CN212007508U - A device for measuring blade torsional vibration displacement - Google Patents
A device for measuring blade torsional vibration displacement Download PDFInfo
- Publication number
- CN212007508U CN212007508U CN201921047132.4U CN201921047132U CN212007508U CN 212007508 U CN212007508 U CN 212007508U CN 201921047132 U CN201921047132 U CN 201921047132U CN 212007508 U CN212007508 U CN 212007508U
- Authority
- CN
- China
- Prior art keywords
- blade
- blade tip
- vibration
- torsional
- tip timing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 63
- 238000012545 processing Methods 0.000 claims abstract description 15
- 238000005259 measurement Methods 0.000 abstract description 23
- 238000001914 filtration Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 16
- 238000005452 bending Methods 0.000 description 8
- 238000000691 measurement method Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000008358 core component Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本实用新型涉及一种用于叶片扭转振动位移测量的装置,包括叶尖定时传感器、光电接收器件、数据采集处理模块和信号处理系统,由光电接收器件输出光电流信号,光电流信号经过放大、滤波后产生模拟信号,传输至数据采集处理模块,其特征在于,所述的叶尖定时传感器为两支,在旋转机械机匣上同一周向位置沿转子轴向设置两支一组叶尖定时传感器,分别用于测量某支叶片叶端进气边和出气边在同一圈到达叶尖定时传感器的时间;两支叶尖定时传感器设置于扭转共振叶端最大位移位置在叶端静止位置水平线上的投影点。本实用新型可以用来实现叶片扭转振动位移的测量。
The utility model relates to a device for measuring blade torsional vibration displacement, comprising a blade tip timing sensor, a photoelectric receiving device, a data acquisition and processing module and a signal processing system. The photoelectric receiving device outputs a photocurrent signal, and the photocurrent signal is amplified, After filtering, an analog signal is generated and transmitted to the data acquisition and processing module. The sensors are used to measure the time when the air inlet and outlet edges of a certain blade end reach the tip timing sensor in the same circle; the two blade tip timing sensors are set at the maximum displacement position of the torsional resonance blade end on the horizontal line of the stationary position of the blade end projection point. The utility model can be used to realize the measurement of the blade torsional vibration displacement.
Description
技术领域technical field
本实用新型属于旋转机械状态监测领域,特别是基于叶尖定时原理的叶片扭转振动位移测量装置。The utility model belongs to the field of rotating machinery state monitoring, in particular to a blade torsional vibration displacement measuring device based on the blade tip timing principle.
背景技术Background technique
航空发动机和汽轮机等重要旋转机械,是航空航天和工业领域的军用飞机、商用飞机、发电机组和蒸汽机组等关键设备的核心部件。尤其是动叶片作为旋转机械做功的核心元件,其工作状态直接影响这些重大关键设备的工作效率和安全、稳定、长周期运行等情况。目前,基于叶尖定时原理的旋转叶片振动测量技术是典型的非接触式测量方法,基本原理是将一定数量的传感器设置在旋转机械机匣上,测量旋转叶片经过传感器时的到达时间,通过相关辨识算法实现振动幅值、振动频率和振动相位等叶片振动的参数的测量。与传统的离线式叶片状态检测方法和应变片法、频率调制法和声响法等在线检测方法相比,叶尖定时技术具有非接触测量、实时在线监测和可测量全部叶片等优点,因此具有较好的工程实用性。Important rotating machinery such as aero-engines and steam turbines are the core components of key equipment such as military aircraft, commercial aircraft, generator sets and steam turbines in the aerospace and industrial fields. In particular, the moving blades are the core components of rotating machinery, and their working states directly affect the work efficiency and safety, stability, and long-term operation of these major key equipment. At present, the rotating blade vibration measurement technology based on the blade tip timing principle is a typical non-contact measurement method. The identification algorithm realizes the measurement of blade vibration parameters such as vibration amplitude, vibration frequency and vibration phase. Compared with the traditional offline blade condition detection method and online detection methods such as strain gauge method, frequency modulation method and acoustic method, the blade tip timing technology has the advantages of non-contact measurement, real-time online monitoring and measurement of all blades, so it has the advantages of relatively Good engineering practicality.
一方面,叶片是大型旋转机械的核心部件之一。以航空发动机为例,工况下叶片所处的工作环境较为恶劣,除了承受离心力之外,还持续受到气流激振力、大气温差和高温等环境影响。这些外界条件对发动机旋转叶片产生较为复杂的周期性变化应力,当外部激振力的频率等于或接近叶片的某阶固有频率时,叶片将有可能发生因共振而导致的叶片裂纹或叶片断裂等故障。据统计,由机械振动导致的故障占航空发动机故障总数的60%以上,而叶片振动故障占到机械振动故障总数的70%以上,可见叶片振动故障是导致航空发动机故障的重要原因,因此研究叶片的振动特性并对其运行情况进行实时在线监测,对航空发动机和汽轮机等重要旋转机械的研发测试、状态监测和故障诊断等方面都具有重要的实际意义。On the one hand, blades are one of the core components of large rotating machinery. Taking an aero-engine as an example, the working environment of the blade is relatively harsh under the working conditions. In addition to the centrifugal force, it is also continuously affected by the airflow excitation force, atmospheric temperature difference and high temperature. These external conditions produce relatively complex periodic stress on the rotating blades of the engine. When the frequency of the external excitation force is equal to or close to a certain order natural frequency of the blade, the blade may have blade cracks or blade fractures caused by resonance. Fault. According to statistics, failures caused by mechanical vibration account for more than 60% of the total number of aero-engine failures, and blade vibration failures account for more than 70% of the total number of mechanical vibration failures. It can be seen that blade vibration failure is an important cause of aero-engine failures. Therefore, research on blade It has important practical significance for the research and development testing, condition monitoring and fault diagnosis of important rotating machinery such as aero-engines and steam turbines.
另一方面,叶片工作时主要受外界周期性变化的激振力作用而产生强迫振动,根据振动表现形式的不同,叶片振动可分为弯曲振动、扭转振动和弯扭复合振动三种振型。同一支叶片有多个不同的共振频率,按照共振频率由小到大分为一阶共振、二阶共振……,当外界激振力频率与叶片的某阶共振频率一致时将激发叶片产生共振,不同阶次共振对应的振型不一定相同。本实用新型中将叶片振动频率不大于其一阶共振频率的振动称为低阶振动,叶片振动频率大于其一阶共振频率的振动称为高阶振动。通常叶片一阶共振的振型为弯曲振动,也称一阶弯振。一阶弯振是造成叶片根部产生裂纹和根部断裂的主要原因,其危害性较大、测量方法相对易于实现,因此国内外对一阶弯振进行的研究也较为深入。现有叶尖定时测量方法,包括速矢端迹法[1]、双参数法[2]、自回归法[3]和基于传感器任意角分布法[4]等,在旋转机械机匣同一周向位置只设置一支叶尖定时传感器,因此仅能实现叶片弯曲振动位移的测量,无法实现叶片扭转振动位移测量。On the other hand, when the blade is working, it is mainly subjected to the external periodically changing exciting force to generate forced vibration. According to the different forms of vibration, the blade vibration can be divided into three modes: bending vibration, torsional vibration and bending-torsional composite vibration. The same blade has multiple different resonance frequencies, which are divided into first-order resonance and second-order resonance according to the resonance frequency from small to large. When the external excitation force frequency is consistent with a certain-order resonance frequency of the blade, the blade will be excited to resonate. The mode shapes corresponding to different orders of resonance are not necessarily the same. In this utility model, the vibration of the blade vibration frequency not greater than its first-order resonance frequency is called low-order vibration, and the vibration of the blade vibration frequency greater than its first-order resonance frequency is called high-order vibration. Usually the mode shape of the first-order resonance of the blade is bending vibration, also called first-order bending vibration. The first-order bending vibration is the main cause of cracks and root fractures at the root of the blade. It is more harmful and the measurement method is relatively easy to implement. Therefore, the research on the first-order bending vibration at home and abroad is also more in-depth. Existing blade tip timing measurement methods, including the velocity vector end trace method [1] , the two-parameter method [2] , the autoregressive method [3] and the sensor-based arbitrary angle distribution method [4] , etc. Only one blade tip timing sensor is set in the direction of the position, so only the measurement of the blade bending vibration displacement can be realized, and the blade torsional vibration displacement measurement cannot be realized.
再一方面,叶片高阶振动的振型包括弯曲振动、扭转振动和弯扭复合振动三种振型,因扭转振动导致的叶片裂纹或掉角故障也时常发生,但由于叶片高阶振动具有振幅较小、振型复杂、传感器布局困难等测量难题,国内外对于叶片高阶振动参数的测量方法少有研究,尤其是针对叶片扭转振动位移等参数的测量方法未见报道。On the other hand, the modes of high-order vibration of the blade include three modes: bending vibration, torsional vibration and bending-torsional composite vibration. Blade cracks or angle drop faults caused by torsional vibration often occur, but because the high-order vibration of the blade has an amplitude of Due to the measurement problems such as small size, complex mode shape, and difficult sensor layout, there are few researches on the measurement methods of high-order blade vibration parameters at home and abroad, especially the measurement methods for parameters such as blade torsional vibration displacement have not been reported.
[1]I.Y.Zablotsky and Yu.A.Korostelev.Measurement of resonancevibrations of turbine blades with the ELURA device[J].Energomashinostroneniye,1970,Vol.2:36-39.[1]I.Y.Zablotsky and Yu.A.Korostelev.Measurement of resonancevibrations of turbine blades with the ELURA device[J].Energomashinostroneniye,1970,Vol.2:36-39.
[2]S Heath.A New Technique for Identifying Synchronous ResonancesUsing Tip-Timing[J].Journal of Engineering for Gas Turbines and Power,2000,122(2):219-225.[2]S Heath.A New Technique for Identifying Synchronous ResonancesUsing Tip-Timing[J].Journal of Engineering for Gas Turbines and Power,2000,122(2):219-225.
[3]J.Gallego-Garrido,G.Dimitriadis,and J.R.Wright,A Class of Methodsfor the Analysis of Blade Tip Timing Data from Bladed Assemblies UndergoingSimultaneous Resonances—Part I:Theoretical Development[J]. InternationalJournal of Rotating Machinery,2007,Vol.2007:1-11.[3] J. Gallego-Garrido, G. Dimitriadis, and J. R. Wright, A Class of Methods for the Analysis of Blade Tip Timing Data from Bladed Assemblies Undergoing Simultaneous Resonances—Part I: Theoretical Development [J]. International Journal of Rotating Machinery, 2007, Vol.2007:1-11.
[4]欧阳涛.基于叶尖定时的旋转叶片振动检测及参数辨识技术[D].博士学位论文,天津大学,2011.[4] Ouyang Tao. Rotating blade vibration detection and parameter identification technology based on blade tip timing [D]. Doctoral dissertation, Tianjin University, 2011.
实用新型内容Utility model content
本实用新型的目的是提供一种用于叶片扭转振动位移测量的装置,以克服现有叶尖定时测量装置无法测量叶片扭转振动位移的缺点。本实用新型的技术方案如下:The purpose of the utility model is to provide a device for measuring the torsional vibration displacement of the blade, so as to overcome the disadvantage that the existing blade tip timing measuring device cannot measure the torsional vibration displacement of the blade. The technical scheme of the present utility model is as follows:
一种用于叶片扭转振动位移测量的装置,包括叶尖定时传感器、光电接收器件、数据采集处理模块和信号处理系统,由光电接收器件输出光电流信号,光电流信号经过放大、滤波后产生模拟信号,传输至数据采集处理模块,所述的叶尖定时传感器为两支,在旋转机械机匣上同一周向位置沿转子轴向设置两支一组叶尖定时传感器,分别用于测量某支叶片叶端进气边和出气边在同一圈到达叶尖定时传感器的时间;两支叶尖定时传感器设置于扭转共振叶端最大位移位置在叶端静止位置水平线上的投影点。A device for measuring blade torsional vibration and displacement, including a blade tip timing sensor, a photoelectric receiving device, a data acquisition and processing module and a signal processing system, the photoelectric receiving device outputs a photocurrent signal, and the photocurrent signal is amplified and filtered to generate an analog signal The signal is transmitted to the data acquisition and processing module. There are two blade tip timing sensors. Two sets of blade tip timing sensors are arranged at the same circumferential position on the rotating machinery casing along the rotor axis, respectively for measuring a certain blade tip timing sensor. The time at which the air inlet and outlet edges of the blade tip reach the blade tip timing sensor in the same circle; the two blade tip timing sensors are set at the projection point of the maximum displacement position of the torsional resonance blade tip on the horizontal line of the stationary position of the blade tip.
本实用新型克服了现有叶尖定时测量方法无法测量叶片扭转振动位移的缺点,提出一种基于叶尖定时原理的叶片扭转振动位移测量装置,在旋转机械机匣的同一周向位置沿转子轴向设置两支叶尖定时传感器,分别测量某支叶片叶端进气边和出气边在同一圈到达两支叶尖定时传感器时的时间,若再辅以信号处理系统的软件,可以实现叶片扭转振动位移的精确测量。The utility model overcomes the defect that the existing blade tip timing measurement method cannot measure the blade torsional vibration displacement, and proposes a blade torsional vibration displacement measurement device based on the blade tip timing principle. Two blade tip timing sensors are set in the direction to measure the time when the air inlet and outlet edges of a blade end reach the two blade tip timing sensors in the same circle. If supplemented by the software of the signal processing system, the blade twist can be realized. Accurate measurement of vibration displacement.
附图说明Description of drawings
图1示出叶尖定时原理测量结构图Figure 1 shows the measurement structure of the tip timing principle
图2示出叶片扭转振动位移测量结构图Figure 2 shows the structural diagram of the blade torsional vibration displacement measurement
图3示出叶片一阶扭转振动振型图Figure 3 shows the first-order torsional vibration mode diagram of the blade
图4示出叶片扭转振动位移测量传感器定位俯视图Figure 4 shows a top view of the positioning of the blade torsional vibration displacement measurement sensor
图5示出叶片扭转振动位移测量俯视图Figure 5 shows a top view of the blade torsional vibration displacement measurement
图中标号说明:Description of the labels in the figure:
图1中,1为叶尖定时传感器;2为旋转机械机匣;3为叶片;In Figure 1, 1 is the blade tip timing sensor; 2 is the rotating mechanical casing; 3 is the blade;
图2中,4为进气边叶尖定时传感器;5为出气边叶尖定时传感器;6为叶端进气边,7为叶端出气边, 8为信号处理系统;In Fig. 2, 4 is the timing sensor of the inlet edge tip; 5 is the tip timing sensor of the outlet side; 6 is the air inlet edge of the blade end, 7 is the air outlet edge of the blade end, and 8 is the signal processing system;
图3中,9为叶端;10为振动节线;11为振动节点;In Fig. 3, 9 is the blade tip; 10 is the vibration node line; 11 is the vibration node;
图4中,4为进气边叶尖定时传感器;5为出气边叶尖定时传感器;11为振动节点;12为扭转共振叶端最大位移位置;13为扭转共振叶端最大偏离角;14为扭转共振叶端进气边位移;15为扭转共振叶端出气边位移;16为叶端静止位置;In Fig. 4, 4 is the timing sensor of the blade tip of the intake side; 5 is the timing sensor of the blade tip of the outlet side; 11 is the vibration node; 12 is the maximum displacement position of the torsional resonance blade tip; 13 is the maximum deviation angle of the torsional resonance blade tip; 14 is the Displacement of the inlet side of the torsional resonance blade end; 15 is the displacement of the outlet side of the torsional resonance blade end; 16 is the static position of the blade end;
图5中,2为旋转机械机匣;4为进气边叶尖定时传感器;5为出气边叶尖定时传感器;12为扭转共振叶端最大位移位置;16为叶端静止位置;17为扭转振动叶端实时位置;18为转子轴向水平线;19为扭转振动叶端偏离角;20为扭转振动时传感器测得叶端进气边位移;21为扭转振动时传感器测得叶端出气边位移;22为扭转振动时真实叶端进气边位移;23为扭转振动时真实叶端出气边位移。In Fig. 5, 2 is the rotating mechanical casing; 4 is the blade tip timing sensor of the intake side; 5 is the blade tip timing sensor of the outlet side; 12 is the maximum displacement position of the torsional resonance blade end; 16 is the stationary position of the blade end; 17 is the
具体实施方式Detailed ways
以下详细描述制造和操作本实用新型的步骤,旨在作为本实用新型的实施例描述,并非是可被制造或利用的唯一形式,对其他可实现相同功能的实施例也应包括在本实用新型的范围内。The steps of manufacturing and operating the present utility model are described in detail below, and are intended to be described as embodiments of the present utility model, and are not the only form that can be manufactured or utilized. Other embodiments that can achieve the same function should also be included in the present utility model. In the range.
本实用新型中将叶片顶端称为叶端,旋转机械机匣的圆周方向称为周向,叶片迎着气流方向的一侧称为进气边,叶片背向气流方向的一侧称为出气边,扭转振动时叶端边缘在同一圈内经过进气边和出气边两支叶尖定时传感器产生的周向距离差称为叶片扭转振动位移,下面结合说明书附图详细说明本实用新型的优选实施例。In this utility model, the tip of the blade is called the blade end, the circumferential direction of the rotating machine casing is called the circumferential direction, the side of the blade facing the airflow direction is called the intake side, and the side of the blade facing away from the airflow direction is called the outlet side. When the torsional vibration occurs, the circumferential distance difference generated by the blade tip edge passing through the two blade tip timing sensors on the inlet side and the outlet side in the same circle is called the blade torsional vibration displacement. example.
叶尖定时原理结构测量如图1所示,现有叶尖定时测量方法[1-4]是在旋转机械机匣2的同一周向位置只设置一支叶尖定时传感器1,当每支叶片3旋转经过叶尖定时传感器1时将产生到达脉冲信号,信号处理系统利用叶片3到达叶尖定时传感器1时的脉冲时间,实现叶片弯曲振动位移的测量;The principle structure measurement of blade tip timing is shown in Figure 1. The existing blade tip timing measurement method [1-4] is to set only one blade tip timing sensor 1 at the same circumferential position of the
叶片扭转振动位移测量结构如图2所示,本实用新型提出的方法在旋转机械机匣的同一周向位置,沿转子轴向安装两支一组叶尖定时传感器,分别在低转速叶片未发生振动和高转速叶片发生扭转振动时,测量叶端进气边6到达进气边叶尖定时传感器4和叶端出气边7到达出气边叶尖定时传感器5的时间;叶尖定时传感器采用由一根发射光纤和多根接收光纤组成的光纤束式传感器,激光器通过发射光纤发射激光,当叶端进气边6和叶端出气边7先后到达进气边叶尖定时传感器4和出气边叶尖定时传感器5时,多根接收光纤可以接收到叶端的反射光信号,并将此信号传输至光电接收器件,由光电接收器件输出光电流信号,光电流信号经过放大、滤波后产生标准模拟信号,传输至数据采集处理模块,信号处理系统8通过采集光电流信号发生的时间,实现叶片到达时间的测量。The blade torsional vibration displacement measurement structure is shown in Figure 2. The method proposed by the present utility model installs two sets of blade tip timing sensors along the rotor axial direction at the same circumferential position of the rotating machinery casing. Vibration and torsional vibration of high-speed blades, measure the time when the
叶片一阶扭转振动振型如图3所示,叶片发生振动时,叶身上振动位移为零的各点组成的连线称为振动节线,振动节线与叶端的交点称为振动节点,当叶片发生一阶扭转振动时,叶端进气边和出气边围绕叶片振动节线10做相对扭转运动,其振动节线10、振动节点11、共振频率和共振振幅等参数可通过叶片固有频率试验获得,通常叶片发生扭转振动时的振动节线不一定在叶身的中间位置,因此振动节点11也不一定位于叶端9的中点位置;The first-order torsional vibration mode of the blade is shown in Figure 3. When the blade vibrates, the connection line formed by the points where the vibration displacement is zero on the blade body is called the vibration node line, and the intersection of the vibration node line and the blade tip is called the vibration node. When the first-order torsional vibration of the blade occurs, the air inlet and outlet edges of the blade end perform relative torsional motion around the blade
叶片扭转振动位移测量传感器定位如图4所示,叶片发生扭转振动时包括扭转非共振和扭转共振两种情况,任选某支被测叶片,发生扭转振动时该叶片叶端将以叶端静止位置16为中心位置,在两个扭转共振叶端最大位移位置12之间做周期性扭转运动,为了保证叶尖定时传感器在叶片发生扭转非共振和扭转共振的情况下,都能够准确测量叶端进气边和出气边到达叶尖定时传感器的时间信号,两支叶尖定时传感器的定位需结合叶片扭转共振参数进行确定,扭转共振叶端最大位移位置12和扭转共振叶端最大偏离角13可通过叶片固有频率试验获得,叶端长度可由设计图纸获得,设α为扭转共振叶端最大偏离角13,O为振动节点11,线段AB为叶端长度,E为进气边叶尖定时传感器4的安装位置,F为出气边叶尖定时传感器5的安装位置,h1为扭转共振叶端进气边位移14,h2为扭转共振叶端出气边位移15;The positioning of the blade torsional vibration displacement measurement sensor is shown in Figure 4. When torsional vibration occurs on the blade, there are two situations: torsional non-resonance and torsional resonance. Choose a certain blade to be measured. When torsional vibration occurs, the blade end of the blade will be stationary at the blade end.
当该叶片处于扭转共振情况时,叶端实时位置将在两个扭转共振叶端最大位移位置12之间周期性变化,此时扭转共振叶端最大位移位置12在叶端静止位置16所在水平线上的投影为线段EF,EF长度是叶片扭转振动过程中所有叶端实时位置在叶端静止位置16所在水平线上投影线段的最小值,扭转共振叶端最大偏离角13是扭转振动过程中所有叶片偏离角的极大值,扭转共振叶端进气边位移14和扭转共振叶端出气边位移15是扭转振动过程中所有叶片扭转位移中的最大值,此时将进气边叶尖定时传感器4安装在E 点,将出气边叶尖定时传感器5安装在F点,可以确保在叶片发生扭转共振的情况下,两支叶尖定时传感器可以采样到叶端的全部到达时间信号,本实用新型称此定位方法为扭转共振投影法;When the blade is in torsional resonance, the real-time position of the blade tip will periodically change between the two maximum displacement positions 12 of the torsional resonance blade tip. At this time, the
当该叶片处于扭转非共振情况时,叶端实时位置将在两个扭转共振叶端最大位移位置12(不含扭转共振叶端最大位移位置12)之间做周期性扭转运动,此时叶端实时位置在叶端静止位置16所在水平线上的投影将在线段EF(不含E和F点)和线段AB之间周期性变化,此时位于E点和F点的两支叶尖定时传感器仍然能够采样到叶端到达两支叶尖定时传感器的全部时间信号;When the blade is in a torsional non-resonance condition, the real-time position of the blade tip will perform periodic torsional motion between the two maximum displacement positions 12 of the torsional resonance blade tip (excluding the
由于叶片经过叶尖定时传感器时处于扭转非共振或扭转共振的情况无法确认,如果将两支叶尖定时传感器的安装位置从E点和F点向O点移动,虽然仍可以采样到扭转振动叶端到达两支叶尖定时传感器的全部时间信号,但当叶片处于扭转非共振情况且叶片振动位移较小时,叶端经过两支叶尖定时传感器的时间差信号也较小,此时如果信号处理系统的精度不够高,可能发生信号无法采样的情况;如果将两支叶尖定时传感器的安装位置从E点和F点分别向A点和B点移动,则在叶片发生扭转共振或扭转非共振但振动位移较大情况时可能发生信号漏采样的情况,本实用新型所述的传感器定位方法可以保证在不发生信号漏采样的前提下,采集到叶片到达两支叶尖定时传感器的最大时间差信号或较大时间差信号,因此利用扭转共振投影法确定的E点和F点,可作为基于叶尖定时原理叶片扭转振动测量的传感器最优定位点;Since it cannot be confirmed that the blade is in torsional non-resonance or torsional resonance when it passes the blade tip timing sensor, if the installation position of the two blade tip timing sensors is moved from point E and point F to point O, although the torsional vibration blade can still be sampled However, when the blade is in torsional non-resonance and the vibration displacement of the blade is small, the time difference signal of the blade end passing through the two blade tip timing sensors is also small. At this time, if the signal processing system The accuracy of the blade is not high enough, and it may happen that the signal cannot be sampled; if the installation position of the two blade tip timing sensors is moved from point E and point F to point A and B, respectively, there will be torsional resonance or torsional non-resonance in the blade. When the vibration displacement is large, signal leakage sampling may occur. The sensor positioning method of the present invention can ensure that the maximum time difference signal or Because of the large time difference signal, the E and F points determined by the torsional resonance projection method can be used as the optimal positioning points of the sensor based on the blade torsional vibration measurement based on the blade tip timing principle;
(五).叶片扭转振动位移测量如图5所示,设Ωn1为该叶片未发生振动时转子低速旋转角速度,Ωn2为该叶片发生扭转振动时转子高速旋转角速度,n为转子旋转圈数,通常叶端静止位置16不平行于转子轴向水平线18,;(5) The displacement measurement of blade torsional vibration is shown in Figure 5. Let Ω n1 be the low-speed rotation angular velocity of the rotor when the blade does not vibrate, Ω n2 is the high-speed rotation angular velocity of the rotor when the blade has torsional vibration, and n is the number of rotations of the rotor , usually the blade
1、当转子以角速度Ωn1低速旋转叶片未发生振动时,该叶片叶端旋转经过进气边叶尖定时传感器4 和出气边叶尖定时传感器5时始终位于叶端静止位置16,因此叶片每圈到达进气边叶尖定时传感器4和出气边叶尖定时传感器5的时间差Δtn1=0,扭转振动位移为0;1. When the rotor rotates at a low speed with angular velocity Ω n1 and the blade does not vibrate, the blade tip of the blade rotates through the inlet edge
2、当转子以角速度Ωn2高速旋转叶片发生扭转振动时,该叶片叶端旋转经过进气边叶尖定时传感器4 和出气边叶尖定时传感器5时的实时位置,将在该叶片两个扭转共振叶端最大位移位置12之间周期性变化,不失一般性选择该叶片旋转经过两支叶尖定时传感器时任意的扭转振动叶端实时位置17,第n圈内用实测该叶片叶端到达进气边叶尖定时传感器4和出气边叶尖定时传感器5的时间差Δtn2,可以计算出该叶片以Ωn2高速旋转发生扭转振动经过两支叶尖定时传感器时,叶端随转子旋转经过的周向弧长为:2. When the rotor rotates at high speed with angular velocity Ω n2 torsional vibration occurs, the real-time position of the blade tip when it rotates through the inlet edge
Ln2=Ωn2RΔtn2,n=1.2.3... (1)L n2 =Ω n2 RΔt n2 , n=1.2.3... (1)
式中,R为叶端旋转半径,由于Δtn2通常很小,因此该叶片叶端在Δtn2时间差内随转子旋转经过的周向弧长,近似等于扭转振动时传感器测得叶端进气边位移20和扭转振动时传感器测得叶端出气边位移21 之和,即:In the formula, R is the radius of rotation of the blade tip. Since Δt n2 is usually small, the circumferential arc length of the blade tip with the rotor rotating within the time difference of Δt n2 is approximately equal to the inlet edge of the blade tip measured by the sensor during torsional vibration. The sum of the
Ln2=Ωn2RΔtn2=h3+h4,n=1.2.3... (2)L n2 =Ω n2 RΔt n2 =h 3 +h 4 , n=1.2.3...(2)
式中,h3为扭转振动时传感器测得叶端进气边位移20,h4为扭转振动时传感器测得叶端进气边位移21,结合扭转振动叶端偏离角19、扭转振动时传感器测得叶端进气边位移20、扭转振动时传感器测得叶端出气边位移21和两支叶尖定时传感器间距离EF,可以计算出扭转振动叶端偏离角19的数值:In the formula, h 3 is the displacement of the air inlet edge of the blade tip measured by the sensor during
式中,d为两支叶尖定时传感器间距离即线段EF的长度;In the formula, d is the distance between the two blade tip timing sensors, that is, the length of the line segment EF;
3、由于两支叶尖定时传感器的定位基于扭转共振投影法,因此进气边叶尖定时传感器4和出气边叶尖定时传感器5测得并非叶片叶端边缘的到达时间,所以通过式(2)计算得到的Ln2不是该叶片真实扭转振动位移;扭转振动叶端偏离角19、扭转振动时传感器测得叶端进气边位移20、扭转振动时传感器测得叶端出气边位移21、扭转振动时真实叶端进气边位移22、扭转振动时真实叶端出气边位移23、两支叶尖定时传感器间距离和叶端长度之间存在如下三角函数关系:3. Since the positioning of the two blade tip timing sensors is based on the torsional resonance projection method, the intake edge
式中,h5为扭转振动时真实叶端进气边位移22,h6为扭转振动时真实叶端出气边位移23,p为叶端即线段AB长度,结合式(4)中的三角函数关系,该叶片以角速度Ωn2高速旋转经过两支叶尖定时传感器产生的扭转振动位移为:In the formula, h 5 is the displacement of the actual air inlet edge of the blade end during
所述的扭转共振叶端最大偏离角α可由叶片固有频率试验获得,转子旋转角速度Ωn1和Ωn2可通过转子测速系统实测获得,叶端旋转半径R、叶端长度p和两支叶尖定时传感器间距离d可由设计图纸获得,叶端到两支达叶尖定时传感器时间差Δtn1和Δtn2可由叶尖定时传感器实测获得。The maximum deflection angle α of the blade tip of the torsional resonance can be obtained by the natural frequency test of the blade, the rotor rotation angular velocity Ω n1 and Ω n2 can be obtained by the actual measurement of the rotor tachometer system, the blade tip rotation radius R, the blade tip length p and the timing of the two blade tips The distance d between the sensors can be obtained from the design drawings, and the time differences Δt n1 and Δt n2 between the blade tip and the two blades reaching the blade tip timing sensors can be obtained from the actual measurement of the blade tip timing sensors.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921047132.4U CN212007508U (en) | 2019-07-06 | 2019-07-06 | A device for measuring blade torsional vibration displacement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921047132.4U CN212007508U (en) | 2019-07-06 | 2019-07-06 | A device for measuring blade torsional vibration displacement |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212007508U true CN212007508U (en) | 2020-11-24 |
Family
ID=73412950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921047132.4U Active CN212007508U (en) | 2019-07-06 | 2019-07-06 | A device for measuring blade torsional vibration displacement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN212007508U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114033732A (en) * | 2021-11-10 | 2022-02-11 | 中国航发沈阳发动机研究所 | Rotor blade during operation twists reverse angle measurement system |
-
2019
- 2019-07-06 CN CN201921047132.4U patent/CN212007508U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114033732A (en) * | 2021-11-10 | 2022-02-11 | 中国航发沈阳发动机研究所 | Rotor blade during operation twists reverse angle measurement system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110319922B (en) | Blade torsional vibration displacement measurement method based on tip timing principle | |
CN109000787B (en) | Calibration device and method for blade tip timing vibration measurement system | |
CN102507205B (en) | Method for checking vibration fault of fan blade of aerial engine | |
CN105973448A (en) | Method and system for measuring vibration of rotating blade | |
CN110686764A (en) | Method for measuring asynchronous vibration frequency of constant-speed blade based on full-phase difference principle | |
Ji-wang et al. | Blade tip-timing technology with multiple reference phases for online monitoring of high-speed blades under variable-speed operation | |
CN113624381B (en) | Non-contact measurement and calculation method for ship gas turbine moving blade stress | |
CN108871543A (en) | The anharmonic Fourier's analysis method of blade asynchronous vibration frequency under constant speed | |
Fan et al. | An improved multiple per revolution-based blade tip timing method and its applications on large-scale compressor blades | |
CN212007508U (en) | A device for measuring blade torsional vibration displacement | |
Wang et al. | An OPR-free blade tip timing method based on blade spacing change | |
CN116577050A (en) | Method for testing dynamic damping ratio of aero-engine compressor rotor blade | |
CN102095561A (en) | Falling fault positioning method for rotating part of large-size steam turbine | |
JP5701723B2 (en) | Wing vibration measuring device | |
CN110308643B (en) | Accurate measurement method of blade arrival time interval based on blade tip timing principle | |
CN111174903B (en) | A kind of diagnosing method of turbine mechanical failure | |
Chen et al. | Analysis and calibration of blade tip-timing vibration measurement under variable rotating speeds | |
CN109163795B (en) | An optical tip timing method based on tip surface microstructure | |
CN117231435A (en) | Wind turbine operation and maintenance debugging system based on dynamic control | |
Zhang et al. | Comparison of blade tip timing with strain gauge data for evaluation of dynamic characterization of last stage blade with interlocked shroud for steam turbine | |
CN110439760A (en) | The commissioning device and method of sensor | |
Liu et al. | Tip timing based non-contact vibration measurement of aero-engine turbine blades | |
Wang et al. | Parameter identifications of synchronous vibration of rotating blades with large amplitude based on blade tip timing | |
Grant | Experimental testing of tip-timing methods used for blade vibration measurement in the aero-engine | |
Wang et al. | An autocorrelation method for asynchronous vibration feature extraction in blade tip timing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |