CN212181696U - Panoramic VR interactive medical ultrasonic digital phantom system - Google Patents
Panoramic VR interactive medical ultrasonic digital phantom system Download PDFInfo
- Publication number
- CN212181696U CN212181696U CN202021005258.8U CN202021005258U CN212181696U CN 212181696 U CN212181696 U CN 212181696U CN 202021005258 U CN202021005258 U CN 202021005258U CN 212181696 U CN212181696 U CN 212181696U
- Authority
- CN
- China
- Prior art keywords
- data
- panoramic
- local server
- local
- personal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002452 interceptive effect Effects 0.000 title claims abstract description 26
- 238000002604 ultrasonography Methods 0.000 claims abstract description 34
- 238000012545 processing Methods 0.000 claims abstract description 9
- 230000001133 acceleration Effects 0.000 claims description 21
- 238000004891 communication Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 19
- 230000006870 function Effects 0.000 description 8
- 210000000056 organ Anatomy 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本实用新型是一种全景VR交互式医学超声数字体模系统,该系统拥有两个模块,包括数字建模模块和实际操作生成VR图像模块;基于系统的组成,硬件部分分为专业基地服务器和个人客户端服务器;上述两种服务器均含有手持设备、图像数字化处理设备、可穿戴全景VR设备。随着5G技术的普及和发展,该系统通过服务器连接网络,实现大数据云计算,极大地提高了VR交互式的计算速度和传输效率。
The utility model is a panoramic VR interactive medical ultrasound digital phantom system. The system has two modules, including a digital modeling module and an actual operation generating VR image module; based on the composition of the system, the hardware part is divided into a professional base server and a Personal client server; both of the above two servers contain handheld devices, image digital processing devices, and wearable panoramic VR devices. With the popularization and development of 5G technology, the system connects the network through the server to realize big data cloud computing, which greatly improves the computing speed and transmission efficiency of VR interactive.
Description
技术领域technical field
本实用新型描述了一种全景VR交互式医学超声数字体模系统,随着5G技术的成熟实现云计算,包括数字建模模块和实际操作生成VR图像模块,通过专业本地服务器和个人客户端,实现医学领域全景VR交互。The utility model describes a panoramic VR interactive medical ultrasound digital phantom system. With the maturity of 5G technology, cloud computing is realized, including a digital modeling module and an actual operation generating VR image module, and through a professional local server and a personal client, Realize panoramic VR interaction in the medical field.
背景技术Background technique
目前医学超声学习主要是以教材及相关辅导书为基础的理论学习为主,由于医疗资源有限,超声学员上机时间远远不能达到实践的目的;各个医院侧重不同,病例种类有限,并且典型病例也是可遇不可求的;加上日益紧张的医患关系,大多数患者是抗拒普通学员为其进行检查的。At present, medical ultrasound learning is mainly based on theoretical learning based on textbooks and related tutorial books. Due to limited medical resources, the time for ultrasound students to get on the machine is far from achieving the purpose of practice; each hospital focuses on different, limited types of cases, and typical cases It is also elusive; coupled with the increasingly tense doctor-patient relationship, most of the patients are resistant to ordinary practitioners conducting examinations for them.
在国内外超声模拟教学中,主要还是应用仿组织超声体模进行。首先,该体模制作工艺复杂,成本高,价位很高,进口超声体模费用更高,少则几十万,多则上百万,大多数医院及个人买不起,很难量产;其次,这种体模模拟的图像质量一般,大多数无法实现功能成像,例如心脏检查等;第三,这种仿组织体模内部结构是固化的,只能模拟正常组织或者单一病种,后期不能导入病例数据,并且无法实现人机互动,不能应用于模拟考试及考核,综上,全景VR交互式医学超声数字体模系统的实施创造,可有效提高学员学习效率,降低教学成本。In the teaching of ultrasound simulation at home and abroad, the tissue-mimicking ultrasound phantom is mainly used. First of all, the phantom production process is complicated, the cost is high, and the price is very high. The cost of imported ultrasonic phantoms is higher, ranging from hundreds of thousands to millions. Most hospitals and individuals cannot afford it, so it is difficult to mass produce; Secondly, the image quality of this phantom simulation is average, and most of them cannot achieve functional imaging, such as cardiac examinations; Case data cannot be imported, and human-computer interaction cannot be realized, and it cannot be applied to mock exams and assessments. In conclusion, the implementation and creation of the panoramic VR interactive medical ultrasound digital phantom system can effectively improve the learning efficiency of students and reduce teaching costs.
实用新型内容Utility model content
一种全景VR交互式医学超声数字体模系统,包括本地手持数据采集设备、本地服务器、VR设备、云存储中心、云计算中心、个人客户端和个人手持数据采集设备,所述本地手持数据采集设备和人手持数据采集设备分别与本地服务器和个人客户端建立连接,本地手持数据采集设备和个人手持数据采集设备进行原始图像采集,本地手持数据采集设备将采集信息传输至本地服务器,个人手持数据采集设备将采集信息传输至个人客户端,本地服务器和个人客户端将原始图像采集信息传输至云计算中心进行计算分析处理,并将处理数据上传至云存储中心进行存储,本地服务器和个人客户端上分别电性连接有 VR设备,云计算中心将云计算中心分析处理的数据分别通过本地服务器和个人客户端传输给VR设备生成VR显示。A panoramic VR interactive medical ultrasound digital phantom system includes a local handheld data acquisition device, a local server, a VR device, a cloud storage center, a cloud computing center, a personal client, and a personal handheld data acquisition device. The device and the hand-held data acquisition device establish connections with the local server and personal client respectively. The local handheld data acquisition device and the personal handheld data acquisition device perform original image acquisition, and the local handheld data acquisition device transmits the collected information to the local server. Personal handheld data The acquisition device transmits the acquisition information to the personal client, the local server and the personal client transmit the original image acquisition information to the cloud computing center for calculation analysis and processing, and upload the processed data to the cloud storage center for storage, the local server and the personal client. VR devices are electrically connected to the above, and the cloud computing center transmits the data analyzed and processed by the cloud computing center to the VR devices through the local server and personal client respectively to generate VR display.
优选的:所述本地手持数据采集设备和个人手持数据采集设备均包括超声波换能器、 10轴MEMS加速度陀螺仪、蓝牙5.0/5G通信模块、微处理器和电源模块,所述超声波换能器、10轴MEMS加速度陀螺仪和蓝牙5.0/5G通信模块分别与微处理器电性连接,电源模块用于给微处理器供电;所述超声波换能器产生超声波探测人体组织,反射回来的超声波经过换能器生成电能传输至微处理器;Preferably: both the local handheld data acquisition device and the personal handheld data acquisition device include an ultrasonic transducer, a 10-axis MEMS acceleration gyroscope, a Bluetooth 5.0/5G communication module, a microprocessor and a power supply module, and the ultrasonic transducer , 10-axis MEMS acceleration gyroscope and Bluetooth 5.0/5G communication module are electrically connected to the microprocessor respectively, and the power module is used to supply power to the microprocessor; the ultrasonic transducer generates ultrasonic waves to detect human tissue, and the reflected ultrasonic waves pass through The transducer generates electrical energy and transmits it to the microprocessor;
优选的:所述的10轴MEMS加速度陀螺仪,提供高精度的被探测人体组织位置变换信息,包括经度、纬度、高度的定位数据,采集原始数据时可以对原始数据加密,保证其可追溯性,同时实际操作时也可以生成带有定位数据的图像,将生成位置数据的图像传输至微处理器,从而用来追溯操作者;Preferably: the 10-axis MEMS acceleration gyroscope provides high-precision position transformation information of the detected human tissue, including positioning data of longitude, latitude, and altitude, and the original data can be encrypted when collecting the original data to ensure its traceability. At the same time, the image with positioning data can also be generated during actual operation, and the image with the generated position data can be transmitted to the microprocessor, so as to trace the operator;
所述微处理器将超声波换能器产生的电能转化为数据,与10轴MEMS加速度陀螺仪的数据一起传输给蓝牙5.0/5G通信模块,通过该模块将数据无线传输给本地服务器和个人客户端进行图像数字化处理。The microprocessor converts the electrical energy generated by the ultrasonic transducer into data, and transmits it to the Bluetooth 5.0/5G communication module together with the data from the 10-axis MEMS accelerometer, through which the data is wirelessly transmitted to the local server and personal client Perform image digitization.
优选的:所述VR设备包括全景VR设备和虚拟触控手套;Preferably: the VR device includes a panoramic VR device and a virtual touch glove;
全景VR设备包括眼镜式VR设备和头盔式VR设备;Panoramic VR equipment includes glasses-type VR equipment and helmet-type VR equipment;
头盔式VR设备内部安装听筒和语音模块,语音模块和听筒交互使用。The headset and the voice module are installed inside the helmet-mounted VR device, and the voice module and the headset are used interactively.
优选的:所述个人客户端为手机,所述本地服务器为计算机。Preferably: the personal client is a mobile phone, and the local server is a computer.
优选的:所述个人客户端上集成定位模块,能够实时定位。Preferably: a positioning module is integrated on the personal client, which can be positioned in real time.
应用全景VR交互式医学超声数字体模系统实现教学的方法是,The teaching method using the panoramic VR interactive medical ultrasound digital phantom system is,
步骤一:原始图像采集过程,在软件中制作出虚拟人体模型,并在各个脏器体表标记出各个标准切面的位点,同时生成包含二维图像数据和角度数据的数据库;Step 1: In the original image acquisition process, a virtual human body model is produced in the software, and the sites of each standard section are marked on the body surface of each organ, and a database containing two-dimensional image data and angle data is generated at the same time;
步骤二:将步骤一得到的二维图像数据和角度数据传输通信模块,生成无线数据,发射给本地服务器并传输到云服务器;Step 2: transmit the two-dimensional image data and angle data obtained in
步骤三:于步骤二中本地服务器接收到到的数据进行后续的软件处理,并将数据存储到本地服务器及云服务器;Step 3: perform subsequent software processing on the data received by the local server in
步骤四:通过系统软件,根据需要调出相应部位的相应切面数据库,进行实际操作的模拟演示,最终将得到的实时操作数据及图像生成数据通过数据传输,均备份到本地服务器及云服务器。Step 4: Through the system software, the corresponding section database of the corresponding part is called up as needed, and the simulation demonstration of the actual operation is carried out. Finally, the obtained real-time operation data and image generation data are backed up to the local server and cloud server through data transmission.
优选的:步骤一的具体实现方法是:Preferred: the specific implementation method of
步骤a:数字建模,在软件中制作出虚拟人体模型,并在各个脏器体表标记出各个标准切面的位点,生成数据库;Step a: digital modeling, making a virtual human body model in the software, and marking the sites of each standard section on the body surface of each organ to generate a database;
步骤b,采用与数据库相对应的检查切面采集数据:手持设备的超声波换能器产生超声波探测人体组织,反射回来的超声波经过换能器生成电能,经过集成电路上的多核微处理器转换成二维图像数据;与此同时手持设备的10轴加速度陀螺仪随位置改变生成精确的角度数据,以陀螺仪本身作为坐标原点。Step b, using the inspection section corresponding to the database to collect data: the ultrasonic transducer of the handheld device generates ultrasonic waves to detect human tissue, and the reflected ultrasonic waves pass through the transducer to generate electrical energy, which is converted into two by the multi-core microprocessor on the integrated circuit. At the same time, the 10-axis acceleration gyroscope of the handheld device generates accurate angle data with the change of position, and the gyroscope itself is used as the coordinate origin.
优选的:步骤二的具体实现方法是:Preferred: the specific implementation method of
经步骤一所得到的二维图像数据和角度数据,二者同时经微处理器传输给蓝牙5.0/5G通信模块,在通信模块生成无线数据,发射传输给本地服务器。The two-dimensional image data and angle data obtained in
优选的:步骤三的具体实现方法是:Preferred: the specific implementation method of
本地服务器接受到数据,软件后续处理流程如下:The local server receives the data, and the subsequent processing flow of the software is as follows:
(1)校正手持设备中换能器与陀螺仪相对位置造成的坐标原点误差;(1) Correct the coordinate origin error caused by the relative position of the transducer and the gyroscope in the handheld device;
(2)将二维图像数据与同一时间点生成的角度数据,合成带有坐标编码的图像数据,图像上的每一个像素都对应虚拟立体空间上的一个坐标点;(2) the two-dimensional image data and the angle data that the same time point generates, synthesize the image data with coordinate coding, and each pixel on the image corresponds to a coordinate point on the virtual three-dimensional space;
(3)将带有坐标点阵列的二维图像,分解成各个小的带有三维坐标编码的像素,并独立存储为原始数据,不同脏器、不同切面转换时,软件自动校对陀螺仪角度归零;(3) The two-dimensional image with the coordinate point array is decomposed into small pixels with three-dimensional coordinate coding, and stored as raw data independently. When different organs and different sections are converted, the software automatically corrects the gyroscope angle normalization. zero;
(4)经过上述实际操作调取数据库、生成VR图像所得到的数据存储到本地服务器并上传至云服务器,实现资源共享。(4) The data obtained by invoking the database and generating the VR image through the above-mentioned actual operations are stored in the local server and uploaded to the cloud server to realize resource sharing.
优选的:步骤四的具体实现方法是:Preferred: the specific implementation method of
通过软件调出虚拟人物,当手持设备到达VR虚拟人体的相应脏器的相应的切面时,软件自动识别,调出相应部位的相应切面数据库;手持设备10轴MEMS加速度陀螺仪随位置改变生成数据,传输给蓝牙5.0/5G通信模块,生成无线数据,发射给本地服务器/个人客户端,本地服务器通过三维坐标数据,找到相应的带有三维坐标编码的像素,按照相应位置进行排列,生成由成百上千个小的图像单元的构成的可视化图片,进而生成帧频为 12fps,即每秒有12幅图出现的视频,可以与目前超声仪器常规存储的视频相匹配,然后传输给可穿戴全景VR设备及屏幕,最终将得到的实时操作数据及图像生成数据通过数据传输,均备份到本地服务器及云服务器。The virtual character is called out through the software. When the handheld device reaches the corresponding section of the corresponding organ of the VR virtual human body, the software automatically recognizes and calls out the corresponding section database of the corresponding part; the handheld device 10-axis MEMS acceleration gyroscope generates data with the change of position , transmit it to the Bluetooth 5.0/5G communication module, generate wireless data, and transmit it to the local server/personal client. A visual picture of the composition of hundreds or thousands of small image units, and then generates a video with a frame rate of 12fps, that is, 12 pictures appear per second, which can match the video conventionally stored by the current ultrasound instrument, and then transmit it to the wearable panorama VR equipment and screens, and finally the obtained real-time operation data and image generation data are backed up to local servers and cloud servers through data transmission.
本实用新型具有以下有益效果:The utility model has the following beneficial effects:
目前现有的电子元件已经基本可以满足这套系统的理论要求,如10轴MEMS加速度陀螺仪的精度极高(内含加速度3维,角速度3维,角度3维,磁场3维,气压1维,GPS, 量程:加速度为±16g,角速度为±2000°/s,角度为±180°,分辨率:加速度为6.1e-5g,角速度7.6e-3°/s,稳定性:加速度为0.01g,角速度为0.05°/s,测量误差:0.01度),目前5G通信峰值速率高达1Gbps,已经开始商用,数据传输壁垒已打破,目前计算机计算速度完全可以满足图像处理要求。At present, the existing electronic components can basically meet the theoretical requirements of this system. For example, the 10-axis MEMS acceleration gyroscope has extremely high accuracy (including 3 dimensions of acceleration, 3 dimensions of angular velocity, 3 dimensions of angle, 3 dimensions of magnetic field, and 1 dimension of air pressure). , GPS, range: acceleration is ±16g, angular velocity is ±2000°/s, angle is ±180°, resolution: acceleration is 6.1e-5g, angular velocity is 7.6e-3°/s, stability: acceleration is 0.01g , the angular velocity is 0.05°/s, measurement error: 0.01 degrees), the current peak rate of 5G communication is as high as 1Gbps, which has been commercialized, and the data transmission barrier has been broken. At present, the computing speed of the computer can fully meet the requirements of image processing.
本项实用新型选择云存储或者云计算的意义在于:去中心化,每一台本地服务器既可以独立运算,又可以实现联网运算,即使本地服务器发生故障,也不会导致数据丢失。The significance of choosing cloud storage or cloud computing in this utility model is: decentralization, each local server can operate independently, and can realize network operation, even if the local server fails, it will not cause data loss.
本实用新型所提供的这套系统成本低,操作简便,易于推广,便于普及,学习过程实时互动,并且可以应用大数据、云计算,各个本地都可以上传和下载病例,每个服务器和客户端都可以资源共享,使病例涵盖更广泛,让学员掌握更多的知识,还可以促进多学科交流。The system provided by the utility model has the advantages of low cost, simple operation, easy promotion and popularization, real-time interaction in the learning process, and can apply big data and cloud computing, each local can upload and download cases, each server and client All can share resources, so that cases cover a wider range, so that students can acquire more knowledge, and can also promote multidisciplinary exchanges.
附图说明Description of drawings
图1全景VR交互式医学超声数字体模系统示意图;Figure 1 Schematic diagram of the panoramic VR interactive medical ultrasound digital phantom system;
图2本地版本手持设备示意图;Figure 2 is a schematic diagram of the local version of the handheld device;
图2中,1超声换能器,2陀螺仪,3微处理器,4集成电路,5是蓝牙5.0/5G模块, 6电源和7开关;In Fig. 2, 1 is an ultrasonic transducer, 2 is a gyroscope, 3 is a microprocessor, 4 is an integrated circuit, 5 is a Bluetooth 5.0/5G module, 6 is a power supply and 7 is a switch;
图3个人客户端版本手持设备示意图;Figure 3 is a schematic diagram of a personal client version handheld device;
图3中,2陀螺仪,3微处理器,4集成电路,5蓝牙5.0/5G模块,6电源和7开关;In Figure 3, 2 gyroscopes, 3 microprocessors, 4 integrated circuits, 5 Bluetooth 5.0/5G modules, 6 power supplies and 7 switches;
图4原始大数据采集流程示意图;Figure 4 is a schematic diagram of the original big data collection process;
图5带有角度坐标数据的图像合成过程示意图;5 is a schematic diagram of an image synthesis process with angular coordinate data;
图6实际操作实时成像流程示意图;Fig. 6 is a schematic diagram of the real-time imaging process of actual operation;
图7本地服务器及个人客户端所持设备与云端链接结构图。Figure 7 is a structural diagram of the link between the devices held by the local server and the personal client and the cloud.
具体实施方式Detailed ways
具体实施方式一,结合说明书附图1-7说明本实施方式,本实施方式的一种应用全景VR交互式医学超声数字体模系统实现的教学方法包括如下步骤:DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the present embodiment will be described with reference to Figures 1-7 of the specification. A teaching method implemented by a panoramic VR interactive medical ultrasound digital phantom system in this embodiment includes the following steps:
步骤一:原始图像采集过程,在软件中制作出虚拟人体模型,并在各个脏器体表标记出各个标准切面的位点,同时生成包含二维图像数据和角度数据的数据库;Step 1: In the original image acquisition process, a virtual human body model is produced in the software, and the sites of each standard section are marked on the body surface of each organ, and a database containing two-dimensional image data and angle data is generated at the same time;
步骤二:将步骤一得到的二维图像数据和角度数据传输通信模块,生成无线数据,发射给本地服务器及云服务器;Step 2: transmit the two-dimensional image data and angle data obtained in
步骤三:于步骤二中本地服务器接收到到的数据进行后续的软件处理,并将数据存储到本地服务器并传输到云服务器;Step 3: perform subsequent software processing on the data received by the local server in
步骤四:通过系统软件,根据需要调出相应部位的相应切面数据库,进行实际操作的模拟演示,最终将得到的实时操作数据及图像生成数据通过数据传输,均备份到本地服务器及云服务器。Step 4: Through the system software, the corresponding section database of the corresponding part is called up as needed, and the simulation demonstration of the actual operation is carried out. Finally, the obtained real-time operation data and image generation data are backed up to the local server and cloud server through data transmission.
具体实施方式二,结合说明书附图1-7说明本实施方式,本实施方式的一种全景VR交互式医学超声数字体模系统:
步骤一的具体实现方法是:The specific implementation method of
步骤a:数字建模,在软件中制作出虚拟人体模型,并在各个脏器体表标记出各个标准切面的位点,生成数据库;Step a: digital modeling, making a virtual human body model in the software, and marking the sites of each standard section on the body surface of each organ to generate a database;
步骤b,采用与数据库相对应的检查切面采集数据:手持设备的超声波换能器产生超声波探测人体组织,反射回来的超声波经过换能器生成电能,经过集成电路上的多核微处理器转换成二维图像数据;与此同时手持设备的10轴加速度陀螺仪随位置改变生成精确的角度数据,以陀螺仪本身作为坐标原点。Step b, using the inspection section corresponding to the database to collect data: the ultrasonic transducer of the handheld device generates ultrasonic waves to detect human tissue, and the reflected ultrasonic waves pass through the transducer to generate electrical energy, which is converted into two by the multi-core microprocessor on the integrated circuit. At the same time, the 10-axis acceleration gyroscope of the handheld device generates accurate angle data with the change of position, and the gyroscope itself is used as the coordinate origin.
具体实施方式三,结合说明书附图1-7说明本实施方式,本实施方式的一种全景VR交互式医学超声数字体模系统:
步骤二的具体实现方法是:The specific implementation method of
经步骤一所得到的二维图像数据和角度数据,二者同时经微处理器传输给蓝牙5.0/5G通信模块,在通信模块生成无线数据,发射传输给本地服务器。The two-dimensional image data and angle data obtained in
具体实施方式四,结合说明书附图1-7说明本实施方式,本实施方式的一种全景VR交互式医学超声数字体模系统:Specific embodiment four, the present embodiment is described with reference to the accompanying drawings 1-7 of the specification, a panoramic VR interactive medical ultrasound digital phantom system of the present embodiment:
步骤三的具体实现方法是:The specific implementation method of
本地服务器接受到数据,软件后续处理流程如下:The local server receives the data, and the subsequent processing flow of the software is as follows:
(1)校正手持设备中换能器与陀螺仪相对位置造成的坐标原点误差;(1) Correct the coordinate origin error caused by the relative position of the transducer and the gyroscope in the handheld device;
(2)将二维图像数据与同一时间点生成的角度数据,合成带有坐标编码的图像数据,图像上的每一个像素都对应虚拟立体空间上的一个坐标点;(2) the two-dimensional image data and the angle data that the same time point generates, synthesize the image data with coordinate coding, and each pixel on the image corresponds to a coordinate point on the virtual three-dimensional space;
(3)将带有坐标点阵列的二维图像,分解成各个小的带有三维坐标编码的像素,并独立存储为原始数据,不同脏器、不同切面转换时,软件自动校对陀螺仪角度归零;(3) The two-dimensional image with the coordinate point array is decomposed into small pixels with three-dimensional coordinate coding, and stored as raw data independently. When different organs and different sections are converted, the software automatically corrects the gyroscope angle normalization. zero;
(4)经过上述实际操作调取数据库、生成VR图像所得到的数据存储到本地服务器。(4) The data obtained by invoking the database and generating the VR image through the above-mentioned actual operations are stored in the local server.
具体实施方式五,结合说明书附图1-7说明本实施方式,本实施方式的一种全景VR交互式医学超声数字体模系统:Specific embodiment five, the present embodiment will be described with reference to the accompanying drawings 1-7 of the description. A panoramic VR interactive medical ultrasound digital phantom system of the present embodiment:
步骤四的具体实现方法是:The specific implementation method of
通过软件调出虚拟人物,当手持设备到达VR虚拟人体的相应脏器的相应的切面时,软件自动识别,调出相应部位的相应切面数据库;手持设备10轴MEMS加速度陀螺仪随位置改变生成数据,传输给蓝牙5.0/5G通信模块,生成无线数据,发射给本地服务器/ 个人客户端,本地服务器通过三维坐标数据,找到相应的带有三维坐标编码的像素,按照相应位置进行排列,生成由成百上千个小的图像单元的构成的可视化图片,进而生成帧频为12fps,即每秒有12幅图出现的视频,可以与目前超声仪器常规存储的视频相匹配,然后传输给可穿戴全景VR设备及屏幕,最终将得到的实时操作数据及图像生成数据通过数据传输,均备份到本地服务器及云服务器。The virtual character is called out through the software. When the handheld device reaches the corresponding section of the corresponding organ of the VR virtual human body, the software automatically recognizes and calls out the corresponding section database of the corresponding part; the handheld device 10-axis MEMS acceleration gyroscope generates data with the change of position , transmit it to the Bluetooth 5.0/5G communication module, generate wireless data, and transmit it to the local server/personal client. The local server finds the corresponding pixels with three-dimensional coordinate encoding through the three-dimensional coordinate data, and arranges them according to the corresponding positions. A visual picture of the composition of hundreds or thousands of small image units, and then generates a video with a frame rate of 12fps, that is, 12 pictures appear per second, which can match the video conventionally stored by the current ultrasound instrument, and then transmit it to the wearable panorama VR equipment and screens, and finally the obtained real-time operation data and image generation data are backed up to local servers and cloud servers through data transmission.
具体实施方式六,结合说明书附图1-7说明本实施方式,本实施方式的一种全景VR交互式医学超声数字体模系统,包括本地手持数据采集设备、本地服务器、VR设备、云存储中心、云计算中心、个人客户端和个人手持数据采集设备,所述本地手持数据采集设备和人手持数据采集设备分别与本地服务器和个人客户端建立连接,本地手持数据采集设备和个人手持数据采集设备进行原始图像采集,本地手持数据采集设备将采集信息传输至本地服务器,个人手持数据采集设备将采集信息传输至个人客户端,本地服务器和个人客户端将原始图像采集信息传输至云计算中心进行计算分析处理,并将处理数据上传至云存储中心进行存储,本地服务器和个人客户端上分别电性连接有VR设备,云计算中心将云计算中心分析处理的数据分别通过本地服务器和个人客户端传输给VR设备生成VR显示。
具体实施方式七,结合说明书附图1-7说明本实施方式,本实施方式的一种全景VR交互式医学超声数字体模系统包括本地手持设备和个人客户端手持设备:Embodiment 7 This embodiment will be described with reference to the accompanying drawings 1-7 of the description. A panoramic VR interactive medical ultrasound digital phantom system of this embodiment includes a local handheld device and a personal client handheld device:
1)本地手持设备(图2)即带有定位功能的掌上超声仪,设备内包括换能器、蓝牙5.0/5G模块、10轴MEMS加速度陀螺仪、高度集成电路板(内含多核微处理器),电源、开关。其工作原理是:A.采集原始数据阶段:换能器可以将电能转化为超声波,同时可以将接收超声波转化为电能;陀螺仪随探头位置变化产生数据(包括时间、加速度、角度、角速度、经纬度、磁场、气压、高度等);微处理器可以将换能器产生的电能转化为数据,与陀螺仪的数据一起传输给蓝牙5.0/5G通信模块,通过该模块将数据无线传输给图像数字化处理设备。这种手持设备和传统的超声探头有本质上的不同,首先,它相当于没有显示器的传统超声诊断仪,传统超声探头是有线的,内部仅包含换能器,超声波转化的电能传输到主机上进行运算,生成数据,而这种手持设备是无线连接的,直接在设备本身完成电能转化为数据的过程,其次,该设备内增加了10轴MEMS加速度陀螺仪,传统超声探头是不具备的,这种陀螺仪可以提供高精度的位置变换信息,并生成三维空间位置的数据,与图像相匹配,并且能通过GPS提供定位,生成带有地址的独一无二的数据,应用区块链技术进行存储,无法被篡改,并且可以溯源,既能实现对病例上传者的知识产权保护,又便于监督学员学习,减少考试作弊的可能。B.模拟练习或考试阶段:换能器不工作,只需要陀螺仪工作,这样可以减少换能器的消耗,延长手持设备的使用寿命;1) The local handheld device (Figure 2) is a handheld ultrasound instrument with positioning function. The device includes a transducer, a Bluetooth 5.0/5G module, a 10-axis MEMS acceleration gyroscope, and a highly integrated circuit board (including a multi-core microprocessor). ),switch. Its working principle is: A. The stage of collecting raw data: the transducer can convert electrical energy into ultrasonic waves, and at the same time can convert received ultrasonic waves into electrical energy; , magnetic field, air pressure, altitude, etc.); the microprocessor can convert the electric energy generated by the transducer into data, and transmit it to the Bluetooth 5.0/5G communication module together with the data of the gyroscope, through which the data is wirelessly transmitted to the image digital processing. equipment. This handheld device is essentially different from the traditional ultrasound probe. First of all, it is equivalent to a traditional ultrasound diagnostic instrument without a display. The traditional ultrasound probe is wired and only contains transducers inside. The power converted by ultrasound is transmitted to the host. Perform calculations and generate data, and this handheld device is wirelessly connected, and the process of converting electrical energy into data is directly completed in the device itself. Secondly, a 10-axis MEMS acceleration gyroscope is added to the device, which is not available in traditional ultrasonic probes. This gyroscope can provide high-precision position transformation information, and generate three-dimensional spatial position data, which matches the image, and can provide positioning through GPS, generate unique data with addresses, and use blockchain technology for storage. It cannot be tampered with and can be traced to the source, which can not only protect the intellectual property rights of the case uploader, but also facilitate the supervision of students' learning and reduce the possibility of cheating in exams. B. Simulation practice or examination stage: the transducer does not work, only the gyroscope is required to work, which can reduce the consumption of the transducer and prolong the service life of the handheld device;
2)个人客户端手持设备(图3):虚拟掌上超声设备,设备内包括蓝牙5.0/5G模块、10轴加速度陀螺仪、高度集成电路板(内含多核微处理器),电源、开关,核心部件是 10轴加速度陀螺仪,陀螺仪随探头位置变化产生数据(包括时间、加速度、角度、角速度、经纬度、磁场、气压、高度等);微处理器可以将陀螺仪的数据传输给蓝牙5.0/5G 模块,通过该模块将数据无线传输给手机。因为具有定位功能,可以用于学生考勤。2) Personal client hand-held device (Figure 3): virtual handheld ultrasound device, the device includes Bluetooth 5.0/5G module, 10-axis acceleration gyroscope, highly integrated circuit board (including multi-core microprocessor), power supply, switch, core The component is a 10-axis acceleration gyroscope, which generates data (including time, acceleration, angle, angular velocity, latitude and longitude, magnetic field, air pressure, altitude, etc.) with the change of the probe position; the microprocessor can transmit the data of the gyroscope to Bluetooth 5.0/ 5G module, through which data is wirelessly transmitted to the mobile phone. Because of the positioning function, it can be used for student attendance.
所述10轴MEMS加速度陀螺仪提供高精度的被探测人体组织位置变换信息,并生成三维空间位置的数据传输至微处理器;The 10-axis MEMS acceleration gyroscope provides high-precision position transformation information of the detected human tissue, and generates three-dimensional spatial position data and transmits it to the microprocessor;
所述微处理器将超声波换能器产生的电能转化为数据,与10轴MEMS加速度陀螺仪的数据一起传输给蓝牙5.0/5G通信模块,通过该模块将数据无线传输给本地服务器和个人客户端进行图像数字化处理设备:The microprocessor converts the electrical energy generated by the ultrasonic transducer into data, and transmits it to the Bluetooth 5.0/5G communication module together with the data from the 10-axis MEMS accelerometer, through which the data is wirelessly transmitted to the local server and personal client Equipment for image digitization:
a)本地服务器图像数字化处理设备:该设备主要基于电脑后处理软件完成,和传统超声仪主机也有很大不同,高配置电子计算机即可胜任,主要是安装图像处理软件和连接云储存功能,实现大数据交换。工作原理:A.原始数据采集阶段:图像处理软件功能包括把图像数据与三维空间位置数据相匹配,生成新的数据,对于基础数据(正常解剖图像数据、学员个人档案数据)存储于本地,并上传至云存储空间,而病例数据及考试数据,直接上传至云储存空间,减少对本地存储空间不必要的占有,这样既不会使本地服务器因数据量太大而影响运行速度,也减少了因本地服务器故障而导致数据丢失的可能。B.模拟练习或考试阶段:本地服务器软件系统内具有VR数字体模,学员可在数字体模上完成操作,服务器收集手持设备传来的位置数据(切面数据),经过后处理比对,将随位置变化而产生图像数据传输给VR软件,VR软件生成图像,传输给VR设备,当VR设备不可用时或者对于不能耐受VR设备的人员,可以把数据传输给本地显示器,同样可以进行学习和考试。学习与考试所产生的图像与视频自动存储,便于后期反馈。a) Local server image digital processing equipment: This equipment is mainly completed based on computer post-processing software, which is also very different from the traditional ultrasound machine host. A high-configuration electronic computer can be competent, mainly by installing image processing software and connecting to the cloud storage function to achieve Big data exchange. Working principle: A. Original data acquisition stage: The functions of the image processing software include matching the image data with the three-dimensional space position data, generating new data, and storing the basic data (normal anatomical image data, student personal file data) locally, and Upload to cloud storage space, while case data and exam data are directly uploaded to cloud storage space, reducing unnecessary occupation of local storage space, so that the local server will not affect the running speed due to the large amount of data, but also reduces the Potential for data loss due to local server failure. B. Simulation practice or examination stage: The local server software system has a VR digital phantom, and students can complete operations on the digital phantom. The server collects the position data (section data) from the handheld device, and after post-processing comparison, the The image data generated with the position change is transmitted to the VR software, and the VR software generates the image and transmits it to the VR device. When the VR device is unavailable or for those who cannot tolerate the VR device, the data can be transmitted to the local display, which can also be used for learning and training. take an exam. The images and videos generated by study and examination are automatically stored for later feedback.
b)个人客户端图像数字化处理设备:即手机,主要是APP(手机软件),具有交互 VR功能,同时可以直接在手机屏幕上显示,这个软件功能与本地服务器软件算法与功能一致,同时具有交互功能,手机-手持设备交互,学员-专家交互,以及疑难病例的专家会诊,提高学员的整体知识架构与实践能力。b) Personal client image digital processing equipment: mobile phone, mainly APP (mobile phone software), with interactive VR function, and can be displayed directly on the mobile phone screen, this software function is consistent with the local server software algorithm and function, and has interactive Function, mobile phone-handheld device interaction, student-expert interaction, and expert consultation of difficult cases, improve the overall knowledge structure and practical ability of students.
具体实施方式八,结合说明书附图1-7说明本实施方式,本实施方式的一种全景VR交互式医学超声数字体模系统,所述可穿戴全景VR设备包括:全景VR设备和虚拟触控手套,眼镜式VR设备和头盔式VR设备;头盔式VR设备内部安装听筒和语音模块,语音模块和听筒交互使用。Eighth specific embodiment, the present embodiment will be described with reference to the accompanying drawings 1-7 of the specification. A panoramic VR interactive medical ultrasound digital phantom system of the present embodiment, the wearable panoramic VR device includes: a panoramic VR device and a virtual touch Gloves, glasses-type VR equipment and helmet-type VR equipment; headset and voice module are installed inside the headset-type VR equipment, and the voice module and the headset are used interactively.
具体使用时可分为VR头显和VR辅助工具:VR头显与本地版本可穿戴全景VR设备相同,而VR辅助设备为VR手机盒子+无线手柄(基于蓝牙或者红外),前者交互性能更加真实,沉浸效果更好,后者价格低廉,普通学员能够负担的起,同时手机屏幕也可平面展示。The specific use can be divided into VR head display and VR auxiliary tools: VR head display is the same as the local version of wearable panoramic VR device, while VR auxiliary device is VR mobile phone box + wireless handle (based on Bluetooth or infrared), the former interactive performance is more realistic , the immersion effect is better, the latter is cheap, ordinary students can afford it, and the mobile phone screen can also be displayed on a flat screen.
具体实施方式九,结合说明书附图1-7说明本实施方式,本实施方式的一种全景VR交互式医学超声数字体模系统,所述个人客户端为手机,所述本地服务器为计算机。Embodiment 9 This embodiment will be described with reference to Figures 1-7 of the specification. In this embodiment, a panoramic VR interactive medical ultrasound digital phantom system, the personal client is a mobile phone, and the local server is a computer.
具体实施方式十,结合说明书附图1-7说明本实施方式,本实施方式的一种全景VR交互式医学超声数字体模系统,所述个人客户端上集成定位模块,能够实时定位。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 10 This embodiment will be described with reference to Figures 1 to 7 in the description. A panoramic VR interactive medical ultrasound digital phantom system of this embodiment is provided. The personal client is integrated with a positioning module, capable of real-time positioning.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021005258.8U CN212181696U (en) | 2020-06-04 | 2020-06-04 | Panoramic VR interactive medical ultrasonic digital phantom system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021005258.8U CN212181696U (en) | 2020-06-04 | 2020-06-04 | Panoramic VR interactive medical ultrasonic digital phantom system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212181696U true CN212181696U (en) | 2020-12-18 |
Family
ID=73789569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202021005258.8U Active CN212181696U (en) | 2020-06-04 | 2020-06-04 | Panoramic VR interactive medical ultrasonic digital phantom system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN212181696U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111489608A (en) * | 2020-06-04 | 2020-08-04 | 赵连蒙 | Panoramic VR interactive medical ultrasonic digital phantom system teaching method |
-
2020
- 2020-06-04 CN CN202021005258.8U patent/CN212181696U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111489608A (en) * | 2020-06-04 | 2020-08-04 | 赵连蒙 | Panoramic VR interactive medical ultrasonic digital phantom system teaching method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113689577B (en) | Method, system, equipment and medium for matching virtual three-dimensional model with entity model | |
US20100179428A1 (en) | Virtual interactive system for ultrasound training | |
US20160328998A1 (en) | Virtual interactive system for ultrasound training | |
CN107693050A (en) | A kind of telemedicine ultrasonic examination system and method | |
CN103745423B (en) | A kind of shape of the mouth as one speaks teaching system and teaching method | |
CN105469679A (en) | Cardio-pulmonary resuscitation assisted training system and cardio-pulmonary resuscitation assisted training method based on Kinect | |
CN102349838A (en) | Long-distance ultrasonic diagnosis system | |
CN101916333A (en) | Transesophageal cardiac ultrasound visual simulation system and method | |
IL278468B2 (en) | System and method for adjusting ultrasound image acquisition | |
CN115586834B (en) | An intelligent cardiopulmonary resuscitation training system | |
CN111489608A (en) | Panoramic VR interactive medical ultrasonic digital phantom system teaching method | |
CN114913309B (en) | High-simulation surgical teaching system and method based on mixed reality | |
CN212181696U (en) | Panoramic VR interactive medical ultrasonic digital phantom system | |
CN111369853A (en) | Medical integrated experimental teaching system and implementation method thereof | |
CN113786228A (en) | Auxiliary puncture navigation system based on AR augmented reality | |
CN109509555A (en) | A kind of surgical operation preview appraisal procedure and system based on 3-dimensional image | |
CN107945607A (en) | Ultrasonic demo system and device | |
Li et al. | Research and development of the regulation training system of minimally invasive knee surgery based on VR technology | |
CN107578662A (en) | A virtual obstetric ultrasound training method and system | |
WO2022098261A1 (en) | Simulator system for the safe training of medical personnel | |
CN114973887B (en) | Interactive display system for realizing ultrasonic image integration by combining multiple modules | |
CN204484159U (en) | Long-range ultrasonic system | |
CN115018962A (en) | Human motion attitude data set generation method based on virtual character model | |
Wang | A Teaching Mode for Art Anatomy Based on Digital Virtual Technology. | |
CN210039182U (en) | Substation tour rehearsal, education and training system based on VR technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |