CN211896107U - Vacuum-pumping seawater desalination device - Google Patents

Vacuum-pumping seawater desalination device Download PDF

Info

Publication number
CN211896107U
CN211896107U CN201922455806.0U CN201922455806U CN211896107U CN 211896107 U CN211896107 U CN 211896107U CN 201922455806 U CN201922455806 U CN 201922455806U CN 211896107 U CN211896107 U CN 211896107U
Authority
CN
China
Prior art keywords
pipe
ionic liquid
liquid medium
water
hydrophobic ionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201922455806.0U
Other languages
Chinese (zh)
Inventor
翟爱民
黄国林
杨庆峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Yinengke Technology Co ltd
Original Assignee
Guangzhou Yinengke Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Yinengke Technology Co ltd filed Critical Guangzhou Yinengke Technology Co ltd
Priority to CN201922455806.0U priority Critical patent/CN211896107U/en
Application granted granted Critical
Publication of CN211896107U publication Critical patent/CN211896107U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

The utility model discloses an evacuation sea water desalination device, it is including sealed evaporating box, condensing box, hydrophobic nature ionic liquid dielectric layer, the pump body, first pipe, second pipe and gas-liquid mixing device. Mixed bubbles of water vapor and air are wrapped in hydrophobic ionic liquid medium fluid and are finally poured into a condensing box, and as the hydrophobic ionic liquid medium and water are not mutually fused, the water vapor is finally condensed into water to be converged together to form a fresh water layer, so that fresh water in seawater is desalinated and converged in the condensing box; the device has the advantages of simple structure, low manufacturing cost and contribution to large-scale popularization and use of seawater desalination projects.

Description

Vacuum-pumping seawater desalination device
Technical Field
The utility model relates to a vacuum-pumping sea water desalting plant.
Background
Sea water desalination, namely, producing fresh water by using a sea water desalination process so as to supply drinking water for coastal residents; at present, the seawater desalination treatment technology mainly comprises a reverse osmosis method, a multi-stage flash evaporation method, a multi-effect distillation method and the like, but no matter what method is adopted, the technologies have the defects of complex structure, high construction cost, large occupied volume of equipment and high maintenance cost, and are not beneficial to large-scale popularization and use of seawater desalination projects.
SUMMERY OF THE UTILITY MODEL
The utility model aims at providing an evacuation sea water desalination device solves one or more among the above-mentioned prior art problem.
According to one aspect of the utility model, a vacuum-pumping seawater desalination device is provided, which comprises a sealed evaporation tank, a condensation tank, a hydrophobic ionic liquid medium layer, a pump body, a first pipe, a second pipe and a gas-liquid mixing device; the hydrophobic ionic liquid medium layer is filled in the condensing box, the water suction port of the pump body is communicated with the inside of the condensing box, and part or all of the water suction port is positioned below the liquid level of the hydrophobic ionic liquid medium layer; the water outlet of the pump body is connected with a first pipe, the first pipe is communicated with a second pipe, and an interface communicated with the first pipe is formed on the second pipe; the first end of the second pipe and the second end of the second pipe are sequentially arranged from high to low along the gravitational potential energy direction and are communicated with each other; the gas-liquid mixing device comprises a gas inlet pipe, one end of the gas inlet pipe is provided with a gas inlet, the other end of the gas inlet pipe is provided with a gas outlet, the gas outlet of the gas inlet pipe extends to the downstream position of the water outlet of the interface, and the gas inlet is communicated with the sealed evaporation box.
When the device is used, seawater is firstly filled into the sealed evaporation box, then the pump body is started, the pump body sucks the hydrophobic ionic liquid medium from the water suction port, then the hydrophobic ionic liquid medium is pumped into the first pipe through the water outlet of the pump body, the first pipe guides the hydrophobic ionic liquid medium into the second pipe through the interface, and as the first end of the second pipe and the second end of the second pipe are sequentially arranged from high to low along the gravitational potential direction, the hydrophobic ionic liquid medium flows towards the second end of the second pipe under the action of gravity, and as the first end of the second pipe is communicated with the second end of the second pipe, the form and the speed of the hydrophobic ionic liquid medium fluid cannot be interfered by the influence of negative pressure when the hydrophobic ionic liquid medium flows towards the second end of the second pipe under the action of gravity; because the air outlet of the air inlet pipe extends to the downstream position of the flowing direction of the interface in the second pipe, the hydrophobic ionic liquid medium flowing out of the interface wraps and submerges the part, positioned at the downstream of the water outlet of the interface, of the air inlet pipe and the air outlet; the air inlet of the air inlet pipe is communicated with the sealed evaporation tank, along with the flow of the hydrophobic ionic liquid medium fluid towards the second end of the second pipe under the action of gravity, the flowing hydrophobic ionic liquid medium fluid siphons air from the air inlet of the air inlet pipe into the hydrophobic ionic liquid medium fluid through the air outlet, namely the air in the sealed evaporation tank is extracted, so that the air pressure in the sealed evaporation tank is reduced, the evaporation efficiency of water is increased along with the reduction of the air pressure, so that the water vapor in the seawater in the sealed evaporation tank is accelerated to evaporate into the air, the water vapor is sucked into the hydrophobic ionic liquid medium fluid along with the air, the water vapor and the air are gradually accumulated at the air outlet, the accumulated water vapor and the air gradually discharge the hydrophobic ionic liquid medium fluid from the air outlet until the siphoning effect is eliminated, and the water vapor and the air stop entering the hydrophobic ionic liquid medium fluid from the air outlet, then, as the speed of the hydrophobic ionic liquid medium fluid is higher than the floating speed of the water vapor and the air, the accumulated water vapor and the air flow away together with the hydrophobic ionic liquid medium fluid, namely flow along with the hydrophobic ionic liquid medium fluid, then the accumulated water vapor and the air are taken away by the hydrophobic ionic liquid medium fluid without the blocking of the water vapor and the air, the hydrophobic ionic liquid medium fluid wraps and submerges the air outlet again, a siphon effect is generated, the air outlet gradually accumulates to generate mixed bubbles of the water vapor and the air, the process is repeated in turn, so that a series of mixed bubbles of the water vapor and the air are formed in the hydrophobic ionic liquid medium fluid, the mixed bubbles of the water vapor and the air are wrapped in the hydrophobic ionic liquid medium fluid, and finally the mixed bubbles are poured into a condenser, and as the hydrophobic ionic liquid medium and the water are not mutually melted, finally condensing the water vapor into water to be gathered together to form a fresh water layer, so that fresh water in the seawater is desalinated and gathered in the condensing tank; the device has the advantages of simple structure, low manufacturing cost and contribution to large-scale popularization and use of seawater desalination projects.
In some embodiments, the sealed evaporation box further comprises a partition plate, wherein the partition plate is arranged in the sealed evaporation box and divides the sealed evaporation box into a water storage chamber and an evaporation chamber; the air inlet is communicated with the evaporation chamber.
Therefore, the sealed evaporation box is divided into the water storage chamber and the evaporation chamber by the partition plate, so that the seawater is only stored in the water storage chamber and cannot enter the evaporation chamber, and the seawater is prevented from being filled into the air inlet pipe; meanwhile, as the air inlet of the air inlet pipe is communicated with the evaporation chamber, the water vapor evaporated from the seawater is sucked into the air inlet pipe from the evaporation chamber.
In some embodiments, further comprising a seawater input pipe, a control valve, and a control system; the seawater input pipe is communicated with the inside of the sealed evaporation box; the control valve is arranged on the seawater input pipe to control the on or off of the seawater input pipe; the control valve is electrically connected with the control system.
Therefore, when the seawater desalination device is used, the working state of the control valve can be instructed through the control system to control the on or off of the seawater input pipe, so that the seawater can be remotely controlled to enter and be supplemented into the sealed evaporation box.
In some embodiments, the hydrophobic ionic liquid medium layer is hexafluorophosphoric acid.
Drawings
FIG. 1 is a schematic diagram of the vacuum-pumping seawater desalination apparatus of the present invention;
FIG. 2 is a working schematic diagram of the vacuum-pumping seawater desalination device of the present invention.
Reference numbers: 1-sealed evaporation tank, 11-condensation tank, 12-hydrophobic ionic liquid medium layer, 13-pump body, 14-first pipe, 15-second pipe, 16-air inlet pipe, 17-partition plate, 2-evaporation chamber, 21-water storage chamber, 22-seawater input pipe, 23-control valve, 24-fresh water layer, 25-beach
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings and specific embodiments.
Fig. 1 to fig. 2 schematically show the structure of an evacuation seawater desalination apparatus according to an embodiment of the present invention.
As shown in fig. 1-2, the vacuum-pumping seawater desalination device comprises a sealed evaporation tank 1, a condensation tank 11, a hydrophobic ionic liquid medium layer 12, a pump body 13, a first pipe 14, a second pipe 15 and a gas-liquid mixing device; the hydrophobic ionic liquid medium layer 12 is filled in the condensation box 11, the water suction port of the pump body 13 is communicated with the condensation box 11, and part or all of the water suction port is positioned below the liquid level of the hydrophobic ionic liquid medium layer 12 (as long as the hydrophobic ionic liquid medium can be sucked from the water suction port by the pump body 13); a water outlet of the pump body 13 is connected with a first pipe 14, the first pipe 14 is communicated with a second pipe 15, and an interface communicated with the first pipe 14 is formed on the second pipe 15; the first end of the second pipe 15 and the second end of the second pipe 15 are arranged in sequence from high to low along the gravitational potential energy direction and are communicated with each other; the gas-liquid mixing device comprises a gas inlet pipe 16, one end of the gas inlet pipe 16 is provided with a gas inlet, the other end of the gas inlet pipe 16 is provided with a gas outlet, the gas outlet of the gas inlet pipe 16 extends to the downstream position of the water outlet of the connector, and the gas inlet is communicated with the sealed evaporation box 1.
When the device is used, seawater is filled into the sealed evaporation box 1, then the pump body 13 is started, the pump body 13 sucks the hydrophobic ionic liquid medium from the water suction port, and then the hydrophobic ionic liquid medium is pumped into the first pipe 14 through the water outlet of the pump body 13, the first pipe 14 guides the hydrophobic ionic liquid medium into the second pipe 15 through the interface, and as the first end of the second pipe 15 and the second end of the second pipe 15 are sequentially arranged from high to low along the gravitational potential direction, the hydrophobic ionic liquid medium flows towards the second end of the second pipe 15 under the action of gravity, and as the first end of the second pipe 15 is communicated with the second end of the second pipe 15, the form and the speed of the hydrophobic ionic liquid medium fluid cannot be interfered by the influence of negative pressure when the hydrophobic ionic liquid medium flows towards the second end of the second pipe 15 under the action of gravity; since the air outlet of the air inlet pipe 16 extends to the downstream position of the interface flowing direction in the second pipe 15, the hydrophobic ionic liquid medium flowing out of the interface can wrap and submerge the part of the air inlet pipe 16 located at the downstream of the water outlet of the interface and the air outlet; since the air inlet of the air inlet pipe 16 is communicated with the sealed evaporation tank 1, as the hydrophobic ionic liquid medium fluid flows towards the second end of the second pipe 15 under the action of gravity, the flowing hydrophobic ionic liquid medium fluid siphons air from the air inlet of the air inlet pipe 16 into the hydrophobic ionic liquid medium fluid through the air outlet, namely, the air in the sealed evaporation tank 1 is extracted, so that the air pressure in the sealed evaporation tank 1 is reduced, as the evaporation efficiency of water is increased along with the reduction of the air pressure, the water vapor in the seawater in the sealed evaporation tank 1 is accelerated to evaporate into the air, the water vapor is sucked into the hydrophobic ionic liquid medium fluid along with the air, the water vapor and the air are gradually accumulated at the air outlet, the accumulated water vapor and the air gradually discharge the hydrophobic ionic liquid medium fluid from the air outlet until the siphoning effect is eliminated, and the water vapor and the air stop entering the hydrophobic ionic liquid medium fluid from the air outlet, then, as the speed of the hydrophobic ionic liquid medium fluid is higher than the floating speed of the water vapor and the air, the accumulated water vapor and the air flow away together with the hydrophobic ionic liquid medium fluid, namely flow along with the hydrophobic ionic liquid medium fluid, then the accumulated water vapor and the air are taken away by the hydrophobic ionic liquid medium fluid without the blocking of the water vapor and the air, the hydrophobic ionic liquid medium fluid wraps and submerges the air outlet again, a siphon effect is generated, the air outlet gradually accumulates to generate mixed bubbles of the water vapor and the air, and the process is repeated in this way, so that a series of mixed bubbles of the water vapor and the air are formed in the hydrophobic ionic liquid medium fluid, the mixed bubbles of the water vapor and the air are wrapped in the hydrophobic ionic liquid medium fluid, and finally poured into the condensation box 11, as the hydrophobic ionic liquid medium and the water are not mutually melted, the water vapor is finally condensed into water and is gathered together to form a fresh water layer 24, so that fresh water in the seawater is gathered in the condensation tank 11; in detail, in the present embodiment, the specific type of the hydrophobic ionic liquid medium is hexafluorophosphoric acid, which has a density greater than that of water, and the freshwater layer 24 floats on the hydrophobic ionic liquid medium, but in other embodiments, we can also limit the specific type of the hydrophobic ionic liquid medium to a density less than that of water, that is, as long as it can be layered with water; the device has the advantages of simple structure, low manufacturing cost and contribution to large-scale popularization and use of seawater desalination projects. In detail, the condenser box 11 can be embedded in the sea water or the beach 25, so that the condenser box 11 has a lower cooling environment, and is energy-saving and environment-friendly.
In the embodiment, the sealed evaporation box further comprises a partition plate 17, wherein the partition plate 17 is arranged in the sealed evaporation box 1, and the partition plate 17 divides the sealed evaporation box 1 into a water storage chamber 21 and an evaporation chamber 2; the inlet port communicates with the evaporation chamber 2. Thus, the sealed evaporation box 1 is divided into the water storage chamber 21 and the evaporation chamber 2 by the partition plate 17, so that the seawater is only stored in the water storage chamber 21 and does not enter the evaporation chamber 2, and the seawater is prevented from being filled into the air inlet pipe 16; meanwhile, as the air inlet of the air inlet pipe 16 is communicated with the evaporation chamber 2, the water vapor evaporated from the seawater is sucked into the air inlet pipe 16 from the evaporation chamber 2.
In this embodiment, the system further comprises a seawater input pipe 22, a control valve 23 and a control system; the seawater input pipe 22 is communicated with the inside of the sealed evaporation box 1; a control valve 23 is provided on the seawater input pipe 22 to control the on/off of the seawater input pipe 22; the control valve 23 is electrically connected with the control system. Thus, when in use, the control system can command the working state of the control valve 23 to control the on or off of the seawater input pipe 22, so as to remotely control the seawater to enter and supplement the sealed evaporation tank 1.
What has been described above is only one embodiment of the present invention. For persons skilled in the art, without departing from the inventive concept, several modifications and improvements can be made, which are within the scope of the invention.

Claims (4)

1. The vacuumizing seawater desalination device is characterized by comprising a sealed evaporation tank, a condensation tank, a hydrophobic ionic liquid medium layer, a pump body, a first pipe, a second pipe and a gas-liquid mixing device;
the hydrophobic ionic liquid medium layer is filled in the condensation box, a water suction port of the pump body is communicated with the condensation box, and part or all of the water suction port is positioned below the liquid level of the hydrophobic ionic liquid medium layer;
the water outlet of the pump body is connected with the first pipe, the first pipe is communicated with the second pipe, and an interface communicated with the first pipe is formed on the second pipe;
the first end of the second pipe and the second end of the second pipe are sequentially arranged from high to low along the gravitational potential energy direction and are communicated with each other;
the gas-liquid mixing device comprises a gas inlet pipe, one end of the gas inlet pipe is provided with a gas inlet, the other end of the gas inlet pipe is provided with a gas outlet, the gas outlet of the gas inlet pipe extends to the downstream position of the water outlet of the connector, and the gas inlet is communicated with the sealed evaporation box.
2. The vacuum-pumping seawater desalination apparatus of claim 1, further comprising a partition plate disposed in the sealed evaporation tank, the partition plate dividing the sealed evaporation tank into a water storage chamber and an evaporation chamber;
the air inlet is communicated with the evaporation chamber.
3. The evacuated seawater desalination apparatus of claim 1, further comprising a seawater input pipe, a control valve and a control system;
the seawater input pipe is communicated with the inside of the sealed evaporation box; the control valve is arranged on the seawater input pipe to control the on or off of the seawater input pipe; the control valve is electrically connected with the control system.
4. The evacuated seawater desalination device of claim 1, wherein the hydrophobic ionic liquid medium layer is hexafluorophosphoric acid.
CN201922455806.0U 2019-12-29 2019-12-29 Vacuum-pumping seawater desalination device Expired - Fee Related CN211896107U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201922455806.0U CN211896107U (en) 2019-12-29 2019-12-29 Vacuum-pumping seawater desalination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201922455806.0U CN211896107U (en) 2019-12-29 2019-12-29 Vacuum-pumping seawater desalination device

Publications (1)

Publication Number Publication Date
CN211896107U true CN211896107U (en) 2020-11-10

Family

ID=73295179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201922455806.0U Expired - Fee Related CN211896107U (en) 2019-12-29 2019-12-29 Vacuum-pumping seawater desalination device

Country Status (1)

Country Link
CN (1) CN211896107U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099674A (en) * 2019-12-29 2020-05-05 广州易能克科技有限公司 Vacuum-pumping seawater desalination device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099674A (en) * 2019-12-29 2020-05-05 广州易能克科技有限公司 Vacuum-pumping seawater desalination device

Similar Documents

Publication Publication Date Title
US20150291463A1 (en) Apparatus and method for desalinating seawater
CN103212295B (en) Industrial large-scale seawater desalination technology and device
CN104310687B (en) Efficient MVR integrated seawater desalination device and seawater desalination method
CN101044094A (en) Desalination apparatus and method
CN101838024B (en) Driven flash-evaporation solar seawater desalination method and device
CN2808881Y (en) Multistage flash-evaporation sea water desalting device
CN102225787A (en) Composite solar seawater desalination device and method
CN211896107U (en) Vacuum-pumping seawater desalination device
CN111807473B (en) Low-pressure membrane method seawater desalination device
CN211896119U (en) Solar vacuum-pumping seawater desalination device
CN202080914U (en) Composite solar seawater desalting device
CN105776384A (en) Negative-pressure solar-energy seawater desalination device
CN111099674A (en) Vacuum-pumping seawater desalination device
CN113044900A (en) Solar vacuum-pumping seawater desalination device
US10550008B2 (en) Low energy fluid purification system
CN101830541A (en) Underground reverse-osmosis seawater desalination vacuum plant system engineering
CN104649353A (en) Vacuum-distillation seawater desalinating device and seawater desalinating method thereof
CN110608201A (en) Hydraulic equipment
CN109851134A (en) A kind of Room-temperature low-pressure seawater desalination system based on injection cavitation technique
CN107381690B (en) A kind of hypergravity is evaporated in vacuo the method for desalting seawater of membrane distillation
CN109809528B (en) Supergravity low-pressure constant-temperature membrane distillation sea water desalting device and sea water desalting method
CN112624460B (en) Gas separation device for geothermal energy recharge well
CN209853801U (en) Super-gravity low-pressure constant-temperature membrane distillation seawater desalination device
CN108392997A (en) A kind of list Cavity bubble generation device and manufacturing method
CN103232083A (en) Solar wind energy low-pressure sea water desalinating apparatus

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201110