CN212678358U - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
CN212678358U
CN212678358U CN202020774181.4U CN202020774181U CN212678358U CN 212678358 U CN212678358 U CN 212678358U CN 202020774181 U CN202020774181 U CN 202020774181U CN 212678358 U CN212678358 U CN 212678358U
Authority
CN
China
Prior art keywords
temperature
heater according
conductive substrate
heating layer
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020774181.4U
Other languages
Chinese (zh)
Inventor
刘磊
陈义坤
刘祥谋
朱峰
黄龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Tobacco Hubei Industrial LLC
Original Assignee
China Tobacco Hubei Industrial LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Tobacco Hubei Industrial LLC filed Critical China Tobacco Hubei Industrial LLC
Priority to CN202020774181.4U priority Critical patent/CN212678358U/en
Application granted granted Critical
Publication of CN212678358U publication Critical patent/CN212678358U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)

Abstract

The utility model discloses a heater, including hollow tubulose electrically conductive base member, the inside of electrically conductive base member is used for holding tobacco products section of fuming, be equipped with the zone of heating that is used for heating tobacco products section of fuming after circular telegram on the internal surface and/or the surface of electrically conductive base member, electrically conductive base member and/or be provided with a plurality of electric contacts that are used for connecting external power supply on the zone of heating, the resistance value of electrically conductive base member is greater than the resistance value of zone of heating; wherein when the temperature of the conductive base body is increased to the Curie temperature or higher, the resistance value of the conductive base body is increased in a transition manner. The utility model discloses can realize the accurate accuse temperature of heater according to the temperature feedback function, heating efficiency is high, and effectual.

Description

Heating device
Technical Field
The utility model belongs to the technical field of the heating incombustible, concretely relates to heater.
Background
The basic principle behind the need for a smoking device to meet the needs of cigarette consumers seeking lower harmful substance intake is that a specially manufactured smoking article has a smoking segment that can be heated to produce smoke and that such a segment need only reach temperatures much lower than ignition and combustion to emit satisfactory smoke results, including smoke volume, flavor and inlet temperature, which consumers typically feedback on the consumer experience of the smoking device.
The core of a smoking device is heat generation and control, and the heater used often directly affects the performance of this core, which in turn affects the consumer experience. However, although the existing heaters are various in variety, they usually do not have a temperature feedback function, which results in that precise temperature control cannot be performed, heating efficiency is low, service life is short, and economical efficiency is poor.
SUMMERY OF THE UTILITY MODEL
An object of the utility model is to prior art's weak point, provide a heater, its accurate accuse temperature that can realize the heater according to the temperature feedback function, heating efficiency is high, and heats effectually.
In order to solve the technical problem, the utility model adopts the following technical scheme: a heater comprises a hollow tubular conductive substrate, wherein the interior of the conductive substrate is used for accommodating a smoking section of a tobacco product, a heating layer used for heating the smoking section of the tobacco product after being electrified is arranged on the inner surface and/or the outer surface of the conductive substrate, a plurality of electric contacts used for connecting an external power supply are arranged on the conductive substrate and/or the heating layer, and the resistance value of the conductive substrate is greater than that of the heating layer; wherein when the temperature of the conductive base body is increased to the Curie temperature or higher, the resistance value of the conductive base body is increased in a transition manner.
In a specific embodiment, when the temperature of the conductive substrate is below the curie temperature, the resistance value of the conductive substrate increases slowly with the increase of the temperature.
In a particular embodiment, the curie temperature of the electrically conductive substrate is the operating temperature of the smoking segment of the tobacco article.
In one embodiment, the conductive substrate has a Curie temperature of 200 to 400 degrees Celsius.
In one embodiment, the resistance of the conductive substrate increases by more than a factor of 10 after a temperature above the curie point.
In a specific embodiment, the resistance value of the heating layer is linearly increased along with the temperature increase between normal temperature and 400 ℃, and the resistance value of the heating layer is 0.1-2 ohms.
In a specific embodiment, the temperature coefficient of resistance of the electrically conductive base is greater than the temperature coefficient of resistance of the heating layer.
In a specific embodiment, a difference between the room temperature resistance value of the conductive substrate and the room temperature resistance value of the heating layer is greater than or equal to 5 ohms.
In a particular embodiment, the heating layer comprises one or more electrically conductive strips.
In a specific embodiment, when the number of the conductive strips is plural, the plural conductive strips are stacked together to form the heating layer in series or in parallel.
In one embodiment, the conductive strip is made of a metal or an alloy of manganese, tungsten, gold, silver, copper, aluminum, platinum, iron, nickel, and chromium.
In one embodiment, the conductive substrate is made of one of silicon oxide, aluminum oxide, strontium titanate, barium zirconate, silicon carbide, silicon nitride, aluminum nitride, barium titanate, iron oxide, manganese oxide, zinc oxide, and rare earth elements.
In a specific embodiment, the outer surface of the heating layer is coated with a first inert layer for preventing oxidation of the heating layer.
In a particular embodiment, the outer and/or inner surface of the conductive base is provided with a second inert layer for preventing oxidation of the conductive base.
In a specific embodiment, the first inert layer and the second inert layer are made of glass.
In one embodiment, the electrical contacts are made of gold, silver, aluminum, copper or nickel.
In one embodiment, the number of electrical contacts is two.
In a specific embodiment, the outer diameter of the conductive substrate is 3-15 mm, the length of the conductive substrate is 3-80 mm, and the wall thickness of the conductive substrate is 0.5-5 mm.
Compared with the prior art, the beneficial effects of the utility model are that:
1. the utility model discloses a heater includes electrically conductive base member and zone of heating, and when electrically conductive base member's temperature rose to more than the curie temperature, the jump nature increase took place for electrically conductive base member's resistance value for electrically conductive base member can regard as temperature detector to carry out feedback in time to the heating effect of heater, thereby can realize the accurate accuse temperature of heater, and heating efficiency is high, and heats effectually.
2. The utility model discloses a when the zone of heating of heater includes many conducting strip, can increase heating area, further improve the heating effect.
3. The utility model discloses a surface cladding of the zone of heating of heater has first inert layer, can prevent the zone of heating oxidation to can improve the heating effect, and prolong the life of heater.
4. The utility model discloses an internal surface and/or the surface cladding of the electrically conductive base member of heater have the second inert layer, can prevent the electrically conductive base member oxidation to can improve the heating effect, and further prolong the life of heater.
5. The utility model discloses a heater simple structure, convenient to use, market prospect is wide.
Drawings
Fig. 1 is a schematic structural view showing an appearance of a specific embodiment of the heater of the present invention;
figure 2 shows a schematic cross-sectional view of one embodiment of the heater of the present invention;
fig. 3 is a schematic structural diagram of a heater according to an embodiment of the present invention, in which a heating layer is disposed on an outer surface of a conductive substrate;
fig. 4 shows a schematic structural diagram of a specific embodiment of the heater of the present invention in use.
Wherein, 1-a conductive matrix; 2-a smoking article smoking segment; 3, heating a layer; 31-a conductive strip; 4-a power supply; 5-an electrical contact; 6-a first inert layer; 7-a control device; 8-shell.
Detailed Description
The invention will be further described with reference to the following examples, which are illustrated in the accompanying drawings.
As shown in fig. 1-3, the heater of the present invention comprises a hollow tubular conductive substrate 1, the interior of the conductive substrate 1 is used for accommodating a smoking section 2 of a tobacco product (the term "tobacco product" refers to a product containing tobacco material, and in the present invention refers to a consumable product containing tobacco material that is adapted to be used with a smoking device. The inner surface and/or the outer surface of the conductive base body 1 is provided with a heating layer 3 for heating the smoking segment 2 of the tobacco product after being electrified. The conductive base body 1 and/or the heating layer 3 are/is provided with a plurality of electric contacts 5 for connecting an external power supply 4, and the electric contacts 5 respectively form a conductive path with the heating layer 3 and the conductive base body 1 for controlling voltage or current by being communicated with the power supply.
Wherein the resistance value of the conductive substrate 1 is larger than that of the heating layer 3. When the temperature of the conductive base 1 is below the curie temperature, the resistance value of the conductive base 1 increases gradually with the increase of the temperature (the change of the resistance value of the conductive base 1 with the temperature is gentle), and when the temperature of the conductive base 1 increases to above the curie temperature, the resistance value of the conductive base 1 increases in a transition manner. So that the conductive substrate 1 can be used as a temperature detector to feed back the heating effect of the heater in time.
When in use, the electric contact 5 is connected with the external power supply 4, and then the conductive substrate 1 and the heating layer 3 heat the tobacco product together. When the conductive substrate 1 is electrified, a certain amount of heat is generated, and the part of heat is marked as heat A. Heat is also generated after the heating layer 3 is energized, and this heat is labeled as heat B. Since the resistance value of the conductive substrate 1 is greater than that of the heating layer 3, and when the temperature of the conductive substrate 1 is below the curie temperature, the resistance value of the conductive substrate 1 increases slowly with the increase of the temperature, and when the temperature of the conductive substrate 1 increases to above the curie temperature, the resistance value of the conductive substrate 1 increases in a transition manner, resulting in that the heat a is much smaller than the heat B, the heat B generated by the heating layer 3 is a main factor for heating the tobacco product.
In a particular embodiment, the curie temperature of the electrically conductive substrate 1 is the operating temperature (smoking temperature) of the smoking segment 2 of the tobacco article.
In a specific embodiment, the conductive substrate 1 has a Curie temperature of 200 to 400 degrees Celsius.
In a specific embodiment, the resistance of the conductive substrate 1 increases by more than a factor of 10 after a temperature above the curie point.
In a specific embodiment, the resistance of the heating layer 3 increases linearly with increasing temperature between room temperature and 400 ℃.
In a specific embodiment, the resistance of the heating layer 3 is 0.1-2 ohm.
In a particular embodiment, the temperature coefficient of resistivity of the electrically conductive base body 1 is greater than the temperature coefficient of resistivity of the heating layer 3.
In a specific embodiment, the difference between the room temperature resistance value of the conductive base 1 and the room temperature resistance value of the heating layer 3 is greater than or equal to 5 ohms.
In a preferred embodiment, the room temperature resistance value of the heating layer 3 is 0.7 ohm, and the room temperature resistance value of the conductive substrate 1 is 7 ohm.
In a particular embodiment, the cross-section of the conductive base 1 is arranged to be circular.
In a particular embodiment, the conductive substrate 1 has a larger tip inner diameter than a base inner diameter, and the conductive substrate 1 has a base inner diameter that is smaller than the outer diameter of the smoking segment 2 of the smoking article. In this way, not only is insertion of the tobacco product smoking segment 2 within the electrically conductive base body 1 facilitated, but heating efficiency can be improved.
In a particular embodiment, the heating layer 3 comprises one or more electrically conductive strips 31.
In a specific embodiment, when the number of the conductive strips 31 is plural, the plural conductive strips 31 are stacked together to form the heating layer 3 in series or in parallel, so that the heating area can be increased, and the heating effect can be further improved. For example, when the number of the conductive strips 31 is plural, the conductive strips include a first conductive strip, a second conductive strip, and a third conductive strip. Different conductive strips 31 can be made of different materials or the same material. A plurality of conductive strips 31 may be stacked on top of each other to achieve a composite electrical performance. For example, a first conductive strip may be partially superimposed on top of or below the other conductive strips, with the heating layer 3 being formed in series or in parallel between different conductive strips 31.
In a specific embodiment, the conductive strips 31 are provided as conductive films having a thickness and shape, and the material forming the conductive strips 31 may be attached to the conductive base 1 by a printed circuit method or other plating method.
In one specific embodiment, the conductive strip 31 is made of a metal or alloy of manganese, tungsten, gold, silver, copper, aluminum, platinum, iron, nickel, and chromium.
In a specific embodiment, the conductive substrate 1 is made of one of silicon oxide, aluminum oxide, strontium titanate, barium zirconate, silicon carbide, silicon nitride, aluminum nitride, barium titanate, iron oxide, manganese oxide, zinc oxide, and a rare earth element.
In a particular embodiment, the outer surface of the heating layer 3 is coated with a first inert layer 6 for preventing oxidation of the heating layer 3. The first inert layer 6 is able to protect the heating layer 3 from oxidation.
In a specific embodiment, the outer and/or inner surface of the conductive base 1 is provided with a second inert layer for preventing oxidation of the conductive base 1. Specifically, the conductive base 1 may be made of a metal oxide resistant to air oxidation, and although the rate of oxidation of the conductive base 1 by air is slower than that of the heating layer 3, in consideration of convenient and rapid manufacturing process, a second inert layer for preventing oxidation of the conductive base 1 may be provided on the outer surface and/or the inner surface of the conductive base 1 to protect the outer surface and/or the inner surface of the conductive base 1.
In a preferred embodiment, the heating layer 3 is arranged on the outer surface of the electrically conductive base body 1. The first inert layer 6 is sleeved on the common outer part of the conductive base body 1 and the heating layer 3, so that the conductive base body 1 and the heating layer 3 can be prevented from being oxidized, and the conductive base body 1 and the heating layer 3 are protected.
In a preferred embodiment, the thickness of the first inert layer 6 is larger than that of the heating layer 3, so that the effect of preventing oxidation is good.
In a particular embodiment, the first inert layer 6 and the second inert layer are made of glass. Wherein, the first inert layer 6 and the second inert layer can be respectively attached on the surfaces of the heating layer 3 and the conductive base body 1 by adopting an evaporation, sputtering, spraying, coating or covering mode.
In a particular embodiment, the electrical contacts 5 are made of gold, silver, aluminum, copper or nickel.
In a specific embodiment, the electrical contacts 5 are soldered to the wires.
In a preferred embodiment, the number of electrical contacts 5 is two.
In a specific embodiment, the outer diameter of the conductive substrate 1 is 3 to 15 mm. The length of the conductive substrate 1 is 3-80 mm. The wall thickness of the conductive substrate 1 is 0.5-5 mm, the rigidity of the heater can be maintained, and the rigidity is favorable for fixing and clamping the heater.
As shown in fig. 4, the smoking device of the present invention comprises a heater and a power source 4, wherein the heater is connected to the power source 4 through a control device 7, and the power source 4 supplies power to the heater through the control device 7. The control means 7 comprises electronic circuitry for controlling the power delivered to the heater, enabling the power adjustment to the heater to be effected in dependence on the sensed feedback to the heater. When the control device 7 detects that the resistance value of the heater or the conductive substrate 1 is increased in a transition manner, the control device 7 obtains a first signal that the heating of the tobacco product is completed (the heating is carried out to the smoking temperature), and reduces or stops the power transmission to the heater according to the first signal. This is because the transitional increase in the resistance value of the conductive substrate 1 is directly related to the curie temperature of the conductive substrate 1, and when the curie temperature of the conductive substrate 1 is set to the operating temperature (smoking temperature) of the tobacco product, the control device 7, which directly or indirectly detects the resistance value of the heater or the resistance value of the conductive substrate 1, can promptly obtain the first signal that the tobacco product has been heated. Like this, electrically conductive base member 1 can carry out timely feedback as temperature detector to the heating effect of heater to can realize the accurate accuse temperature of heater, heating efficiency is high, and heating effect is good.
Preferably, the control device 7 detects a transient increase in the resistance value of the conductive substrate 1, and appropriately delays the time for reducing or stopping the power transmission to the heater.
In a particular embodiment, when the control means 7 detects a sudden decrease in the current value or a sudden increase in the voltage value of the heater or the conductive substrate 1, the control means 7 obtains a first signal that the tobacco product is heated (to the smoking temperature) and reduces or stops the power transmission to the heater in response to the first signal. Like this, electrically conductive base member 1 can carry out timely feedback as temperature detector to the heating effect of heater to can realize the accurate accuse temperature of heater, heating efficiency is high, and heating effect is good.
Preferably, when the control means 7 detects a sudden decrease in the current value or a sudden increase in the voltage value of the heater or the conductive base 1, the time for reducing or stopping the power transmission to the heater may be appropriately delayed.
In a particular embodiment, when the temperature of the conductive substrate 1 drops below the curie temperature and the control means 7 detects a sudden increase in the current value or a sudden decrease in the voltage value of the heater or conductive substrate 1, the control means 7 obtains a second signal indicating that the tobacco product needs to be heated and increases or restarts the power transmission to the heater in response to the second signal. Such repetition of the process may be performed as the case may be during operation of the smoking device. Like this, electrically conductive base member 1 can carry out timely feedback as temperature detector to the heating effect of heater to can realize the accurate accuse temperature of heater, heating efficiency is high, and heating effect is good.
In a particular embodiment, when the temperature of the conductive substrate 1 drops below the curie temperature and the control means 7 detects a sudden decrease in the resistance of the conductive substrate 1, the control means 7 receives a second signal indicating that the tobacco product needs to be heated and increases or restarts the power transmission to the heater in response to the second signal. Such repetition of the process may be performed as the case may be during operation of the smoking device. Like this, electrically conductive base member 1 can carry out timely feedback as temperature detector to the heating effect of heater to can realize the accurate accuse temperature of heater, heating efficiency is high, and heating effect is good.
In a particular embodiment, the heater, the power source 4 and the control means 7 are all disposed within a housing 8. The inner wall of the housing 8 is insulated from the outside of the heater.
In a particular embodiment, insulation is provided between the inner wall of the housing 8 and the outside of the heater.
In a particular embodiment, the thermal insulation comprises a heat resistant material and/or a high infrared reflective material.
Although the embodiments of the present invention have been disclosed, the above description is only for the convenience of understanding the present invention, and is not intended to limit the present invention. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (18)

1. A heater, characterized by comprising a hollow tubular conductive substrate (1), wherein the interior of the conductive substrate (1) is used for accommodating a smoking segment (2) of a tobacco product, a heating layer (3) for heating the smoking segment (2) of the tobacco product after being electrified is arranged on the inner surface and/or the outer surface of the conductive substrate (1), a plurality of electric contacts (5) for connecting an external power supply (4) are arranged on the conductive substrate (1) and/or the heating layer (3), and the resistance value of the conductive substrate (1) is greater than that of the heating layer (3);
wherein when the temperature of the conductive base (1) is increased to a Curie temperature or higher, the resistance value of the conductive base (1) is increased in a transition manner.
2. A heater according to claim 1, characterised in that the resistance value of the electrically conductive substrate (1) increases slowly with increasing temperature when the temperature of the electrically conductive substrate (1) is below the curie temperature.
3. The heater according to claim 1, wherein the curie temperature of the electrically conductive substrate (1) is the operating temperature of the smoking segment (2) of the tobacco article.
4. The heater according to claim 1, wherein the conductive matrix (1) has a Curie temperature of 200-400 degrees Celsius.
5. A heater according to claim 1, characterised in that the resistance of the electrically conductive substrate (1) increases by more than a factor of 10 after a temperature above the curie point.
6. The heater according to claim 1, wherein the resistance value of the heating layer (3) increases linearly with temperature increase between normal temperature and 400 ℃, and the resistance value of the heating layer (3) is 0.1-2 ohm.
7. A heater according to claim 1, characterised in that the temperature coefficient of resistance of the electrically conductive base body (1) is greater than the temperature coefficient of resistance of the heating layer (3).
8. The heater according to claim 1, characterized in that the difference between the room temperature resistance value of the conductive base (1) and the room temperature resistance value of the heating layer (3) is greater than or equal to 5 ohms.
9. The heater according to claim 1, characterised in that the heating layer (3) comprises one or more electrically conductive strips (31).
10. A heater according to claim 9, characterised in that when the number of said conductive strips (31) is multiple, said multiple conductive strips (31) are stacked together to form said heating layer (3) in series or in parallel.
11. The heater according to claim 9, wherein the conductive strips (31) are made of one of manganese, tungsten, gold, silver, copper, aluminum, platinum, iron, nickel and chromium.
12. The heater according to claim 1, wherein the conductive substrate (1) is made of one of silicon oxide, aluminum oxide, strontium titanate, barium zirconate, silicon carbide, silicon nitride, aluminum nitride, barium titanate, iron oxide, manganese oxide, and zinc oxide.
13. A heater according to claim 1, characterised in that the outer surface of the heating layer (3) is coated with a first inert layer (6) for preventing oxidation of the heating layer (3).
14. A heater according to claim 13, characterised in that the outer and/or inner surface of the electrically conductive substrate (1) is provided with a second inert layer for preventing oxidation of the electrically conductive substrate (1).
15. The heater according to claim 14, characterised in that said first inert layer (6) and said second inert layer are made of glass.
16. A heater according to claim 1, characterised in that the electrical contacts (5) are made of gold, silver, aluminium, copper or nickel.
17. A heater according to claim 1, characterised in that the number of electrical contacts (5) is two.
18. The heater according to claim 1, wherein the outer diameter of the conductive base (1) is 3-15 mm, the length of the conductive base (1) is 3-80 mm, and the wall thickness of the conductive base (1) is 0.5-5 mm.
CN202020774181.4U 2020-05-12 2020-05-12 Heating device Active CN212678358U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020774181.4U CN212678358U (en) 2020-05-12 2020-05-12 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020774181.4U CN212678358U (en) 2020-05-12 2020-05-12 Heating device

Publications (1)

Publication Number Publication Date
CN212678358U true CN212678358U (en) 2021-03-12

Family

ID=74886851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020774181.4U Active CN212678358U (en) 2020-05-12 2020-05-12 Heating device

Country Status (1)

Country Link
CN (1) CN212678358U (en)

Similar Documents

Publication Publication Date Title
CN109068417A (en) A kind of heating device and preparation method thereof, aerosol generating device
CN113519907A (en) Heater and smoking set comprising same
CN111296895A (en) Heating device of electronic cigarette
CN114788585A (en) Heating element and aerosol-generating device
JP7502475B2 (en) Heat generating components and aerosol forming devices
CN112369686A (en) Heating device
CN212678358U (en) Heating device
CN213908506U (en) Heating element and aerosol forming device
CN212678357U (en) Smoke extractor
JP7456014B2 (en) Heat generating parts and aerosol forming equipment
CN207721216U (en) Electronic cigarette and its heating device
CN112369685A (en) Smoke extractor
CN216255473U (en) Heater and heating atomization device
CN111954320B (en) Method for manufacturing metal heating body
JP2023529880A (en) Heating components and aerosol forming devices
CN112369714A (en) Heating element, preparation method and heating non-combustion device
CN213908505U (en) Heating element and aerosol forming device
CN217523960U (en) Resistance heater for aerosol-generating device and aerosol-generating device
CN212678376U (en) Heating element and heating non-combustion device
CN219182831U (en) Heating element and aerosol generating device
JP2023530735A (en) Heat generating unit and aerosol forming device
CN220545831U (en) Heating element and aerosol generating device
CN220109135U (en) Gas mist generating device and heater for gas mist generating device
CN217184826U (en) Heating element and aerosol-generating device
CN219781584U (en) Heating module and aerosol generating device

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant