CN212254005U - 一种非接触测量光学晶体包边厚度的装置 - Google Patents
一种非接触测量光学晶体包边厚度的装置 Download PDFInfo
- Publication number
- CN212254005U CN212254005U CN202021025926.3U CN202021025926U CN212254005U CN 212254005 U CN212254005 U CN 212254005U CN 202021025926 U CN202021025926 U CN 202021025926U CN 212254005 U CN212254005 U CN 212254005U
- Authority
- CN
- China
- Prior art keywords
- sample
- ccd camera
- objective lens
- light source
- edge covering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本实用新型公开了一种非接触测量光学晶体包边厚度的装置,属于激光系统光学参数测量领域,平行光源发射的平行激光束入射至待测样品的包边和晶体内部,光线在包边和晶体内部沿直线传播,在界面处发生反射和散射,出射光经过物镜和目镜后,待测样品后表面光场分布成像至CCD相机,因界面处光线不能到达CCD相机,在像中对应的位置会出现暗区;CCD相机用于将采集的光场分布转化为图像,并传递给数据处理系统,数据处理系统计算出暗区到待测样品的包边边缘的长度,再根据成像系统放大比例,获得晶体包边厚度。本实用新型的非接触测量光学晶体包边厚度的装置,结构简单、使用方便,快速直观,可弥补已有技术结构复杂和不能直接测量的不足。
Description
技术领域
本实用新型属于激光系统光学参数测量领域,具体地说涉及一种非接触测量光学晶体包边厚度的装置。
背景技术
在激光系统中,光学晶体包边厚度与晶体边缘温度分布密切相关,对输出激光光束质量影响极大。包边与晶体均为透明介质,采用键合工艺的形成的分界面,一般光学测量显微镜因难以观察到键合面而不能获得包边厚度大小。目前已知的非接触式晶体厚度测量方法主要有光学干涉法、激光共聚焦法等,这些方法一般利用晶体前后表面激光反射获得强度或相位信息,通过反演计算得到晶体厚度。此类方法测量光路结构复杂、检测速度缓慢,成本较高。另外,因使用需求,晶体包边上下表面的镜面反射性能较差,不适合采用上述方法测量其厚度。
实用新型内容
本实用新型的目的是针对上述不足之处提供一种非接触测量光学晶体包边厚度的装置,拟解决如何提供一种快速、直观、非接触测量光学晶体包边厚度装置,克服已有技术结构复杂和不能直接测量等问题。为实现上述目的,本实用新型提供如下技术方案:
一种非接触测量光学晶体包边厚度的装置,包括平行光源1、样品台2、物镜3、目镜4、CCD相机5和数据处理系统6;所述平行光源1、样品台2、物镜3、目镜4、CCD相机5从前往后依次设置;所述平行光源1用于输出平行激光束,平行激光束入射并穿透样品台2上固定的待测样品7;所述物镜3和目镜4用于将待测样品7后表面光场分布成像至CCD相机5;所述CCD相机5用于将采集的光场分布转化为图像,并传递给数据处理系统6计算出包边厚度信息。由上述结构可知,平行光源1用于提供大口径平行输出激光束,入射并穿透待测样品7,作为所述测量装置的探测光源;样品台2用于固定待测样品7,待测样品7调整角度和高度后,样品台2都可以固定住;物镜3和目镜4用于将待测样品7后表面光场分布成像至CCD相机5,物镜3和目镜4避免了光线衍射,使待测样品7后表面光场分布成像更清晰完整;CCD相机5将采集的光场分布转化为图像,并传递给数据处理系统6计算出包边厚度信息;数据处理系统6可以采用电脑等现有装置来实现处理计算,用于分析图像特征,获得包边厚度数据;整个过程:平行光源发射的平行激光束入射至待测样品的包边和晶体内部,光线在包边和晶体内部沿直线传播,在界面处发生反射和散射,出射光经过物镜和目镜后,待测样品后表面光场分布成像至CCD相机,因界面处光线不能到达CCD相机,在像中对应的位置会出现暗区;CCD相机用于将采集的光场分布转化为图像,并传递给数据处理系统,数据处理系统计算出暗区到待测样品的包边边缘的长度,再根据成像系统放大比例,获得晶体包边厚度。本实用新型的非接触测量光学晶体包边厚度的装置,结构简单、使用方便,快速直观,可弥补已有技术结构复杂和不能直接测量的不足。本实用新型的光学晶体包边厚度测量装置,采用光学方法非接触方式测量,测试结果直观,测试组件定位精度要求低,操作使用方便,设备成本相对低廉。
进一步的,所述物镜3到待测样品7后表面的距离为物镜3焦距;物镜3和目镜4之间的距离为两透镜焦距之和;所述CCD相机5到目镜4的距离为目镜4焦距。由上述结构可知,CCD相机5能够采集待测样品后表面光场强度分布并转化为清晰图像。
进一步的,所述平行光源1输出的平行激光发散角小于10mrad,近场强度均匀性大于90%。由上述结构可知,待测样品后表面光场分布成像至CCD相机时,像中的暗区和亮区对比明显,确保获取数据的准确性。
进一步的,所述待测样品7的包边边界和平行光源1输出的激光相平行。由上述结构可知,这样光线在界面处发生反射和散射,界面处光线不能到达CCD相机,在像中对应的位置会出现暗区。
进一步的,所述平行光源1输出的平行激光将待测样品7的完整包边厚度全覆盖。由上述结构可知,将待测样品7的完整包边厚度全覆盖,避免采集到的是部分包边厚度而导致厚度信息不准确。
进一步的,所述物镜3口径大于待测样品7的包边厚度,目镜4口径与物镜3口径相匹配。由上述结构可知,确保CCD相机上成像完整的包边厚度。
进一步的,所述物镜3焦距f1、目镜4焦距f2、待测样品7的包边厚度d1、CCD相机5的感光面口径d2满足f1/f2>d1/d2。由上述结构可知,确保CCD相机上成像完整的包边厚度。
进一步的,所述物镜3、目镜4和CCD相机5的中心高度一致。由上述结构可知,此时,可以通过调整样品台2,使待测样品7调整在合适的高度和角度,将待测样品7的包边在CCD相机上完整成像。
进一步的,所述CCD相机5的响应波长、平行光源1输出平行激光波长和待测样品7透射波长相匹配。由上述结构可知,确保CCD相机上成像清晰、完整的包边厚度。
本实用新型的有益效果是:
1.本实用新型公开了一种非接触测量光学晶体包边厚度的装置,平行光源发射的平行激光束入射至待测样品的包边和晶体内部,光线在包边和晶体内部沿直线传播,在界面处发生反射和散射,出射光经过物镜和目镜后,待测样品后表面光场分布成像至CCD相机,因界面处光线不能到达CCD相机,在像中对应的位置会出现暗区;CCD相机用于将采集的光场分布转化为图像,并传递给数据处理系统,数据处理系统计算出暗区到待测样品的包边边缘的长度,再根据成像系统放大比例,获得晶体包边厚度。本实用新型的非接触测量光学晶体包边厚度的装置,结构简单、使用方便,快速直观,可弥补已有技术结构复杂和不能直接测量的不足。本实用新型的光学晶体包边厚度测量装置,采用光学方法非接触方式测量,测试结果直观,测试组件定位精度要求低,操作使用方便,设备成本相对低廉。
附图说明
图1是本实用新型结构示意图;
附图中:1-平行光源、2-样品台、3-物镜、4-目镜、5-CCD相机、6-数据处理系统、7-待测样品。
具体实施方式
下面结合附图与具体实施方式,对本实用新型进一步详细说明,但是本实用新型不局限于以下实施例。
实施例一:
见附图1。一种非接触测量光学晶体包边厚度的装置,包括平行光源1、样品台2、物镜3、目镜4、CCD相机5和数据处理系统6;所述平行光源1、样品台2、物镜3、目镜4、CCD相机5从前往后依次设置;所述平行光源1用于输出平行激光束,平行激光束入射并穿透样品台2上固定的待测样品7;所述物镜3和目镜4用于将待测样品7后表面光场分布成像至CCD相机5;所述CCD相机5用于将采集的光场分布转化为图像,并传递给数据处理系统6计算出包边厚度信息。由上述结构可知,平行光源1用于提供大口径平行输出激光束,入射并穿透待测样品7,作为所述测量装置的探测光源;样品台2用于固定待测样品7,待测样品7调整角度和高度后,样品台2都可以固定住;物镜3和目镜4用于将待测样品7后表面光场分布成像至CCD相机5,物镜3和目镜4避免了光线衍射,使待测样品7后表面光场分布成像更清晰完整;CCD相机5将采集的光场分布转化为图像,并传递给数据处理系统6计算出包边厚度信息;数据处理系统6可以采用电脑等现有装置来实现处理计算,用于分析图像特征,获得包边厚度数据;整个过程:平行光源发射的平行激光束入射至待测样品的包边和晶体内部,光线在包边和晶体内部沿直线传播,在界面处发生反射和散射,出射光经过物镜和目镜后,待测样品后表面光场分布成像至CCD相机,因界面处光线不能到达CCD相机,在像中对应的位置会出现暗区;CCD相机用于将采集的光场分布转化为图像,并传递给数据处理系统,数据处理系统计算出暗区到待测样品的包边边缘的长度,再根据成像系统放大比例,获得晶体包边厚度。本实用新型的非接触测量光学晶体包边厚度的装置,结构简单、使用方便,快速直观,可弥补已有技术结构复杂和不能直接测量的不足。本实用新型的光学晶体包边厚度测量装置,采用光学方法非接触方式测量,测试结果直观,测试组件定位精度要求低,操作使用方便,设备成本相对低廉。
实施例二:
见附图1。一种非接触测量光学晶体包边厚度的装置,包括平行光源1、样品台2、物镜3、目镜4、CCD相机5和数据处理系统6;所述平行光源1、样品台2、物镜3、目镜4、CCD相机5从前往后依次设置;所述平行光源1用于输出平行激光束,平行激光束入射并穿透样品台2上固定的待测样品7;所述物镜3和目镜4用于将待测样品7后表面光场分布成像至CCD相机5;所述CCD相机5用于将采集的光场分布转化为图像,并传递给数据处理系统6计算出包边厚度信息。由上述结构可知,平行光源1用于提供大口径平行输出激光束,入射并穿透待测样品7,作为所述测量装置的探测光源;样品台2用于固定待测样品7,待测样品7调整角度和高度后,样品台2都可以固定住;物镜3和目镜4用于将待测样品7后表面光场分布成像至CCD相机5,物镜3和目镜4避免了光线衍射,使待测样品7后表面光场分布成像更清晰完整;CCD相机5将采集的光场分布转化为图像,并传递给数据处理系统6计算出包边厚度信息;数据处理系统6可以采用电脑等现有装置来实现处理计算,用于分析图像特征,获得包边厚度数据;整个过程:平行光源发射的平行激光束入射至待测样品的包边和晶体内部,光线在包边和晶体内部沿直线传播,在界面处发生反射和散射,出射光经过物镜和目镜后,待测样品后表面光场分布成像至CCD相机,因界面处光线不能到达CCD相机,在像中对应的位置会出现暗区;CCD相机用于将采集的光场分布转化为图像,并传递给数据处理系统,数据处理系统计算出暗区到待测样品的包边边缘的长度,再根据成像系统放大比例,获得晶体包边厚度。本实用新型的非接触测量光学晶体包边厚度的装置,结构简单、使用方便,快速直观,可弥补已有技术结构复杂和不能直接测量的不足。本实用新型的光学晶体包边厚度测量装置,采用光学方法非接触方式测量,测试结果直观,测试组件定位精度要求低,操作使用方便,设备成本相对低廉。
所述物镜3到待测样品7后表面的距离为物镜3焦距;物镜3和目镜4之间的距离为两透镜焦距之和;所述CCD相机5到目镜4的距离为目镜4焦距。由上述结构可知,CCD相机5能够采集待测样品后表面光场强度分布并转化为清晰图像。
所述平行光源1输出的平行激光发散角小于10mrad,近场强度均匀性大于90%。由上述结构可知,待测样品后表面光场分布成像至CCD相机时,像中的暗区和亮区对比明显,确保获取数据的准确性。
所述待测样品7的包边边界和平行光源1输出的激光相平行。由上述结构可知,这样光线在界面处发生反射和散射,界面处光线不能到达CCD相机,在像中对应的位置会出现暗区。
所述平行光源1输出的平行激光将待测样品7的完整包边厚度全覆盖。由上述结构可知,将待测样品7的完整包边厚度全覆盖,避免采集到的是部分包边厚度而导致厚度信息不准确。
所述物镜3口径大于待测样品7的包边厚度,目镜4口径与物镜3口径相匹配。由上述结构可知,确保CCD相机上成像完整的包边厚度。
所述物镜3焦距f1、目镜4焦距f2、待测样品7的包边厚度d1、CCD相机5的感光面口径d2满足f1/f2>d1/d2。由上述结构可知,确保CCD相机上成像完整的包边厚度。
所述物镜3、目镜4和CCD相机5的中心高度一致。由上述结构可知,此时,可以通过调整样品台2,使待测样品7调整在合适的高度和角度,将待测样品7的包边在CCD相机上完整成像。
所述CCD相机5的响应波长、平行光源1输出平行激光波长和待测样品7透射波长相匹配。由上述结构可知,确保CCD相机上成像清晰、完整的包边厚度。
例如:平行光源的激光波长为632.8nm,光斑口径100mm,光斑发散角1mrad,光斑中心高100mm。平行光源入射至带包边的YAG晶体,样品直径为20mm。调整样品台高度90mm,使平行光覆盖样品上下边缘穿过。调整像传递透镜组中心高度至100mm,调整物镜到晶体后表面距离为400mm,物镜与目镜间距为500mm。物镜焦距f1为400mm,物镜口径60mm,目镜焦距f2为100mm,目镜口径60mm。调整CCD相机中心高度至100mm,CCD与目镜距离100mm,CCD感光面口径d2为6mm。CCD相机通过像传递透镜组对晶体后表面光场分布清晰成像,测量暗区到边缘长度d3为980um,f1/f2为4,包边厚度d1为3920um。
一种非接触测量光学晶体包边厚度的方法,采用上述的非接触测量光学晶体包边厚度的装置,具体步骤包括:S1、S2和S3;
S1:选取平行光源1、样品台2、物镜3、目镜4、CCD相机5、数据处理系统6和待测样品7,要求平行光源1输出的平行激光发散角小于10mrad,近场强度均匀性大于90%,平行激光能将待测样品7的完整包边厚度全覆盖,要求待测样品7的包边和晶体内部对该平行激光波长无显著吸收,要求物镜3口径大于待测样品7的包边厚度,目镜4口径与物镜3口径相匹配,要求CCD相机5的响应波长和平行光源1输出平行激光波长相匹配;
S2:将平行光源1、样品台2、物镜3、目镜4、CCD相机5从前往后依次摆好,待测样品7固定在样品台2上,待测样品7的包边边界和平行光源1输出的平行激光相平行,物镜3到待测样品7后表面的距离为物镜3焦距,物镜3和目镜4之间的距离为两透镜焦距之和,CCD相机5到目镜4的距离为目镜4焦距,物镜3、目镜4和CCD相机5的中心高度一致,物镜3焦距f1、目镜4焦距f2、待测样品7的包边厚度d1、CCD相机5的感光面口径d2满足f1/f2>d1/d2;
S3:平行光源1发射的平行激光束入射至待测样品7的包边和晶体内部,出射光经过物镜3和目镜4后,待测样品7后表面光场分布成像至CCD相机5,CCD相机5用于将采集的光场分布转化为图像,并传递给数据处理系统6,数据处理系统6计算出图像中暗区到待测样品7的包边边缘的长度为d3,d3再乘以f1/f2,即为包边厚度d1的数值。
以上所述仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。
Claims (9)
1.一种非接触测量光学晶体包边厚度的装置,其特征在于:包括平行光源(1)、样品台(2)、物镜(3)、目镜(4)、CCD相机(5)和数据处理系统(6);所述平行光源(1)、样品台(2)、物镜(3)、目镜(4)、CCD相机(5)从前往后依次设置;所述平行光源(1)用于输出平行激光束,平行激光束入射并穿透样品台(2)上固定的待测样品(7);所述物镜(3)和目镜(4)用于将待测样品(7)后表面光场分布成像至CCD相机(5);所述CCD相机(5)用于将采集的光场分布转化为图像,并传递给数据处理系统(6)计算出包边厚度信息。
2.根据权利要求1所述的一种非接触测量光学晶体包边厚度的装置,其特征在于:所述物镜(3)到待测样品(7)后表面的距离为物镜(3)焦距;物镜(3)和目镜(4)之间的距离为两透镜焦距之和;所述CCD相机(5)到目镜(4)的距离为目镜(4)焦距。
3.根据权利要求1所述的一种非接触测量光学晶体包边厚度的装置,其特征在于:所述平行光源(1)输出的平行激光发散角小于10mrad,近场强度均匀性大于90%。
4.根据权利要求1所述的一种非接触测量光学晶体包边厚度的装置,其特征在于:所述待测样品(7)的包边边界和平行光源(1)输出的激光相平行。
5.根据权利要求1所述的一种非接触测量光学晶体包边厚度的装置,其特征在于:所述平行光源(1)输出的平行激光将待测样品(7)的完整包边厚度全覆盖。
6.根据权利要求1所述的一种非接触测量光学晶体包边厚度的装置,其特征在于:所述物镜(3)口径大于待测样品(7)的包边厚度,目镜(4)口径与物镜(3)口径相匹配。
7.根据权利要求1所述的一种非接触测量光学晶体包边厚度的装置,其特征在于:所述物镜(3)焦距f1、目镜(4)焦距f2、待测样品(7)的包边厚度d1、CCD相机(5)的感光面口径d2满足f1/f2>d1/d2。
8.根据权利要求1所述的一种非接触测量光学晶体包边厚度的装置,其特征在于:所述物镜(3)、目镜(4)和CCD相机(5)的中心高度一致。
9.根据权利要求1所述的一种非接触测量光学晶体包边厚度的装置,其特征在于:所述CCD相机(5)的响应波长、平行光源(1)输出平行激光波长和待测样品(7)透射波长相匹配。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021025926.3U CN212254005U (zh) | 2020-06-05 | 2020-06-05 | 一种非接触测量光学晶体包边厚度的装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021025926.3U CN212254005U (zh) | 2020-06-05 | 2020-06-05 | 一种非接触测量光学晶体包边厚度的装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212254005U true CN212254005U (zh) | 2020-12-29 |
Family
ID=73977836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202021025926.3U Active CN212254005U (zh) | 2020-06-05 | 2020-06-05 | 一种非接触测量光学晶体包边厚度的装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN212254005U (zh) |
-
2020
- 2020-06-05 CN CN202021025926.3U patent/CN212254005U/zh active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106441571B (zh) | 一种光源模块及应用其的线扫描多光谱成像系统 | |
CN102566048B (zh) | 一种基于象散的样品轴向漂移补偿方法和装置 | |
CN105973171A (zh) | 一种光轴与安装基准面平行度测试装置及方法 | |
CN102589428B (zh) | 基于非对称入射的样品轴向位置跟踪校正的方法和装置 | |
CN103038692A (zh) | 基于差分测量的自动聚焦 | |
CN108254295B (zh) | 一种定位与表征球形微粒的方法及其装置 | |
US9239237B2 (en) | Optical alignment apparatus and methodology for a video based metrology tool | |
CN204831220U (zh) | 氟化钙平晶两面平行度高精度测试装置 | |
JP6865507B2 (ja) | 多能性幹細胞の無染色評価支援方法、プログラム、演算装置 | |
CN205691077U (zh) | 一种光轴与安装基准面平行度测试装置 | |
CN102519909B (zh) | 基于液晶可调谐滤波器的空域低相干相位显微镜 | |
KR102408218B1 (ko) | 안경 프레임의 내부 윤곽의 광학 측정을 위한 디바이스 및 방법 | |
CN102893198A (zh) | 自动聚焦成像 | |
CN107407798A (zh) | 通过低相干干涉法自动聚焦调节的显微镜系统 | |
CN106767545A (zh) | 一种高精度高空间分辨角度测量仪及角度测量方法 | |
CN204439923U (zh) | 一种暗场显微镜 | |
CN115950890B (zh) | 用于工业检测的谱域光学相干层析成像检测方法及系统 | |
CN107782697B (zh) | 宽波段共焦红外透镜元件折射率测量方法与装置 | |
CN203011419U (zh) | 一种多光学传感器光轴平行性数字检校仪 | |
CN206248212U (zh) | 一种光源模块及应用其的线扫描多光谱成像系统 | |
CN111795649B (zh) | 一种非接触测量光学晶体包边厚度的装置和方法 | |
CN107478332B (zh) | 一种环形光束共聚焦纵向高分辨成像装置 | |
CN212254005U (zh) | 一种非接触测量光学晶体包边厚度的装置 | |
CN203216701U (zh) | 传像光纤束像差检测装置 | |
CN103323758B (zh) | 日盲紫外成像式测距装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |