is larger than the diameter of the first transverse steel bar by 2-4 mm, and the diameter of the circular through hole is 25-35 mm.
In some embodiments, the mesh reinforcement further comprises:
the second transverse steel bars and the longitudinal steel bars are arranged in a criss-cross mode, and at least one second transverse steel bar is arranged between every two adjacent steel plates.
In some embodiments, the orthotropic plate includes a deck plate and a plurality of longitudinal stiffeners spaced apart along a transverse bridge direction on a lower surface of the deck plate.
In some embodiments, the longitudinal stiffeners are U-shaped ribs, I-shaped ribs, or inverted T-shaped ribs.
In some embodiments, all the shear nails are divided into a plurality of shear nail groups distributed at intervals in the transverse bridge direction, each shear nail group comprises a plurality of shear nails distributed at intervals in the bridge direction, and the shear nails are vertically arranged on the upper surface of the bridge deck.
In some embodiments, at least one of the steel plate sets is disposed between two adjacent longitudinal stiffeners.
In some embodiments, the shear nails are the same height as the steel plate.
The beneficial effect that technical scheme that this application provided brought includes: the composite bridge deck structure has the advantages that the local mechanical property of the orthotropic plates can be improved, the overall mechanical property of the orthotropic plates can be guaranteed, the weight of the composite bridge deck structure can not be obviously increased, and the spanning capacity of the composite bridge deck structure is improved.
The embodiment of the application provides a combined bridge deck structure of a large-span bridge, wherein a connecting assembly is arranged on an orthotropic plate, the connecting assembly comprises a plurality of steel plates, a plurality of shear nails and a layer of reinforcing mesh, the steel plates are vertically and horizontally dispersed on the orthotropic plate, first transverse reinforcing steel bars are placed in an open slot on the steel plates to be connected with the steel plates which are distributed at intervals along the transverse bridge direction, the steel plates and the first transverse reinforcing steel bars form a PBL shear key structure, the orthotropic plate and an ultrahigh-performance concrete layer are effectively and reliably connected, the shear force generated by the integral stress of the combined bridge deck structure can be borne, the integral rigidity of the combined bridge deck structure is improved, the integral stress performance of the combined bridge deck structure is improved, meanwhile, the plurality of bridge deck nails on the orthotropic plate can improve the local rigidity of the combined bridge deck structure, and the thinner ultrahigh-performance concrete layer can ensure that the stress performance of the combined bridge deck structure meets requirements, therefore, the combined bridge deck structure has lighter self weight and is more suitable for being applied to bridges with larger spans.
Drawings
In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings needed to be used in the description of the embodiments are briefly introduced below, and it is obvious that the drawings in the following description are only some embodiments of the present application, and it is obvious for those skilled in the art to obtain other drawings based on these drawings without creative efforts.
FIG. 1 is a schematic view of a composite deck structure of a first large-span bridge according to an embodiment of the present application;
FIG. 2 is a schematic view of a combined deck structure (between poured ultra-high performance concrete) of a first large-span bridge according to an embodiment of the present application; (ii) a
FIG. 3 is a schematic view of a steel plate;
FIG. 4 is a schematic view of a second composite deck structure of a large-span bridge according to an embodiment of the present application;
FIG. 5 is a schematic view of a third composite deck structure for a large span bridge according to an embodiment of the present application;
in the figure: 1. an orthotropic plate; 11. a bridge deck; 12. a longitudinal stiffener; 2. an ultra-high performance concrete layer; 3. a connecting assembly; 31. a steel plate; 310. an open slot; 3101. a circular through hole; 3102. an opening; 32. shear nails; 33. a reinforcing mesh; 331. a first transverse reinforcement bar; 332. longitudinal reinforcing steel bars; 333. a second transverse reinforcement.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application, and it is obvious that the described embodiments are some embodiments of the present application, but not all embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present application.
The embodiment of the application provides a combined bridge deck structure of a large-span bridge, which can improve the local mechanical property of an orthotropic plate, ensure the overall mechanical property of the orthotropic plate, and improve the spanning capacity of the combined bridge deck structure without obviously increasing the weight of the combined bridge deck structure.
As shown in fig. 1, an embodiment of the present application provides a composite deck structure of a large-span bridge, including:
an orthotropic plate 1;
an ultra-high performance concrete layer 2 laid on the orthotropic plate 1;
a connection assembly 3 embedded in the ultra-high performance concrete layer 2, comprising:
the steel plate groups are distributed at intervals along the transverse bridge direction, each steel plate group comprises a plurality of steel plates 31 distributed at intervals along the bridge direction, the bottoms of the steel plates 31 are fixedly connected to the orthotropic plates 1, and the tops of the steel plates are provided with a plurality of open grooves 310 distributed at intervals along the bridge direction;
the shear nails 32 are vertically arranged on the orthotropic plate 1;
the single-layered mesh reinforcement 33 includes a plurality of first transverse reinforcing bars 331 and a plurality of longitudinal reinforcing bars 332, the first transverse reinforcing bars 331 are arranged to be criss-cross with the longitudinal reinforcing bars 332, and the first transverse reinforcing bars 331 are rested in the open slots 310.
The embodiment of the application provides a combined bridge deck structure of a large-span bridge, which comprises an orthotropic plate 1, an ultrahigh-performance concrete layer 2 and a connecting assembly 3 embedded in the ultrahigh-performance concrete layer 2, wherein the ultrahigh-performance concrete layer 2 is laid on the orthotropic plate 1 and is connected with the orthotropic plate 1 through the connecting assembly 3, and the connecting assembly 3 comprises a steel plate 31, a shear nail 32 and a reinforcing mesh 33; wherein the shear nails 32 are vertically arranged on the upper surface of the orthotropic plate 1, and the plurality of shear nails 32 on the orthotropic plate 1 can improve the local rigidity of the combined bridge deck structure; meanwhile, the reinforcing mesh 33 comprises first transverse reinforcing bars 331 and longitudinal reinforcing bars 332 which are arranged in a criss-cross manner, and the first transverse reinforcing bars 331 are arranged in the open slots 310 in the steel plates 31 in a penetrating manner to form a PBL shear key structure, so that the orthotropic plates 1 and the ultrahigh-performance concrete layer 2 are effectively and reliably connected, and the shear force generated by the integral stress of the combined bridge deck structure can be borne, the integral rigidity of the combined bridge deck structure is improved, and the integral stress performance of the combined bridge deck structure is improved; and moreover, the ultra-high performance concrete is adopted as the paving part on the orthotropic plate 1, and the single-layer reinforcing mesh 33 can be arranged, so that the thickness of the ultra-high performance concrete layer 2 is smaller, and the stress performance of the combined bridge deck structure can meet the requirement, therefore, the combined bridge deck structure has lighter self weight, and is more suitable for being applied to bridges with larger spans.
In this embodiment, each a plurality of steel sheets 31 in the steel sheet group are along following the bridge to interval distribution, adopt the steel sheet 31 that has open slot 310, can solve the difficult problem of perforation when laying reinforcing bar net 33, simultaneously, along following bridge to interval distribution a plurality of steel sheets 31 and avoiding the round hole mistake hole problem that rectangular steel sheet welded fastening warp and arouse, the construction is more convenient.
Specifically, the opening groove 310 includes a circular through hole 3101 and an opening 3102 above the circular through hole 3101, the opening 3102 is in communication with the circular through hole 3101, and the aperture of the opening 3102 is smaller than the diameter of the circular through hole 3101. In this embodiment, the circular through hole 3101 is further provided with an opening 3102, so that the first transverse steel bar 331 is conveniently arranged on the plurality of steel plates 31 arranged along the transverse bridge direction in a penetrating manner, and the steel plates 31 and the first transverse steel bar 331 can form a PBL shear key through rapid construction, so that the overall force transmission performance is more reliable.
In this embodiment, the distance between the steel plates 31 along the transverse bridge direction is 550-650 mm, and the clear distance along the bridge direction is 100-200 mm. Meanwhile, the thickness of the steel plate 31 is 8-12 mm, the height is 45-60 mm, and the length is 400-600 mm.
Specifically, the ultra-high performance concrete layer 2 comprises steel fibers, and the length of the steel fibers is not more than 12 mm; meanwhile, the aperture of the opening 3102 is 2-4 mm larger than the diameter of the first transverse steel bar 331, and the aperture of the circular through hole 3101 is 25-35 mm.
In this embodiment, when the length of the steel fiber in the ultra-high performance concrete is not more than 12mm, the length of the steel fiber can be matched with the size of the first transverse steel bar 331 and the size of the open slot 310 on the steel plate 31, meanwhile, the diameter of the circular through hole 3101 is 25-35 mm, the diameter of the opening 3102 is larger than the diameter of the first transverse steel bar 331 by 2-4 mm, and the hole pitch of the circular through hole 3101 is 50-100 mm, so that the ultra-high performance concrete layer 2 meets the compactness of the combined bridge deck structure, and the combined bridge deck structure is determined to have good mechanical properties.
More specifically, the thickness of the ultrahigh-performance concrete layer 2 is 60-100 mm, the combined bridge deck structure can meet the design requirement at the thickness, if the thickness is less than 60mm, the combined bridge deck structure belongs to a light combined bridge deck structure, the shearing requirement can be met by only adopting shear nails generally, PBL shear keys are not needed, but the problems of fatigue cracking and insufficient integral rigidity of orthotropic plates cannot be thoroughly solved by the light combined bridge deck structure; if the thickness exceeds 100mm, the thickness is too thick, and the self weight of the combined bridge deck structure is too large. And in order to ensure that the quality of the ultra-high performance concrete layer 2 in the combined bridge deck structure meets the requirement of the structural stress performance, the ultra-high performance concrete with expansibility of more than 600mm, compressive strength of more than 100MPa, flexural strength of more than 20MPa and steam curing-free property is adopted.
Further, the mesh reinforcement 33 further includes:
and a plurality of second transverse reinforcing bars 333, wherein the second transverse reinforcing bars 333 are arranged in a criss-cross manner with the longitudinal reinforcing bars 332, and at least one second transverse reinforcing bar 333 is arranged between two adjacent steel plates 31.
In this embodiment, the first transverse reinforcement 331, the second transverse reinforcement 333, and the longitudinal reinforcement 332 are arranged in a criss-cross manner, and the reinforcement mesh 33 is only disposed on one layer of the ultra-high performance concrete layer 2 to meet the design requirement, and the structure is simple and the laying efficiency is high. If the common steel fiber concrete is adopted, the strength is lower, and the reinforcement content has to be increased to increase the crack resistance.
In this embodiment, according to the design requirement of the combined bridge deck structure, preferably, the steel bars in the steel bar mesh 33 are all arranged in a full length, the steel bar spacing is 50-100 mm, and the diameter is 8-12 mm.
Further, the orthotropic plate 1 comprises a bridge deck 11 and a plurality of longitudinal stiffeners 12, and the plurality of longitudinal stiffeners 12 are distributed on the lower surface of the bridge deck 11 at intervals along the transverse bridge direction. In this embodiment, the orthotropic plate 1 further comprises a transverse stiffener, and the structure and arrangement of the transverse stiffener can adopt any one of the prior art, and will not be described in detail herein.
Preferably, the longitudinal stiffeners 12 are U-shaped, I-shaped, or inverted T-shaped. In this embodiment, the ultra-high performance concrete layer 2 and the connecting assembly 3 on the orthotropic plate 1 have good mechanical properties in terms of overall strength and local strength, so that a plurality of different types of longitudinal stiffening ribs can be used, and the longitudinal stiffening ribs are preferably U-shaped ribs, I-shaped ribs or inverted T-shaped ribs. As shown in FIG. 1, in this embodiment, the longitudinal stiffeners 12 are U-shaped ribs; as shown in FIG. 4, in this embodiment, the longitudinal stiffeners 12 are I-shaped ribs; as shown in fig. 5, in this embodiment, the longitudinal stiffeners 12 are inverted T-shaped ribs.
Preferably, all the shear nails 32 are divided into a plurality of shear nail groups distributed at intervals along the transverse bridge direction, each shear nail group comprises a plurality of shear nails 32 distributed at intervals along the bridge direction, and the shear nails 32 are vertically arranged on the upper surface of the bridge deck 11.
In this embodiment, the shear nails 32 are cylindrical head weld nails, and are flexible shear keys, the shear force of the shear nails is weak, and the local mechanical property of the combined bridge deck structure is mainly improved, so that the shear nails 32 are arranged in order vertically and horizontally, on one hand, the construction can be performed quickly, on the other hand, the local stress can be improved in order, and in order to meet the design requirement, the space between the plurality of shear nails 32 distributed at intervals along the bridge direction is 200-400 mm.
Further, at least one steel plate group is arranged between two adjacent longitudinal stiffeners 12. In this embodiment, adjacent two be equipped with one between the vertical stiffening rib 12 steel sheet group, and be equipped with a shear force nail group between two adjacent steel sheet group, its coupling assembling 3's structural design is reasonable, can guarantee the atress performance on whole and part, need not closely can reach the designing requirement with coupling assembling 3's internal structure design, has reduced the construction consumptive material, has improved economic benefits.
Further, the shear pins 32 are the same height as the steel plate 31. In the embodiment, the height of the shear nail 32 is 45-60 mm, and the diameter can be 13, 16 or 19 mm.
In order to better explain the application, the embodiment of the application also provides a construction method of the combined bridge deck structure of the large-span bridge, which comprises the following steps:
a plurality of open grooves 310 which are longitudinally distributed at intervals are formed in each steel plate 31 in advance;
erecting an orthotropic plate 1;
marking the positions of steel plates 31 to be installed and shear nails 32 on the orthotropic plate 1, and correspondingly installing the steel plates 31 and the shear nails 32, so that all the steel plates 31 are distributed on the orthotropic plate 1 in a longitudinal and transverse manner, and the shear nails 32 are dispersedly arranged to improve the local shear resistance;
transversely placing each first transverse bar 331 in the open slot 310 and connecting the longitudinal bars 332 on the first transverse bars 331 to form a single-layer bar mesh 33;
and installing a template at the boundary of the reinforcing mesh 33, pouring ultra-high performance concrete into the template, and forming the ultra-high performance concrete layer 2 after the ultra-high performance concrete is hardened.
In the embodiment, the method is easy to implement, and the combined bridge deck structure manufactured by the construction method can improve the mechanical properties on the whole and the part on the premise of not improving the weight of the combined bridge deck structure.
Furthermore, in the process of forming the single-layer reinforcing mesh 33, firstly placing cushion blocks on the orthotropic plate 1, installing first transverse reinforcing steel bars 331 in the steel plates 31 distributed along the transverse bridge direction, then placing second transverse reinforcing steel bars 333 between two adjacent steel plates 31 along the bridge direction, finally placing longitudinal reinforcing steel bars along the bridge direction, and binding by binding wires to form the criss-cross reinforcing mesh 33.
Furthermore, in the process of pouring the ultrahigh-performance concrete, vibration leveling operation is also carried out, the ultrahigh-performance concrete layer is guaranteed to be compact and free of holes, the surface is collected and leveled in time, a health-preserving film is covered, and moisture preservation and maintenance are carried out.
In the description of the present application, it should be noted that the terms "upper", "lower", and the like indicate orientations or positional relationships based on the orientations or positional relationships shown in the drawings, which are only for convenience in describing the present application and simplifying the description, and do not indicate or imply that the referred device or element must have a specific orientation, be constructed in a specific orientation, and operate, and thus, should not be construed as limiting the present application. Unless expressly stated or limited otherwise, the terms "mounted," "connected," and "connected" are intended to be inclusive and mean, for example, that they may be fixedly connected, detachably connected, or integrally connected; can be mechanically or electrically connected; they may be connected directly or indirectly through intervening media, or they may be interconnected between two elements. The specific meaning of the above terms in the present application can be understood by those of ordinary skill in the art as appropriate.
It is noted that, in the present application, relational terms such as "first" and "second", and the like, are used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Also, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Without further limitation, an element defined by the phrase "comprising an … …" does not exclude the presence of other identical elements in a process, method, article, or apparatus that comprises the element.
The above description is merely exemplary of the present application and is presented to enable those skilled in the art to understand and practice the present application. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the application. Thus, the present application is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (9)

1. A composite deck structure for a large span bridge, comprising:
an orthotropic plate (1);
an ultra-high performance concrete layer (2) laid on the orthotropic plate (1);
a connection assembly (3) embedded in the ultra-high performance concrete layer (2), comprising:
the steel plate groups are distributed at intervals along the transverse bridge direction, each steel plate group comprises a plurality of steel plates (31) distributed at intervals along the bridge direction, the bottoms of the steel plates (31) are fixedly connected to the orthotropic plates (1), and the tops of the steel plates are provided with a plurality of open grooves (310) distributed at intervals along the bridge direction;
a plurality of shear nails (32), wherein the shear nails (32) are vertically arranged on the orthotropic plate (1);
a single-layered mesh reinforcement (33) comprising a plurality of first transverse reinforcing bars (331) and a plurality of longitudinal reinforcing bars (332), said first transverse reinforcing bars (331) being arranged criss-cross with said longitudinal reinforcing bars (332), and said first transverse reinforcing bars (331) resting in said open slots (310).
2. A composite deck structure for large span bridges according to claim 1, wherein said open slot (310) comprises a circular through hole (3101) and an opening (3102) above the circular through hole (3101), said opening (3102) is in communication with said circular through hole (3101), and the diameter of said opening (3102) is smaller than the diameter of said circular through hole (3101).
3. -a composite deck structure for large span bridges according to claim 2, characterized in that said ultra high performance concrete layer (2) comprises steel fibres and the length of said steel fibres does not exceed 12 mm; meanwhile, the aperture of the opening (3102) is 2-4 mm larger than the diameter of the first transverse steel bar (331), and the aperture of the circular through hole (3101) is 25-35 mm.
4. A composite deck structure for large span bridges according to claim 1 wherein said reinforcing mesh (33) further comprises:
a plurality of second transverse reinforcing steel bars (333), wherein the second transverse reinforcing steel bars (333) and the longitudinal reinforcing steel bars (332) are arranged in a criss-cross mode, and at least one second transverse reinforcing steel bar (333) is arranged between every two adjacent steel plates (31).
5. A composite deck structure for large span bridges according to claim 1, wherein said orthotropic plates (1) comprise a deck slab (11) and a plurality of longitudinal stiffeners (12), said plurality of longitudinal stiffeners (12) being distributed on the lower surface of said deck slab (11) at intervals in the transverse bridge direction.
6. A composite deck structure for large bridges according to claim 5 wherein said longitudinal stiffeners (12) are U-shaped, I-shaped or inverted T-shaped.
7. A composite deck structure for large span bridges according to claim 5 wherein all of said shear studs (32) are divided into a plurality of shear stud groups spaced apart in the transverse direction, and each of said shear stud groups comprises a plurality of shear studs (32) spaced apart in the longitudinal direction, said shear studs (32) being provided vertically on the upper surface of said deck slab (11).
8. A composite deck structure for large spans according to claim 7 wherein at least one said set of steel plates is provided between adjacent ones of said longitudinal stiffeners (12).
9. A composite deck structure for large span bridges according to claim 7 wherein said shear nails (32) are of the same height as said steel plates (31).
CN202023199157.1U 2020-12-25 2020-12-25 Combined bridge deck structure of large-span bridge Expired - Fee Related CN214194138U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202023199157.1U CN214194138U (en) 2020-12-25 2020-12-25 Combined bridge deck structure of large-span bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202023199157.1U CN214194138U (en) 2020-12-25 2020-12-25 Combined bridge deck structure of large-span bridge

Publications (1)

Publication Number Publication Date
CN214194138U true CN214194138U (en) 2021-09-14

Family

ID=77657166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202023199157.1U Expired - Fee Related CN214194138U (en) 2020-12-25 2020-12-25 Combined bridge deck structure of large-span bridge

Country Status (1)

Country Link
CN (1) CN214194138U (en)

Similar Documents

Publication Publication Date Title
US8245470B2 (en) Wood-concrete-composite systems
CN210458941U (en) High-performance steel bridge deck structure
KR20120060452A (en) Composite beam using steel member with shear parts to upper part of steel member and bridge construction method using the same
CN109610313B (en) Longitudinal rib staggered arrangement structure of profile steel-UHPC composite board and construction method thereof
CN108252213A (en) A kind of steel-UHPC combination beams
CN112554054A (en) Combined bridge deck structure of large-span bridge and construction method thereof
CN106639094A (en) Assembling type post-tensioned pre-stressing steel reinforced concrete bidirectional laminated board for aggregate building
CN214194138U (en) Combined bridge deck structure of large-span bridge
RU2418920C2 (en) Concrete sandwich panel and method of its manufacturing
CN213806067U (en) Steel bar truss prestressed concrete superimposed sheet
CN109629418B (en) Segmented prestress superposed concrete bridge deck with dense longitudinal beam system and construction method
CN214992702U (en) Light railway track plate structure
CN111764249A (en) Combined beam structure of UHPC (ultra high performance polycarbonate) honeycomb precast slab-steel box girder and construction method
CN216338983U (en) Bridge connection system, hogging moment district structure and bridge
CN214882958U (en) Steel-concrete combined bridge deck poured by concrete beams in separate bins
CN202208984U (en) Lightweight composite floor system
CN112982161A (en) Steel-concrete combined bridge deck structure and bridge
CN108930349B (en) Low-deflection profiled steel plate concrete composite board
CN208517806U (en) A kind of combined bridge improving shear connector fatigue life
CN112982189A (en) Steel plate girder wide hollow slab girder structure
CN112359722A (en) Steel-concrete combined bridge deck poured by concrete beams in separate bins and construction method thereof
CN113089392B (en) Construction method of light railway track
CN101096880A (en) Hollow slab mounted permanent sectional pattern member and implement method thereof
CN219386819U (en) Support-free prefabricated ribbed composite floor slab
CN217601203U (en) Steel-UHPC combined bridge deck system capable of realizing rapid and accurate installation

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220303

Address after: 430000, No.7, Longyang Avenue, Hanyang District, Wuhan City, Hubei Province

Patentee after: HUBEI PROVINCIAL COMMUNICATIONS PLANNING AND DESIGN INSTITUTE CO.,LTD.

Address before: No.103 Jianshe Avenue, Wuhan, Hubei 430034

Patentee before: CHINA RAILWAY BRIDGE SCIENCE RESEARCH INSTITUTE, Ltd.

Patentee before: CHINA RAILWAY MAJOR BRIDGE ENGINEERING GROUP Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210914

CF01 Termination of patent right due to non-payment of annual fee