CN213845288U - Light-weight laminated photovoltaic module based on glass fiber pre-dipping process - Google Patents
Light-weight laminated photovoltaic module based on glass fiber pre-dipping process Download PDFInfo
- Publication number
- CN213845288U CN213845288U CN202022936059.5U CN202022936059U CN213845288U CN 213845288 U CN213845288 U CN 213845288U CN 202022936059 U CN202022936059 U CN 202022936059U CN 213845288 U CN213845288 U CN 213845288U
- Authority
- CN
- China
- Prior art keywords
- layer
- glass fiber
- transmittance
- shingled
- photovoltaic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
The utility model discloses a light shingled photovoltaic module based on fine preimpregnation technology of glass, its technical scheme main points are the welding of shingled battery cluster head and the tail has the solder strip that punches a hole to carry out the cluster through the busbar and connect in parallel, introduce the photovoltaic terminal box through positive negative pole, the outside of shingled battery cluster is provided with the fine preimpregnation material of high glass, and the upper and lower both ends of the fine preimpregnation material of high glass are provided with the high EVA glued membrane that passes through respectively, are provided with transparent flexible front-film on its outmost top, the inboard of shingled battery cluster is provided with the fine preimpregnation material of back-layer glass, the upper and lower end of the fine preimpregnation material of back-layer glass is provided with the height respectively and cuts to the EVA glued membrane, the bottom height cuts to the outmost photovoltaic backplate that is provided with of EVA glued membrane, the outside of photovoltaic terminal box. The technical effect of the utility model for having realized the lightweight of shingled photovoltaic module, the use through fine prefabricated material of glass not only can strengthen the light weight subassembly flexibility, has also improved the impact resistance of subassembly.
Description
Technical Field
The utility model belongs to the technical field of photovoltaic module, concretely relates to light shingled photovoltaic module based on fine preimpregnation technology of glass.
Background
Light weight photovoltaics have gained favor in recent years, with several notable features: the photovoltaic module is flexible and bendable, and rigid components such as glass and aluminum frames are not used for the flexible components; the glass and the frame used in the conventional assembly have high density, the assembly is generally heavier, and the weight is reduced after the assembly is replaced by a flexible material; thirdly, differentiated application can be used in some application environments with curvature and poor bearing capacity;
however, the conventional lightweight module is implemented in a manner that conventional battery cells are connected in series, wherein there are several problems as follows: the conventional battery piece has a large area and is easy to break after being bent; secondly, the battery pieces are connected in series by using welding strips, the welding strips are made of rigid materials, and are more rigid after being alloyed with silver electrodes of the battery pieces, and larger hidden crack fragments can be generated after the welding strips are slightly bent; thirdly, the battery piece adopts a welding mode, and the welding strip and the battery piece are in rigid connection.
In addition, flexible group has the factor of shock resistance difference, and this patent not only can give the flexible subassembly of light reinforcing through the use of glass fiber prefabricated material, has also improved the shock resistance of subassembly.
Disclosure of Invention
An object of the utility model is to provide a light shingled photovoltaic module based on fine preimpregnation technology of glass to solve the problem that proposes in the above-mentioned background art.
In order to achieve the above object, the utility model provides a following technical scheme: a light-weight laminated photovoltaic module based on a glass fiber pre-dipping process comprises laminated cell sheets, wherein the laminated cell sheets are adhered through conductive adhesives and form a laminated cell string in a tile stacking mode, the photovoltaic module is formed by sequentially laying a transparent flexible front film, a first layer of high-transmittance EVA (ethylene vinyl acetate) film, a high-transmittance glass fiber pre-dipping material, a second layer of high-transmittance EVA film, a laminated cell string, a first layer of high-transmittance EVA film, a rear layer of glass fiber pre-dipping material, a second layer of high-transmittance EVA film and a photovoltaic back plate and packaging the components through a laminating process, a punching solder strip is welded at the head and the tail of the laminated cell string, the laminated cell sheets welded with the punching solder strip are connected in series and parallel through bus bars and are introduced into a photovoltaic junction box through positive and negative electrodes, the high-transmittance glass fiber pre-dipping material is arranged on the outer side of the laminated cell string, the first layer of high-transmittance EVA film is arranged at the upper end of the high-transmittance glass fiber pre-dipping material, the second layer of high-transmittance EVA film is arranged at the lower end of the high-transmittance glass fiber pre-dipping material, the high outermost top of passing through the EVA glued membrane of first layer is provided with transparent flexible preceding membrane, the inboard of imbricated cell cluster is provided with the fine preimpregnation material of back layer glass, the upper strata of the fine preimpregnation material of back layer glass is provided with the high EVA glued membrane of cutting of first layer, the lower floor of the fine preimpregnation material of back layer glass is provided with the high EVA glued membrane of cutting of second layer, the high outermost bottom of cutting to the EVA glued membrane of second layer is provided with the photovoltaic backplate, the outside of photovoltaic backplate is provided with the photovoltaic terminal box.
Preferably, the high-transmittance glass fiber prepreg is a composite material formed by coating high-transmittance epoxy resin or acrylate or other saturated resin or unsaturated resin on the surface of glass fiber cloth by using the glass fiber cloth as a base material through a dip coating or spray coating process and then performing a hot pressing process, and has the characteristic of high light transmittance.
Preferably, the rear-layer glass fiber prepreg is a composite material formed by coating high-transmittance epoxy resin or acrylate or other saturated resin or unsaturated resin on the surface of glass fiber cloth by using the glass fiber cloth as a base material through a dip coating or spray coating process and then performing a hot pressing process; the material may be highly light transmissive, or may be opaque or black or other colored material.
Preferably, the first layer of high-transparency EVA adhesive film and the second layer of high-transparency EVA adhesive film are high-transmittance photovoltaic EVA adhesive films, and the first layer of high-transparency EVA adhesive film and the second layer of high-transparency EVA adhesive film can be selected to be added with only the first layer of high-transparency EVA adhesive film or only added with the second layer of high-transparency EVA adhesive film according to design requirements, or both the first layer of high-transparency EVA adhesive film and the second layer of high-transparency EVA adhesive film are not added.
Preferably, the first layer of high-cut-to-EVA adhesive film and the second layer of high-cut-to-EVA adhesive film are ultraviolet-cut-to-EVA adhesive films or white EVA adhesive films, and the first layer of high-cut-to-EVA adhesive film and the second layer of high-cut-to-EVA adhesive film can be selected according to design requirements to be added with only the first layer of transparent EVA adhesive film, or only the second layer of high-transparent EVA adhesive film, or neither layer.
Preferably, the punching welding strip is welded on the front electrode of the laminated cell string at the head part, and the punching welding strip is welded on the back electrode of the laminated cell string at the tail part.
Preferably, the transparent flexible front film may be ETFE, ECTFE, PVDF, PET composite, or other flexible high weatherability material.
Preferably, the photovoltaic backsheet is a PET composite backsheet or a PO copolymer backsheet, and may be white, black or other colors.
Preferably, the module structure can be used for solder ribbon tandem photovoltaic modules, IBC or MWT contact photovoltaic modules.
The utility model also provides another kind of manufacturing approach of light shingled photovoltaic module based on glass fibre preimpregnation technology, include following step in proper order:
unwinding and unfolding the glass fiber: unwinding the glass fibers, and then unfolding the glass fibers by 3 wheels to remove wrinkles of the glass fiber coil materials; the unreeling speed is 0.5-2 m/s;
resin pre-dipping: the flattened glass fiber passes through a liquid or powder resin tank, so that the resin and the glass fiber are fully contacted, and the resin surface is uniformly stained with a layer of resin: the speed of the liquid resin passing through the liquid resin tank is 1-2 m/s; the speed of the liquid resin passing through the liquid resin tank is 0.5-1 m/s;
cleaning redundant resin: removing the upper and lower redundant resin on the surface of the glass fiber adhered with the resin by an upper and lower hairbrushes;
glass fiber primary curing: the glass fiber stained with the resin is primarily cured after passing through a curing furnace, so that the surface of the liquid resin is cured, and the solid resin is melted; the curing temperature of the liquid resin is 50-110 ℃; 70-150 ℃ of powder resin;
cooling and flattening: after the high-temperature glass fiber prepreg is subjected to cooling and flattening processes, the temperature is reduced to normal temperature, the normal temperature is 25 +/-2 ℃, and the cooling mode is multistage air cooling; the wind speed is 0.3-1 m/s; the temperature of an air outlet is 15-20 ℃; the unevenness of the resin surface of the prepreg after flattening becomes flat after passing through a flattening wheel;
cutting: cutting the cooled prepreg into required size;
and (3) stacking the components: laminating the cut prepreg, a prepared hot melt adhesive film, a battery string, a back plate and a transparent front film into a photovoltaic module pre-pressing piece;
laminating: laminating the laminated prepressing piece by a laminating machine, continuously curing the glass fiber prepreg subjected to high-temperature pretreatment by using glass fibers so as to be completely cured, wherein the laminating temperature is generally set to be 130-160 ℃; the laminating pressure is-80 to-10 MPa; the light-weight laminated photovoltaic module is combined with the transparent front film, the EVA adhesive film and the back plate.
The utility model discloses a technological effect and advantage:
1. the utility model uses the tile-stacking technology, and the equivalent area power is 10% higher than that of the conventional flexible component;
2. the overall structure can greatly reduce the weight of the assembly to realize light weight;
3. the use of the high-transmittance glass fiber prepreg can not only increase the impact resistance of the component, but also increase the strength of the component;
4. the use of the rear-layer glass fiber prepreg can not only increase the strength of the component, but also change the color of the component through the color of the glass fiber prepreg to realize product richness;
5. the glass fiber prepreg has adhesive property, and photovoltaic modules with different structures can be selectively manufactured according to the use area of the photovoltaic modules.
Drawings
Fig. 1 is a schematic structural diagram of the present invention.
Fig. 2 is a schematic view of the manufacturing process of the present invention.
In the figure: 1-a transparent flexible front film; 2-a first high-transparency EVA adhesive film; 3-high-transparency glass fiber prepreg; 4-a second layer of high-transparency EVA adhesive film; 5-a shingled battery string; 6-a bus bar; 7-punching a welding strip; 8-cutting the first layer to the EVA adhesive film; 9-back layer glass fiber prepreg; 10-second layer of EVA adhesive film; 11-a photovoltaic backsheet; 12-photovoltaic junction box.
Detailed Description
The technical solutions in the embodiments of the present invention will be described clearly and completely with reference to the accompanying drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only some embodiments of the present invention, not all embodiments. Based on the embodiments in the present invention, all other embodiments obtained by a person skilled in the art without creative work belong to the protection scope of the present invention.
The utility model provides a light laminated tile photovoltaic module based on glass fiber pre-dipping technology, which is shown in figure 1 and figure 2, and comprises a transparent flexible front film 1, a first layer of high-transparency EVA adhesive film 2, a high-transparency glass fiber pre-dipping material 3; a second high-transparency EVA adhesive film 4; a shingled battery string 5; the first layer is up to the EVA adhesive film 8; a rear layer of glass fiber prepreg 9; the second layer is cut to the EVA adhesive film 10; the photovoltaic back plate 11 is sequentially laid and packaged into a component through a laminating process;
the shingled battery string 5 is formed by shingled battery pieces which are adhered through conductive adhesive and are stacked in a tile stacking mode to form the shingled battery string 5. By using the tile-stacking technology, the equivalent area power is improved by 10% compared with that of the conventional flexible assembly; the efficiency is greatly improved.
The shingled battery pieces with the head and tail welding strips are connected in series and parallel through the bus bars 6 and are led into the photovoltaic junction box 12 through the positive pole and the negative pole, specifically, the shingled battery strings 5 are welded with the punching welding strips 7 at the head and the tail, if the front of the battery piece at the head of the battery string is connected with the welding strips, the punching welding strips 7 on the battery piece at the tail of the battery string are positioned on the back of the battery piece, namely the punching welding strips 7 on the battery piece at the head and the tail of each battery string are respectively positioned on the front and the back of the battery piece. The battery pieces at the heads of the plurality of the laminated tile battery strings 5 are connected together through the punching solder strips 7, bus bars 6 are arranged at the head and tail parts of the laminated tile battery strings 5, the bus bars 6 and the punching solder strips 7 are located on the same plane, the bus bars 6 connect the positive and negative electrodes of two adjacent battery strings in the battery strings, outgoing lines are welded at the tail ends of the bus bars 6, and the outgoing lines are connected with the photovoltaic junction box 12 through the outgoing positive and negative electrodes.
The top outside of fold tile battery cluster 5 is provided with the fine preimpregnation material 3 of high glass of passing through, the upper and lower both ends of the fine preimpregnation material 3 of high glass of passing through are provided with the high EVA glued membrane 2 of passing through of first layer and the high EVA glued membrane 4 of passing through of second layer respectively, and specifically, the high EVA glued membrane 2 of passing through of first layer and the high EVA glued membrane 4 of passing through of second layer are high light transmittance photovoltaic level EVA glued membrane, and the high EVA glued membrane 2 of passing through of first layer and the high EVA glued membrane 4 of passing through of second layer can be selected according to the design requirement and only add the EVA glued membrane of passing through of first layer, or only add the high EVA glued membrane 4 of passing through of second layer, or two-layer does not add. The high-transmittance glass fiber prepreg 3 is a composite material formed by coating high-transmittance epoxy resin or acrylate or other saturated resin or unsaturated resin on the surface of glass fiber cloth by using the glass fiber cloth as a base material through a dip-coating or spraying process and then performing a hot-pressing process, has the characteristic of high light transmittance, can better transmit ultraviolet waves so as to improve the photoelectric conversion rate, and can increase the impact resistance and strength of the assembly when the high-transmittance glass fiber prepreg 3 is used; meanwhile, the top end of the outermost layer of the first high-transparency EVA adhesive film 2 is provided with a transparent flexible front film 1, and the flexible front film can play a better protection role.
The inner side of the laminated tile battery string 5 is provided with a rear-layer glass fiber prepreg 9, the upper layer of the rear-layer glass fiber prepreg 9 is provided with a first-layer height cut-off EVA adhesive film 8, the lower layer of the rear-layer glass fiber prepreg 9 is provided with a second-layer height cut-off EVA adhesive film 10, specifically, the first-layer height cut-off EVA adhesive film 8 and the second-layer height cut-off EVA adhesive film 10 are ultraviolet cut-off EVA adhesive films or white EVA adhesive films, the first-layer height cut-off EVA adhesive film 8 and the second-layer height cut-off EVA adhesive film 10 can be selected according to design requirements to add the first-layer height cut-off EVA adhesive film 8, or add the second-layer height cut-off EVA adhesive film 10, or do not add two layers. The rear layer glass fiber prepreg 9 is a composite material formed by coating high-transmittance epoxy resin or acrylic ester or other saturated resin or unsaturated resin on the surface of glass fiber cloth by taking the glass fiber cloth as a base material through a dip coating or spraying process and then performing a hot pressing process; the light-transmitting material has the characteristics of high light transmittance, and has the functions of preventing ultraviolet light waves from passing through and absorbing light energy to the maximum extent; but may also be opaque or black or other colored material. The use of the rear layer glass fiber prepreg 9 can not only increase the strength of the component, but also change the color of the component through the color of the glass fiber prepreg to realize product richness; the photovoltaic back plate 11 is arranged at the bottom end of the outermost layer of the second layer of the EVA adhesive film 10, and the photovoltaic back plate 11 is a PET composite back plate or a PO copolymerization back plate and can be white, black or other colors. The photovoltaic junction box 12 is arranged on the outer side of the photovoltaic back plate 11, and the positive electrode and the negative electrode of the photovoltaic junction box 12 are connected with the positive electrode and the negative electrode of the outgoing line of the bus bar 6.
Specifically, the head punching solder strip 7 is welded on the front electrode of the battery string, and the tail punching solder strip 7 is welded on the back electrode of the battery string.
In particular, the transparent flexible front film 1 may be ETFE, ECTFE, PVDF, PET composite, or other flexible high weatherability material.
In particular, this assembly structure can be used for solder ribbon tandem photovoltaic modules, IBC or MWT contact photovoltaic modules.
Simultaneously the utility model also provides a manufacturing approach about the light shingled photovoltaic module based on glass fiber prepreg, it includes following step in proper order, as shown in FIG. 2:
a. unwinding and unfolding the glass fiber: unwinding the glass fibers, and then unfolding the glass fibers by 3 wheels to remove wrinkles of the glass fiber coil materials; the unreeling speed is 0.5-2 m/s;
b. resin pre-dipping: enabling the flattened glass fiber to pass through a liquid or powder resin tank, enabling the resin to be fully contacted with the glass fiber, enabling the surface of the resin to be uniformly stained with a layer of resin, and enabling the resin to pass through the liquid resin tank at a speed of 1-2 m/s; the speed of the liquid resin passing through the liquid resin tank is 0.5-1 m/s;
c. cleaning redundant resin: removing the upper and lower redundant resin on the surface of the glass fiber adhered with the resin by an upper and lower hairbrushes;
d. glass fiber primary curing: the glass fiber stained with the resin is primarily cured after passing through a curing furnace, so that the surface of the liquid resin is cured, and the solid resin is melted; the curing temperature of the liquid resin is 50-110 ℃; 70-150 ℃ of powder resin;
e. cooling and flattening: after the high-temperature glass fiber prepreg is subjected to cooling and flattening processes, the temperature is reduced to normal temperature, the normal temperature is 25 +/-2 ℃, and the cooling mode is multistage air cooling; the wind speed is 0.3-1 m/s; the temperature of an air outlet is 15-20 ℃; the unevenness of the surface of the baked prepreg resin becomes flat after passing through a flattening wheel;
f. cutting: cutting the cooled prepreg into required size;
g. and (3) stacking the components: the cut prepreg and a prepared hot melt adhesive film, a battery string, a back plate and a transparent front film laminating field photovoltaic module prepressing piece are arranged;
h. laminating: laminating the laminated prepressing piece by a laminating machine, continuously curing the glass fiber prepreg subjected to high-temperature pretreatment by using glass fibers so as to be completely cured, wherein the laminating temperature is generally set to be 130-160 ℃; the laminating pressure is-80 to-10 MPa; the light-weight laminated photovoltaic module is combined with the transparent front film, the EVA adhesive film and the back plate.
Finally, it should be noted that: although the present invention has been described in detail with reference to the foregoing embodiments, it will be apparent to those skilled in the art that modifications and variations can be made in the embodiments or in part of the technical features of the embodiments without departing from the spirit and the scope of the invention.
Claims (5)
1. The utility model provides a light shingled photovoltaic module based on fine preimpregnation technology of glass, includes the shingled cell piece, the shingled cell piece adopts the tile mode of piling up to form shingled cell cluster (5) through the bonding of conductive adhesive, its characterized in that: the photovoltaic module is formed by sequentially laying a transparent flexible front film (1), a first layer of high-transmittance EVA (ethylene vinyl acetate) film (2), a high-transmittance glass fiber prepreg (3), a second layer of high-transmittance EVA film (4), a laminated cell string (5), a first layer of high-transmittance EVA film (8), a rear layer of glass fiber prepreg (9), a second layer of high-transmittance EVA film (10) and a photovoltaic back plate (11) and packaging the components through a laminating process; the laminated tile battery string (5) is welded with the punching solder strips (7) end to end, the laminated tile battery pieces of the punching solder strips (7) are connected in series and parallel through bus bars (6) and are introduced into a photovoltaic junction box (12) through a positive electrode and a negative electrode, the outer side of the laminated tile battery string (5) is provided with a high-transmittance glass fiber prepreg (3), the upper end of the high-transmittance glass fiber (3) is provided with a first high-transmittance EVA (ethylene vinyl acetate) adhesive film (2), the lower end of the high-transmittance glass fiber prepreg (3) is provided with a second high-transmittance EVA adhesive film (4), the top of the outermost layer of the first high-transmittance EVA adhesive film (2) is provided with a transparent flexible front film (1), the inner side of the laminated tile battery string (5) is provided with a rear glass fiber prepreg (9), the upper layer of the rear glass fiber prepreg (9) is provided with a first high-transmittance EVA adhesive film (8), the lower layer of the rear glass fiber prepreg (9) is provided with a second high-transmittance EVA adhesive film (10), the photovoltaic back plate (11) is arranged at the bottom end of the outermost layer of the second-layer height cut-off EVA adhesive film (10), and a photovoltaic junction box (12) is arranged on the outer side of the photovoltaic back plate (11).
2. The lightweight shingled photovoltaic module based on the fiberglass prepreg process of claim 1, wherein: the rear layer glass fiber prepreg (9) is made of opaque or black material.
3. The lightweight shingled photovoltaic module based on the fiberglass prepreg process of claim 1, wherein: the punching welding strip (7) is welded on the front electrode of the laminated cell string (5) at the head part, and the punching welding strip (7) is welded on the back electrode of the laminated cell string (5) at the tail part.
4. The lightweight shingled photovoltaic module based on the fiberglass prepreg process of claim 1, wherein: the transparent flexible front film (1) can be any composite material of ETFE, ECTFE, PVDF, PET and PET.
5. The lightweight shingled photovoltaic module based on the fiberglass prepreg process of claim 1, wherein: the photovoltaic back sheet (11) is a PET composite back sheet or a PO copolymer back sheet, or is white or black.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202022936059.5U CN213845288U (en) | 2020-12-10 | 2020-12-10 | Light-weight laminated photovoltaic module based on glass fiber pre-dipping process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202022936059.5U CN213845288U (en) | 2020-12-10 | 2020-12-10 | Light-weight laminated photovoltaic module based on glass fiber pre-dipping process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN213845288U true CN213845288U (en) | 2021-07-30 |
Family
ID=76996946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202022936059.5U Active CN213845288U (en) | 2020-12-10 | 2020-12-10 | Light-weight laminated photovoltaic module based on glass fiber pre-dipping process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN213845288U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112420864A (en) * | 2020-12-10 | 2021-02-26 | 汉摩尼(江苏)光电科技有限公司 | Light-weight laminated photovoltaic module based on glass fiber pre-dipping process and manufacturing method thereof |
CN116435392A (en) * | 2023-05-16 | 2023-07-14 | 武汉美格科技股份有限公司 | Flexible photovoltaic module |
WO2023232136A1 (en) * | 2022-06-04 | 2023-12-07 | 骥志(江苏)新能源科技有限公司 | Lightweight imbricated photovoltaic assembly based on ultra-thin tempered glass |
-
2020
- 2020-12-10 CN CN202022936059.5U patent/CN213845288U/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112420864A (en) * | 2020-12-10 | 2021-02-26 | 汉摩尼(江苏)光电科技有限公司 | Light-weight laminated photovoltaic module based on glass fiber pre-dipping process and manufacturing method thereof |
CN112420864B (en) * | 2020-12-10 | 2024-10-29 | 汉摩尼(江苏)光电科技有限公司 | Light-weight shingle photovoltaic module based on glass fiber prepreg process and manufacturing method thereof |
WO2023232136A1 (en) * | 2022-06-04 | 2023-12-07 | 骥志(江苏)新能源科技有限公司 | Lightweight imbricated photovoltaic assembly based on ultra-thin tempered glass |
CN116435392A (en) * | 2023-05-16 | 2023-07-14 | 武汉美格科技股份有限公司 | Flexible photovoltaic module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112420864A (en) | Light-weight laminated photovoltaic module based on glass fiber pre-dipping process and manufacturing method thereof | |
CN213845288U (en) | Light-weight laminated photovoltaic module based on glass fiber pre-dipping process | |
CN102916067B (en) | Building material type double-sided glass photovoltaic component and manufacturing method thereof | |
CN101702412B (en) | Flexible solar battery pack and preparation method thereof | |
CN113013297B (en) | Preparation method of grid-line-free heterojunction battery assembly | |
CN202205777U (en) | Building-material-type double-faced glass photovoltaic component | |
CN101661965A (en) | Method for making BIPV component by adopting transparent TPT material | |
WO2023232136A1 (en) | Lightweight imbricated photovoltaic assembly based on ultra-thin tempered glass | |
CN109390422B (en) | Light photovoltaic module | |
CN113540276A (en) | Low-water-permeability flexible photovoltaic module and preparation method thereof | |
CN101635536B (en) | Foldable solar energy movable power supply and manufacture method thereof | |
CN108365033A (en) | A kind of completely black polycrystalline efficient photovoltaic module and preparation method thereof | |
WO2023036288A1 (en) | Flexible photovoltaic cell assembly and manufacturing method therefor | |
CN217280803U (en) | Photovoltaic module | |
CN215988795U (en) | Photovoltaic module and roofing structure | |
CN104935247A (en) | High-resistance mechanical load light weight solar cell module | |
CN108155259B (en) | Isolation film technology for stacking glass for photovoltaic module | |
CN202633343U (en) | Lightweight photovoltaic assembly | |
CN217387177U (en) | Light photovoltaic module | |
CN102738284A (en) | Novel solar photovoltaic module | |
CN112117341A (en) | Frameless FRP half-piece photovoltaic assembly and production process thereof | |
CN214226921U (en) | Flexible light photovoltaic module | |
CN220272483U (en) | Light photovoltaic module and photovoltaic system | |
CN220121851U (en) | Enhanced flexible MWT assembly | |
CN209747529U (en) | Back contact type efficient double-glass assembly and solar cell panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |