CN212748549U - 一种煤场堆载模拟实验系统 - Google Patents
一种煤场堆载模拟实验系统 Download PDFInfo
- Publication number
- CN212748549U CN212748549U CN202021180660.XU CN202021180660U CN212748549U CN 212748549 U CN212748549 U CN 212748549U CN 202021180660 U CN202021180660 U CN 202021180660U CN 212748549 U CN212748549 U CN 212748549U
- Authority
- CN
- China
- Prior art keywords
- simulation
- model
- coal yard
- group
- centrifugal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本实用新型公开了一种煤场堆载模拟实验系统,包括信号传输系统、离心模拟系统、驱动系统和冷却系统,所述冷却系统与驱动系统连接,所述驱动系统与离心模拟系统连接,所述信号传输系统设置于第一层实验区内,所述离心模拟系统设置于第二层实验区内,所述驱动系统和冷却系统设置于所述第三层实验区内,所述第一层实验区位于第二层实验区的上方,所述第二层实验区设置于第三层实验区的上方。通过本实用新型系统能够模拟验证煤场原型的设计结果,保证所设计煤场原型在运营期间的安全性。
Description
技术领域
本实用新型涉及一种煤场堆载模拟实验系统,属于煤场建设领域。
背景技术
煤场是指对方燃煤的场所,通常燃煤发电厂或钢铁厂的附属设施,随着人们环保意识的不断提高煤炭生产企业以前常用的露天储煤方式已经不符合要求,必须采取符合企业实际需求的全封闭式储煤场,才能保证企业良好的经济效益、环保效益和社会效益。在全封闭式储煤场建设过程中,为减少煤场建设区域原状土淤泥层的影响,通常采用真空联合堆载预压法对煤场地基进行预处理,以减少地基沉降和消除煤棚桩基的负摩阻力,保证煤场运营期间的安全性。但在煤场投入使用后,煤炭的堆载过程对地基和煤棚桩基依然存在影响。对此,如若在煤场设计初期对煤场运营期间的沉降问题进行研究和解决,以为建设封闭式煤场提供更加安全的设计方案,则能够保证封闭式煤场在运营期间的安全性。因此,亟需研究一种煤场堆载模拟实验设备,以验证所设计煤场的安全性,进而保证所设计煤场在运营期间的安全性。
实用新型内容
本实用新型的目的在于,提供一种煤场堆载模拟实验系统,用以验证煤场的设计结果,保证所设计煤场在运营期间的安全性。
为解决上述技术问题,本实用新型采用如下的技术方案:一种煤场堆载模拟实验系统,包括信号传输系统、离心模拟系统、驱动系统和冷却系统,所述冷却系统与驱动系统连接,所述驱动系统与离心模拟系统连接,所述信号传输系统设置于第一层实验区内,所述离心模拟系统设置于第二层实验区内,所述驱动系统和冷却系统设置于所述第三层实验区内,所述第一层实验区位于第二层实验区的上方,所述第二层实验区设置于第三层实验区的上方。
前述的煤场堆载模拟实验系统中,所述信号传输系统包括上仪器舱、集流环装置、计算机控制装置、数据采集装置和视频监控装置,所述集流环装置设置于离心模拟系统的仓顶上,所述集流环装置分别与计算机控制装置、数据采集装置及视频监控装置连接。
前述的煤场堆载模拟实验系统中,所述离心模拟系统包括离心机,所述离心机包括下仪器舱、转动臂、基座和设置在转动臂上的吊篮,所述转动臂设置在下仪器舱的下方,基座设置在转动臂的下方,所述转动臂与驱动系统连接。
前述的煤场堆载模拟实验系统中,所述驱动系统包括电机、电机驱动器和减速机,所述减速机与转动臂连接,所述减速机还与冷却系统连接,所述减速机还与电机连接,所述电机与电机驱动器连接;冷却系统包括稀油站,所述稀油站通过输油管与减速机连接。
前述的煤场堆载模拟实验系统中,还包括模型箱,所述模型箱内设置有第一组模拟桩组件、第二组模拟桩组件、液压缸、荷载板、第一监测装置、第二监测装置,所述第一组模拟桩组件设置在模型箱的左侧,所述第二组模拟桩组件设置在模型箱的右侧,所述液压缸设置在第一组模拟桩组件和第二组模拟桩组件之间,所述荷载板设置在液压缸的下方;所述第一组模拟桩组件和第二组模拟桩组件堆成设置于所述模型箱内。
前述的煤场堆载模拟实验系统中,所述第一组模拟桩组件和第二组模拟桩组件均包括模型管和模型板,所述模型管的材质为铝合金,所述模型板的材质为ABS树脂;所述模型板为王字型结构。
前述煤场堆载模拟系统的实验方法,包括选择模型管和模型板,所述模型管和模型板用以模拟煤场原型中所使用的桩基;布置模型箱,根据煤场原型设计结果布置模型箱;所述煤场原型设计结果包括煤场原型中所使用桩基的材质和桩基截面尺寸;吊装模型箱到离心机上,将布置完毕的模型箱吊装到离心机的吊篮上;启动离心机并运行离心机一定的时间,运行离心机一定的时间以模拟煤场原型满载一定年限的工况;获取模拟数据,根据模拟数据验证煤场原型设计结果;所述模拟数据包括地基沉降值、桩身弯矩、桩轴力等值;
所述根据煤场原型设计结果布置模型箱包括在模型箱内布置两组两组模拟桩组件,
所述两组模拟桩组件中均包括模型管和模型板,每组模拟桩组件分别靠近于模型箱的内箱壁设置;所述煤场原型中所使用的桩基包括干煤棚桩基和设置在斗轮机下方的桩基,干煤棚桩基和设置在斗轮机下方的桩基均包括有PHC桩(预制混凝土桩)和CDM桩(水泥搅拌桩),两组模拟桩组件中的两个模型管用以模拟煤场原型中的PHC桩、两个模型板用以模拟煤场原型中的CDM桩。
前述的这种煤场堆载模拟实验方法中,所述模型管的选型方法包括如下步骤:
步骤S01:选取模型管或模型板的E值:
当处理结构物模型时,采用原型混凝土材料将导致结构过于薄弱,因此选取与原型钢筋混凝土密度、泊松比相近、结构更为紧密、性质更均匀的铝合金材料进行替代,以选取模型管对应材质的E值;
而煤场原型中CDM桩为设计搭接设计且呈花生状,试验中需对CDM桩进行必要的简化,采用弹性模量约200MPa的塑料板进行模拟,以选取模型板对应材质的E值;
步骤S02:获取模型管或模型板的截面积A:
根据等效刚度相近似原则,计算模型EA=E1A1+E2A2来获取模型管或模型板的截面积A, E为模型管或模型板的等效弹性模量、E1为煤场原型中所使用桩基的钢筋模量、A1为煤场原型中所使用桩基中钢筋的面积、E2为煤场原型中所使用桩基的混凝土模量、A2为煤场原型中所使用桩基的混凝土截面积;
步骤S03:获取模型管或模型板的截面惯性矩IM;
步骤S04:获取相似比N:
在桩基的各项物理力学参数中,影响桩基水平变形量最显著的是桩基抗弯刚度,因而必须保证模型纵向抗弯刚度的等效性。
根据模型抗弯刚度等效公式获取相似比N;式中EP为煤场原型中所使用桩基的等效弹性模量、IP为煤场原型中所使用桩基的截面惯性矩、EM为步骤S02中所确定的模型管或模型板的E值、IM为模型管或模型板的惯性矩;
步骤S05:根据相似比N获取模型管或模型板的长度。
前述的煤场堆载模拟实验方法中,所述运行离心机一定的时间为50~60小时,以模拟煤场原型满载30年的工况;所述模型箱内设置有荷载板,所述荷载板用以模拟煤场原型所使用桩基上的附加荷载。如煤荷载。
前述的煤场堆载模拟实验方法中,所述每组模拟桩组件中模型管的长度大于模型板的长度。
与现有技术相比,本实用新型通过离心机使模拟箱高速运转一定时间,可模拟煤场原型运营期的地基沉降问题和桩身受力变化,从而根据实验结果对煤场原型设计结果进行验证,以保证所设计煤场在运营期间的安全性。
附图说明
附图用来提供对本实用新型的进一步理解,并且构成说明书的一部分,与本实用新型的实施例一起用于解释本实用新型,并不构成对本实用新型的不当限制。在附图中:
图1是本实用新型系统的结构示意图;
图2是本实用新型模型箱内模拟状组件的布置图;
图3是本实用新型模型箱布置平面图。
图4是本实用新型实施例5中的煤棚及斗轮机桩基布置图;
图5是本实用新型实施例5中的煤荷载分布图;
图6是本实用新型实施例5中的研究区域的地质剖面图;
图7是本实用新型模型板的结构示意图;
附图标记:1-信号传输系统,101-上仪器舱,102-集流环装置,103-计算机控制装置,104-数据采集装置,105-视频监控装置,2-模型箱,201-第一组模拟桩组件,202-第二组模拟桩组件,203-液压缸,204-荷载板,205-第一监测装置,206-第二监测装置,3-离心模拟系统,301-下仪器舱,302-转动臂,303-基座,304-吊篮,4-第三层实验区,5-驱动系统,501-电机,502-电机驱动器,503-减速机,6-冷却系统,7-第一层实验区,8-第二层实验区,9-模型管,10-模型板。
下面结合附图和具体实施方式对本实用新型作进一步的说明。
具体实施方式
为了使本技术领域的人员更好地理解本实用新型方案,下面结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述。
需要说明的是,本实用新型的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本实用新型的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本实用新型实施例1:一种煤场堆载模拟实验系统,包括信号传输系统1、离心模拟系统 3、驱动系统5和冷却系统6,所述冷却系统6与驱动系统5连接,所述驱动系统5与离心模拟系统3连接,所述信号传输系统1设置于第一层实验区7内,所述离心模拟系统3设置于第二层实验区8内,所述驱动系统5和冷却系统6设置于所述第三层实验区4内,所述第一层实验区7位于第二层实验区8的上方,所述第二层实验区8设置于第三层实验区4的上方。
本实用新型实施例2:一种煤场堆载模拟实验系统,包括信号传输系统1、离心模拟系统 3、驱动系统5和冷却系统6,所述冷却系统6与驱动系统5连接,所述驱动系统5与离心模拟系统3连接,所述信号传输系统1设置于第一层实验区7内,所述离心模拟系统3设置于第二层实验区8内,所述驱动系统5和冷却系统6设置于所述第三层实验区4内,所述第一层实验区7位于第二层实验区8的上方,所述第二层实验区8设置于第三层实验区4的上方。具体的,信号传输系统1包括上仪器舱101、集流环装置102、计算机控制装置103、数据采集装置104、和视频监控装置105,所述集流环装置102设置于离心模拟系统3的仓顶上,所述集流环装置102分别与计算机控制装置103、数据采集装置104及视频监控装置105连接。具体的,离心模拟系统3包括离心机,所述离心机包括下仪器舱301、转动臂302、基座303 和设置在转动臂302上的吊篮304,所述转动臂302设置在下仪器舱301的下方,基座303 设置在转动臂302的下方,所述转动臂302与驱动系统5连接。具体的,驱动系统5包括电机501、电机驱动器502和减速机503,所述减速机503与转动臂302连接,所述减速机503 还与冷却系统6连接,所述减速机503还与电机501连接,所述电机501与电机驱动器502 连接。具体的,冷却系统6包括稀油站,所述稀油站通过输油管与减速机503连接。
本实用新型实施例3:一种煤场堆载模拟实验系统,包括信号传输系统1、离心模拟系统 3、驱动系统5和冷却系统6,所述冷却系统6与驱动系统5连接,所述驱动系统5与离心模拟系统3连接,所述信号传输系统1设置于第一层实验区7内,所述离心模拟系统3设置于第二层实验区8内,所述驱动系统5和冷却系统6设置于所述第三层实验区4内,所述第一层实验区7位于第二层实验区8的上方,所述第二层实验区8设置于第三层实验区4的上方。具体的,信号传输系统1包括上仪器舱101、集流环装置102、计算机控制装置103、数据采集装置104和视频监控装置105,所述集流环装置102设置于离心模拟系统3的仓顶上,所述集流环装置102分别与计算机控制装置103、数据采集装置104及视频监控装置105连接。具体的,离心模拟系统3包括离心机,所述离心机包括下仪器舱301、转动臂302、基座303 和设置在转动臂302上的吊篮304,所述转动臂302设置在下仪器舱301的下方,基座303 设置在转动臂302的下方,所述转动臂302与驱动系统5连接。具体的,驱动系统5包括电机501、电机驱动器502和减速机503,所述减速机503与转动臂302连接,所述减速机503 还与冷却系统6连接,所述减速机503还与电机501连接,所述电机501与电机驱动器502 连接。具体的,冷却系统6包括稀油站,所述稀油站通过输油管与减速机503连接。此外,本例中煤场堆载模拟实验系统还包括模型箱2,所述模型箱2内设置有第一组模拟桩组件201、第二组模拟桩组件202、液压缸203、荷载板204、第一监测装置205、第二监测装置206,所述第一组模拟桩组件201设置在模型箱2的左侧,所述第二组模拟桩组件202设置在模型箱2的右侧,所述液压缸203设置在第一组模拟桩组件201和第二组模拟桩组件202之间,所述荷载板204设置在液压缸203的下方;所述第一组模拟桩组件201和第二组模拟桩组件 202堆成设置于所述模型箱2内。模拟时,模型箱2固定在离心机的吊篮上。其中的第一组模拟桩组件201和第二组模拟桩组件202均包括模型管9和模型板10,具体的模型管9的材质为铝合金,模型板10的材质为ABS树脂;该模型板10为王字型结构。本例中,模型箱性能参数图下表1所示,
表1
该模型箱2包括有前面板、外框、侧板和底板,其前面板采用110mm厚的有机玻璃板和 110mm厚的合金铝外框构成,侧板及底板采用75mm的合金铝板构成,弹性模量为70GPa,并进行局部铣孔减重处理。经多次试验验证,在离心环境下,模型箱2的箱体未发生明显的挠曲变形,在200g加速度条件下,玻璃面挠曲变形小于1mm,符合平面应变条件。
本实用新型装置的工作原理:
通过信号传输系统1的数据采集装置104获取模拟数据;数据采集装置104包括各类反馈传感器,如差动位移传感器、激光位移传感器等。通过集流环装置102将为计算机控制装置103、数据采集装置104及视频监控装置105供电的电缆集中到上仪器舱101中,以保证在离心机转动状态下,与各个装置连接的电缆的缆芯与各个装置保持良好连通。计算机控制装置103用以控制本实用新型煤场堆载模拟实验系统的整体运行状态。可通过计算机控制装置103控制电机驱动器502启动电机501。控制装置103控制电机驱动器502启动电机501。通过视频监控装置以监视离心机运行和实验情况。将模型箱2固定在吊篮304上,通过启动运行离心机一定时间,来模拟煤场原型满载一定时间的工况。在模型箱2内所设置第一组模拟桩组件201和第二组模拟桩组件202的模型管9用以模拟煤场原型所使用的PHC桩基,模型板用以模拟煤场原型中所使用的CDM桩基。第一监测装置205和第二监测装置206用以获取模型箱2内第一组模拟桩组件201和第二组模拟桩组件202的模拟数据。液压缸203用以作为加载系统的动力源,该加载系统由模型箱上部的框架、加载横梁、置于横梁上的荷载板204和加载控制器组成。通过荷载板204向模型箱内第一组模拟桩组件201和第二组模拟桩组件202施加竖向轴力。下仪器舱内置有使转动臂302得以旋转的转轴。通过驱动系统5的转动臂302使吊篮旋转一定时间,从而模拟煤场原型满载一定时间的工况。驱动系统5通过电机驱动器502启动电机501,从而带动与电机501连接的减速机503,进而带动与减速机 503连接的转动臂302,从而使得转动臂302旋转,进而使固定在吊篮304上的模型箱2旋转,从而使模型箱2内的第一组模拟桩组件201和第二组模拟桩组件202产生形变,以模拟煤场原型运行一定时间的工况(主要为煤场原型中所使用桩基的形变)。通过冷却系统6的稀油站为减速机503提供冷却油。
Claims (8)
1.一种煤场堆载模拟实验系统,其特征在于,包括信号传输系统(1)、离心模拟系统(3)、驱动系统(5)和冷却系统(6),所述冷却系统(6)与驱动系统(5)连接,所述驱动系统(5)与离心模拟系统(3)连接,所述信号传输系统(1)设置于第一层实验区(7)内,所述离心模拟系统(3)设置于第二层实验区(8)内,所述驱动系统(5)和冷却系统(6)设置于第三层实验区(4)内,所述第一层实验区(7)位于第二层实验区(8)的上方,所述第二层实验区(8)设置于第三层实验区(4)的上方。
2.根据权利要求1所述的一种煤场堆载模拟实验系统,其特征在于,所述信号传输系统(1)包括上仪器舱(101)、集流环装置(102)、计算机控制装置(103)、数据采集装置(104)和视频监控装置(105),所述集流环装置(102)设置于离心模拟系统(3)的仓顶上,所述集流环装置(102)分别与计算机控制装置(103)、数据采集装置(104)及视频监控装置(105)连接。
3.根据权利要求2所述的一种煤场堆载模拟实验系统,其特征在于,所述离心模拟系统(3)包括离心机,所述离心机包括下仪器舱(301)、转动臂(302)、基座(303)和设置在转动臂(302)上的吊篮(304),所述转动臂(302)设置在下仪器舱(301)的下方,基座(303)设置在转动臂(302)的下方,所述转动臂(302)与驱动系统(5)连接。
4.根据权利要求3所述的一种煤场堆载模拟实验系统,其特征在于,所述驱动系统(5)包括电机(501)、电机驱动器(502)和减速机(503),所述减速机(503)与转动臂(302)连接,所述减速机(503)还与冷却系统(6)连接,所述减速机(503)还与电机(501)连接,所述电机(501)与电机驱动器(502)连接;冷却系统(6)包括稀油站,所述稀油站通过输油管与减速机(503)连接。
5.根据权利要求4所述的一种煤场堆载模拟实验系统,其特征在于,还包括模型箱(2),所述模型箱(2)内设置有第一组模拟桩组件(201)、第二组模拟桩组件(202)、液压缸(203)、荷载板(204)、第一监测装置(205)、第二监测装置(206),所述第一组模拟桩组件(201)设置在模型箱(2)的左侧,所述第二组模拟桩组件(202)设置在模型箱(2)的右侧,所述液压缸(203)设置在第一组模拟桩组件(201)和第二组模拟桩组件(202)之间,所述荷载板(204)设置在液压缸(203)的下方;所述第一组模拟桩组件(201)和第二组模拟桩组件(202)堆成设置于所述模型箱(2)内。
6.根据权利要求5所述的一种煤场堆载模拟实验系统,其特征在于,所述第一组模拟桩组件(201)和第二组模拟桩组件(202)均包括模型管(9)和模型板(10)。
7.根据权利要求6所述的一种煤场堆载模拟实验系统,其特征在于,所述模型管(9)的材质为铝合金。
8.根据权利要求7所述的一种煤场堆载模拟实验系统,其特征在于,所述模型板(10)的材质为ABS树脂;所述模型板(10)为王字型结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021180660.XU CN212748549U (zh) | 2020-06-23 | 2020-06-23 | 一种煤场堆载模拟实验系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021180660.XU CN212748549U (zh) | 2020-06-23 | 2020-06-23 | 一种煤场堆载模拟实验系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212748549U true CN212748549U (zh) | 2021-03-19 |
Family
ID=75010530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202021180660.XU Active CN212748549U (zh) | 2020-06-23 | 2020-06-23 | 一种煤场堆载模拟实验系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN212748549U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111707549A (zh) * | 2020-06-23 | 2020-09-25 | 中国华电科工集团有限公司 | 一种煤场堆载模拟实验方法和系统 |
-
2020
- 2020-06-23 CN CN202021180660.XU patent/CN212748549U/zh active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111707549A (zh) * | 2020-06-23 | 2020-09-25 | 中国华电科工集团有限公司 | 一种煤场堆载模拟实验方法和系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Experimental study on installation of hybrid bucket foundations for offshore wind turbines in silty clay | |
CN212748549U (zh) | 一种煤场堆载模拟实验系统 | |
EP3997329B1 (de) | Verfahren zur errichtung eines pumpspeicherkraftwerks in einer bodenvertiefung, insbesondere in einer tagebaugrube | |
Yang et al. | Performance of monopile-friction wheel foundations under lateral loading for offshore wind turbines | |
Zhang et al. | Hydrodynamic motion of a large prestressed concrete bucket foundation for offshore wind turbines | |
Fu et al. | Vertical load transfer behavior of composite foundation and its responses to adjacent excavation: centrifuge model test | |
Zhang et al. | In-flight simulation of the excavation of foundation pit in centrifuge model tests | |
Arunkumar et al. | Investigation on design, analysis and topological optimization of hydraulic scissor lift | |
Yun et al. | Centrifuge modeling of the horizontal capacity of skirted foundations on drained loose sand | |
CN108763833B (zh) | 一种考虑土抗力突变的基坑支护桩挠度的计算方法 | |
CN111707549A (zh) | 一种煤场堆载模拟实验方法和系统 | |
CN207469243U (zh) | 一种具有力度调节功能的建筑用打桩机 | |
Spektor | Principles of soil-tool interaction | |
CN212956546U (zh) | 一种零位移基坑支护结构及挡土装置 | |
Goodings et al. | Reinforced earth and adjacent soils: Centrifuge modeling study | |
JP2004012356A (ja) | 高密度粘土系土質材料の施工法と施工装置 | |
Sharma et al. | Behaviour of cushioned composite piled raft foundation under lateral forces | |
Wang et al. | In-flight simulation of pile installation in slopes in centrifuge model tests | |
Singh et al. | Finite Element Analysis of Stacker Mechanism used in Bearing Manufacturing | |
Li | A Study on Innovative Design of Rotary Pile Foundation Drilling Machine Based on TRIZ Theory | |
EP3230531A1 (de) | Verfahren und vorrichtungen zur baugrundverbesserung | |
JPH06341154A (ja) | 地下躯体構築工法 | |
CN216739657U (zh) | 一种钢板桩支护结构 | |
CN114740182B (zh) | 模拟深井抽水引发地层塌陷的物理模型试验系统及方法 | |
CN103334468A (zh) | 基于四轴全电驱土工离心机器人的基坑开挖系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |