CN213300977U - Laser target and laser L-shaped light curtain intelligent target reporting system - Google Patents

Laser target and laser L-shaped light curtain intelligent target reporting system Download PDF

Info

Publication number
CN213300977U
CN213300977U CN202021389352.8U CN202021389352U CN213300977U CN 213300977 U CN213300977 U CN 213300977U CN 202021389352 U CN202021389352 U CN 202021389352U CN 213300977 U CN213300977 U CN 213300977U
Authority
CN
China
Prior art keywords
target
laser
photosensitive assembly
frame
transverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202021389352.8U
Other languages
Chinese (zh)
Inventor
苏锐
段云霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Yunrui Intelligent Equipment Co ltd
Original Assignee
Shenzhen Yunrui Intelligent Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Yunrui Intelligent Equipment Co ltd filed Critical Shenzhen Yunrui Intelligent Equipment Co ltd
Priority to CN202021389352.8U priority Critical patent/CN213300977U/en
Application granted granted Critical
Publication of CN213300977U publication Critical patent/CN213300977U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

In order to realize accurate target reporting and meet the requirements of mobile shooting training, the utility model provides a laser target and laser L-shaped light curtain intelligent target reporting system, the laser target is provided with a first light detection plane and a second light detection plane, a detection boundary of the first light detection plane is provided with a first vertical photosensitive assembly and a first transverse photosensitive assembly which are mutually perpendicular, and a first L-shaped laser is arranged at the opposite angle of the intersection angle of the first vertical photosensitive assembly and the first transverse photosensitive assembly; the detection boundary of the second optical detection plane is provided with a second vertical photosensitive assembly and a second transverse photosensitive assembly which are perpendicular to each other, and a second L-shaped laser is arranged at the opposite angle of the intersection angle of the second vertical photosensitive assembly and the second transverse photosensitive assembly. The system comprises a target reporting terminal, a target drone and the laser target, wherein the target drone is used for being connected with the laser target and acquiring sensing data output by the laser target, and sending the processed sensing data to the target reporting terminal for voice broadcasting or image display.

Description

Laser target and laser L-shaped light curtain intelligent target reporting system
Technical Field
The utility model relates to a laser target and laser L shape light curtain intelligence target scoring system.
Background
At present, the common practice firing automatic target-reporting in the market is divided into two types, namely a conductive target and a shock wave target, and the two types of targets have major defects, such as: the cost of the conductive target material is high, the market price of each target plate is about 300 yuan, and large-scale shooting training is difficult to develop; in addition, when a projectile hits the same impact point for multiple times, the phenomenon of missing report often occurs, and the average error of the accuracy error is larger and about 40 mm. Although the shock wave target solves the problem of high material cost, the transmission process of the shock wave in the air is influenced by a plurality of factors, such as: air pressure, temperature, altitude, etc., all of which affect the accuracy of actual target scoring; in addition, the shock wave target can not adapt to the moving shooting environment, when the bullet perpendicularly hits the target plate, the target can be accurately reported, if the bullet is shot into the target plate and the perpendicular axis is more than 30 degrees, the target can not be accurately reported or the target can not be reported, and the phenomenon of missing report can occur. Therefore, the prior art can not meet the requirement of the modern army for mobile shooting training.
SUMMERY OF THE UTILITY MODEL
For overcoming prior art's defect, realize accurate target scoring, satisfy the requirement of removing the shooting training, the utility model provides a laser target and laser L shape light curtain intelligence target scoring system, it specifically realizes through following technical means:
the laser target of the utility model is provided with a first optical detection plane and a second optical detection plane;
a first vertical photosensitive assembly and a first transverse photosensitive assembly which are perpendicular to each other are arranged at the detection boundary of the first optical detection plane, and a first L-shaped laser is arranged at the opposite angle of the intersection angle of the first vertical photosensitive assembly and the first transverse photosensitive assembly;
the detection boundary of the second optical detection plane is provided with a second vertical photosensitive assembly and a second transverse photosensitive assembly which are perpendicular to each other, and a second L-shaped laser is arranged at the opposite angle of the intersection angle of the second vertical photosensitive assembly and the second transverse photosensitive assembly.
In one or more embodiments of the present invention, the laser target includes a target frame and a target surface, the target frame includes an upper frame, a lower frame, a left frame and a right frame, and a front side groove and a rear side groove are respectively disposed in each frame; a first transverse photosensitive assembly is arranged in the front side groove of the upper frame, and a second transverse photosensitive assembly is arranged in the rear side groove of the upper frame; a first vertical photosensitive assembly is arranged in the front side groove of the right frame, and a first L-shaped laser is arranged at the intersection of the front side grooves of the left frame and the lower frame; and a second vertical photosensitive assembly is arranged in the rear side groove of the left frame, and a second L-shaped laser is arranged at the intersection of the rear side grooves of the right frame and the lower frame.
In the middle of one or more embodiments of the utility model, first horizontal photosensitive assembly, first vertical photosensitive assembly, the horizontal photosensitive assembly of second, the vertical photosensitive assembly of second are the photo detector board of bar respectively, there are a plurality of photodiodes along its length direction equidistance overall arrangement on the photo detector board.
The utility model discloses a laser L shape light curtain intelligence indication of shots system, it includes indication of shots terminal, target drone and foretell laser target, the target drone is used for connecting the laser target and acquires the sensory data of its output, handles the back send to the indication of shots terminal carries out voice broadcast or image display.
In the middle of one or more embodiments of the utility model, the target drone is including the RS485 bus module that is used for receiving the sensing data that the laser target uploaded for to sensing data handle the ARM singlechip of operation and be used for handling the operation result and send the wireless transmitting module for reporting to the target terminal.
In one or more embodiments of the present invention, the wireless transmission module is a Lora wireless signal transmitting station.
In one or more embodiments of the present invention, the target-scoring terminal includes a broadcast display, a tablet computer or a mobile phone.
The utility model has the advantages that: two groups of L-shaped lasers are adopted, the light sensation elements are shielded when the projectile hits the target surface, geometric operation is carried out, so that the coordinate positioning of the projectile is realized, the projectile flying at 10M/s-1500M/s can be detected, accurate target reporting of shooting at any angle can be realized no matter in military shooting training or in an entertainment shooting house (water bullet gun shooting), the influence of external environmental factors is avoided, the anti-interference capability is strong, and the performance is stable.
Drawings
Fig. 1 is a schematic structural diagram of the first optical detection plane and the second optical detection plane of the laser target of the present invention.
Fig. 2 is a schematic view of a projection principle of the first optical inspection plane of the present invention.
Fig. 3 is a schematic view of a projection principle of a second optical inspection plane according to the present invention.
Fig. 4 is a schematic diagram of the projection principle of the projectile of the present invention.
Fig. 5 is a schematic diagram of the optical projection coordinates of the target surface of the present invention.
Fig. 6 is a schematic structural view of the target frame of the present invention.
Fig. 7 is a schematic diagram of the sectional structure of the frame of the target frame of the present invention.
Fig. 8 is a system architecture diagram of the present invention.
Fig. 9 is a schematic view of the distribution of the circumferential region of the target surface of the present invention.
Fig. 10 is a schematic diagram showing the distribution of clock azimuth regions of the target surface according to the present invention.
Detailed Description
The scheme of the application is further described as follows:
referring to fig. 1 to 5, a laser target having a first photo-detection plane A1B1C1D1 and a second photo-detection plane A2B2C2D 2; a first vertical photosensitive assembly 11 and a first transverse photosensitive assembly 12 which are perpendicular to each other are arranged at a detection boundary of the first optical detection plane A1B1C1D1, and a first L-shaped laser 13 is arranged at a diagonal position of an intersection angle of the first vertical photosensitive assembly 11 and the first transverse photosensitive assembly 12; a second vertical photosensitive assembly 21 and a second horizontal photosensitive assembly 22 which are perpendicular to each other are arranged at the detection boundary of the second optical detection plane A2B2C2D2, and a second L-shaped laser 23 is arranged at the diagonal of the intersection angle of the second vertical photosensitive assembly 21 and the second horizontal photosensitive assembly 22; the first transverse photosensitive assembly 11, the first vertical photosensitive assembly 12, the second transverse photosensitive assembly 21 and the second vertical photosensitive assembly 22 are strip-shaped photosensitive plates respectively, and a plurality of photodiodes are distributed on the photosensitive plates at equal intervals along the length direction of the photosensitive plates.
First L shape laser instrument 13 and second L shape laser instrument 23 are right angle shape laser module, and its projection is the right angle facula, cooperates the photosensitive element formation light respectively and examines the plane.
The working principle of the photosensitive diode is that an optical signal received by the photosensitive diode is converted into an electric signal, when no projectile passes through the target frame, all optical path logic levels are in a state of '0', when the projectile passes through the target frame, the logic level of the photosensitive diode shielded by the projectile is '1', the logic levels of other optical paths are '0', and then the electric signal is filtered, amplified and output.
Referring to fig. 6 to 7, the laser target comprises a target frame 3 and a target surface 4, wherein the target frame 3 comprises an upper frame 31, a lower frame 32, a left frame 33 and a right frame 34, and a front side groove 301 and a rear side groove 302 are respectively arranged in each frame; a first transverse photosensitive assembly 12 is arranged in the front side groove 301 of the upper frame 311, and a second transverse photosensitive assembly 22 is arranged in the rear side groove 302; a first vertical photosensitive assembly 11 is arranged in the front side groove 301 of the right frame 34, and a first L-shaped laser 13 is arranged at the junction of the front side grooves 301 of the left frame 33 and the lower frame 32; a second vertical photosensitive assembly 21 is installed in the rear groove 302 of the left frame 33, and a second L-shaped laser 23 is installed at the intersection of the rear grooves 302 of the right frame 34 and the lower frame 32.
Referring to fig. 8, the laser L-shaped light curtain intelligent target scoring system comprises a target scoring terminal, a target drone and the laser target, wherein the target drone is used for being connected with the laser target, acquiring output sensing data of the laser target, processing the output sensing data and sending the processed sensing data to the target scoring terminal for sound broadcasting or image display. The target drone comprises an RS485 bus module used for receiving sensing data uploaded by a laser target, an ARM single chip microcomputer used for processing and operating the sensing data, and a wireless transmitting module used for transmitting a processing and operating result to a target reporting terminal, wherein the wireless transmitting module is a Lora wireless signal transmitting radio station. The target-scoring terminal comprises a broadcasting display, a tablet personal computer or a mobile phone, and mainly comprises a training mode, a score assessment mode, personnel information management, target type selection, shooting data statistical analysis, data history inquiry and other plates, and detailed description is omitted in the patent.
Referring to fig. 5, an intelligent target-scoring method of laser L-shaped light curtain comprises the following steps:
constructing the first light detection plane A1B1C1D1 and the second light detection plane A2B2C2D2 in front of the target surface, wherein the laser line projections of the two planes are intersected to form a plurality of coordinate points; when the projectile passes through the first optical inspection plane and the second optical inspection plane, the laser line is shielded, sensing data is generated, geometric operation is carried out according to optical projection to obtain the projectile coordinate of the target surface, and then sound broadcasting or image display is carried out.
Specifically, an optical projection coordinate system is established according to a first optical detection plane A1B1C1D1 and a second optical detection plane A2B2C2D2, the bottom point A of a left detection boundary is taken as a coordinate origin, the top point of the left detection boundary is taken as D, the top point of a right detection boundary is taken as C, the bottom point is taken as B, and each light sensing element is taken as a coordinate point on a X, Y axis;
the shot shields the light sensing element to generate a left limit point F and a right limit point E on an X axis, an upper limit point W and a lower limit point Q on a Y axis, a central point K of a line segment of the left limit point F and the right limit point E is taken, a central point L of a line segment of the upper limit point W and the lower limit point Q is taken, and coordinate values of the left limit point F, the right limit point E, the upper limit point W and the lower limit point Q relative to a coordinate origin are calculated according to the distance of the light sensing element; the light sensing element on the BC side is counted from the lowest end, the first is a Y-axis 1mm coordinate point, the second is a Y-axis 2mm coordinate point, and the like are repeated until reaching a Y-axis 500mm coordinate point, and similarly, the light sensing element on the CD side is counted from the leftmost side, the first is an X-axis 1mm coordinate point, and the second is an X-axis 2mm coordinate point, and the like are repeated until reaching an X-axis 500mm coordinate point.
Respectively making a central point G of the middle missile position as a perpendicular GX1 perpendicular to the boundary of the right missile, wherein the vertical foot is X1; a vertical line GY1 perpendicular to the lower detection boundary, with a foot Y1; making a vertical line GM vertical to the left detection boundary, wherein the vertical foot is M;
it follows from this that, as a result,
AB-MX 1 and MG-AY 1, so GX 1-MX 1-MG-AB-AY 1; (1)
GY1=X1B; (2)
since GY1 and LB are perpendicular to AB, Δ ALB and Δ AGY1 are similarly triangular, and thus
AB:BL=AY1:GY1; (3)
Since GX1 and KC are both perpendicular to CB, Δ BKC and Δ BGX1 are similarly triangular, and thus
BC:KC=X1B:GX1; (4)
The equations (1) and (2) are respectively substituted into the equation (4) to obtain:
BC:KC=GY1:(AB-AY1); (5)
K=(E-F)/2+F; (6)
L=(W-Q)/2+Q; (7)
simultaneous equations (3), (5), (6) and (7) can be solved to obtain the values of AY1 and GY1, so as to obtain the coordinates of the middle bullet position as (AY1, GY 1);
finally, the number of the middle target rings is obtained by combining the coordinates (AY1, GY1) of the middle missile position and the area division of the target surface.
Referring to fig. 9, the central position of the target surface is set as a circle center coordinate O, and ten-ring radius R10, nine-ring radius R9, eight-ring radius R8, and so on are sequentially defined from the circle center coordinate O;
according to the standard equation of a circle (x-a)2+(y-b)2=r2Wherein, the values of x and y are coordinate values a and b of the middle missile position as coordinate values of a circle center coordinate O;
the following coordinate interval conditions were established:
decycle (x-a)2+(y-b)2<R10; (10)
Nine rings, R10 ≤ (x-a)2+(y-b)2<R8; (11)
Eight rings, R9 ≤ (x-a)2+(y-b)2<R7; (12)
The rest rings are established according to the rule;
when the projectile falls into the corresponding coordinate interval, if the condition corresponding to the coordinate interval is established, reporting the number of the target rings corresponding to the coordinate interval;
referring to fig. 10, a linear equation f (x) ═ KX + C is established between the coordinates (x, y) of the center position and the coordinates of the center coordinate O; and comparing the K value with the slope of the clock boundary thereof, thereby determining the clock region where the impact point is located and reporting the impact point. For example: when the projectile hits the position shown in fig. 6, the information reported by the target scoring terminal is: the shooting staff can adjust the designed aiming position in time in the ten-ring two-o-clock direction, and important data basis is provided for shooting skill improvement.
The technology is not limited by the injection angle and is not influenced by environmental factors, the target reporting with precision can be finished, the precision is controlled within 2mm, the material consumption cost is very low, and the phenomenon of missing report is completely avoided due to the adoption of the FPGA interruption capture principle.
The above preferred embodiments should be considered as examples of the embodiments of the present application, and technical deductions, substitutions, improvements and the like similar to, similar to or based on the embodiments of the present application should be considered as the protection scope of the present patent.

Claims (6)

1. A laser target, characterized by: comprises a target frame and a target surface, wherein the target frame is provided with a first light detection plane and a second light detection plane;
a first vertical photosensitive assembly and a first transverse photosensitive assembly which are perpendicular to each other are arranged at the detection boundary of the first optical detection plane, and a first L-shaped laser is arranged at the opposite angle of the intersection angle of the first vertical photosensitive assembly and the first transverse photosensitive assembly;
a second vertical photosensitive assembly and a second transverse photosensitive assembly which are perpendicular to each other are arranged at the detection boundary of the second optical detection plane, and a second L-shaped laser is arranged at the opposite angle of the intersection angle of the second vertical photosensitive assembly and the second transverse photosensitive assembly;
the target frame comprises an upper frame, a lower frame, a left frame and a right frame, and a front side groove and a rear side groove are respectively arranged in each frame; a first transverse photosensitive assembly is arranged in the front side groove of the upper frame, and a second transverse photosensitive assembly is arranged in the rear side groove of the upper frame; a first vertical photosensitive assembly is arranged in the front side groove of the right frame, and a first L-shaped laser is arranged at the intersection of the front side grooves of the left frame and the lower frame; and a second vertical photosensitive assembly is arranged in the rear side groove of the left frame, and a second L-shaped laser is arranged at the intersection of the rear side grooves of the right frame and the lower frame.
2. The laser target of claim 1, wherein: the first transverse photosensitive assembly, the first vertical photosensitive assembly, the second transverse photosensitive assembly and the second vertical photosensitive assembly are respectively strip-shaped photosensitive plates, and a plurality of photodiodes are distributed on each photosensitive plate at equal intervals along the length direction of the photosensitive plate.
3. The utility model provides a laser L shape light curtain intelligence scoring system which characterized in that: the laser target comprises a target reporting terminal, a target drone and the laser target according to claim 1 or 2, wherein the target drone is used for being connected with the laser target, acquiring sensing data output by the laser target, processing the sensing data and sending the processed sensing data to the target reporting terminal for sound broadcasting or image display.
4. The intelligent laser L-shaped light curtain target scoring system according to claim 3, characterized in that: the target drone comprises an RS485 bus module used for receiving sensing data uploaded by the laser target, an ARM single chip microcomputer used for processing and operating the sensing data, and a wireless transmitting module used for transmitting a processing and operating result to a target reporting terminal.
5. The intelligent laser L-shaped light curtain target scoring system according to claim 4, characterized in that: the wireless transmitting module is a Lora wireless signal transmitting radio station.
6. The intelligent laser L-shaped light curtain target scoring system according to claim 3, characterized in that: the target-reporting terminal comprises a broadcasting display, a tablet personal computer or a mobile phone.
CN202021389352.8U 2020-07-15 2020-07-15 Laser target and laser L-shaped light curtain intelligent target reporting system Active CN213300977U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202021389352.8U CN213300977U (en) 2020-07-15 2020-07-15 Laser target and laser L-shaped light curtain intelligent target reporting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202021389352.8U CN213300977U (en) 2020-07-15 2020-07-15 Laser target and laser L-shaped light curtain intelligent target reporting system

Publications (1)

Publication Number Publication Date
CN213300977U true CN213300977U (en) 2021-05-28

Family

ID=76020265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202021389352.8U Active CN213300977U (en) 2020-07-15 2020-07-15 Laser target and laser L-shaped light curtain intelligent target reporting system

Country Status (1)

Country Link
CN (1) CN213300977U (en)

Similar Documents

Publication Publication Date Title
CN102183183B (en) Method and device for measuring flying speed and landing coordinate of projectile of double-tube volley weapon
CN101865932A (en) Speed measuring and positioning method of single-row light source Z-type reflected light screen targets
CN202582378U (en) Laser precision target with simple structure
CN102135393A (en) Measurement system for motion parameters of high-speed motion object
CN106646863A (en) Miniature large-field-of-view laser fuze transmitting-receiving optical system
CN111811326A (en) Laser target, laser L-shaped light curtain intelligent target scoring system and target scoring method thereof
CN109654953B (en) Method for measuring landing coordinates and speed of large-target-surface projectile
CN111121543A (en) Automatic target-scoring system for E-shaped array direct-aiming heavy weapon
CN213300977U (en) Laser target and laser L-shaped light curtain intelligent target reporting system
CN101581556B (en) Null moving digital measuring device and method of aiming device based on target plate with composite image
CN211373362U (en) Laser positioning automatic target scoring system based on shielding object monitoring
CN105973073B (en) Automatic scoring round target device
CN115683062A (en) Territorial space planning detection analysis system
CN105004224A (en) Laser electronic target system adopting cross, right-angled and non-overlapped laser screens
CN211147452U (en) Laser array type target surface coordinate measuring system based on optical fiber receiving
CN106323097A (en) Photoelectric target device capable of sensing light through three coplanar sides
CN102679870A (en) Coordinate measuring device for simultaneous targeting of two to three bullets and measuring method
CN210154437U (en) Infrared or laser-based electronic target system
CN112162239A (en) Horizontal gate type array-based impact point positioning method
CN205049052U (en) Alternately laser curtain laser electron target system is underlaped at right angle
CN104833268B (en) Small caliber piece dynamic tracking accuracy detecting device
CN211977713U (en) Automatic target-scoring system for E-shaped array direct-aiming heavy weapon
CN210374799U (en) Slingshot shooting laser target scoring system
CN204555822U (en) A kind of electronic sighting device that accurately can obtain shooting environmental information
CN110806145B (en) Simulation moving target aiming training data acquisition method based on image digitization

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant