CN211740920U - Deep high stress and high permeability environment simulation experiment system - Google Patents
Deep high stress and high permeability environment simulation experiment system Download PDFInfo
- Publication number
- CN211740920U CN211740920U CN202020483801.9U CN202020483801U CN211740920U CN 211740920 U CN211740920 U CN 211740920U CN 202020483801 U CN202020483801 U CN 202020483801U CN 211740920 U CN211740920 U CN 211740920U
- Authority
- CN
- China
- Prior art keywords
- pressure
- axial
- confining
- rock sample
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 17
- 230000035699 permeability Effects 0.000 title abstract description 8
- 230000003204 osmotic effect Effects 0.000 claims abstract description 79
- 239000011435 rock Substances 0.000 claims abstract description 77
- 238000012360 testing method Methods 0.000 claims abstract description 33
- 230000007246 mechanism Effects 0.000 claims abstract description 26
- 230000008859 change Effects 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 238000006073 displacement reaction Methods 0.000 claims description 23
- 238000009434 installation Methods 0.000 claims description 11
- 230000000087 stabilizing effect Effects 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 claims description 2
- 230000007774 longterm Effects 0.000 abstract description 13
- 238000002474 experimental method Methods 0.000 abstract description 10
- 230000006641 stabilisation Effects 0.000 abstract description 6
- 238000011105 stabilization Methods 0.000 abstract description 6
- 238000010998 test method Methods 0.000 abstract 1
- 230000006835 compression Effects 0.000 description 21
- 238000007906 compression Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 10
- 238000007654 immersion Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 230000036316 preload Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000008400 supply water Substances 0.000 description 2
- 229920006257 Heat-shrinkable film Polymers 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009292 forward osmosis Methods 0.000 description 1
- 238000012613 in situ experiment Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本实用新型公开了一种深部高应力高渗环境模拟实验系统及其实验方法,实验系统包括围压系统、岩石试样夹持机构、轴压系统、渗透压系统、岩石试样体积变化测试系统和声速实时测试系统;围压系统、轴压系统和渗透压系统上均安装有稳压机构,岩石试样夹持机构大部分安装于围压系统的围压缸中,小部分位于轴压系统的轴压缸中;渗透压系统分为两部分,在岩石试样上端和下端均设置有。本方案采用稳压机构进行荷载施加,能克服长时测试过程中的荷载波动问题,使得测试结果更加精确;本方案还提供了一种模拟深部高应力高渗环境条件下的岩石浸水试验及三轴流变测试方法,该方法能够还原深部赋存特征,从而更真实地揭示深部岩体的长时力学行为与渗透特性。
The utility model discloses a deep high-stress and high-permeability environment simulation experimental system and an experimental method thereof. The experimental system comprises a confining pressure system, a rock sample clamping mechanism, an axial pressure system, an osmotic pressure system, and a rock sample volume change testing system. Harmony sound speed real-time test system; the confining pressure system, the axial pressure system and the osmotic pressure system are all equipped with a voltage stabilization mechanism, most of the rock sample holding mechanisms are installed in the confining pressure cylinder of the confining pressure system, and a small part is located in the axial pressure system The osmotic pressure system is divided into two parts, which are provided at the upper and lower ends of the rock sample. This scheme uses a voltage stabilization mechanism for load application, which can overcome the load fluctuation problem during long-term testing and make the test results more accurate. Axial rheological test method, which can restore the deep occurrence characteristics, so as to reveal the long-term mechanical behavior and permeability characteristics of deep rock mass more realistically.
Description
技术领域technical field
本实用新型涉及岩土工程技术领域,具体涉及一种深部高应力高渗环境模拟实验系统。The utility model relates to the technical field of geotechnical engineering, in particular to a deep high stress and high permeability environment simulation experiment system.
背景技术Background technique
为满足人类生存发展需要和探索地球内部未知奥秘,深地空间资源开发与利用已成为人类活动的未来趋势,也是人类可持续发展的主要途径。同时,世界经济迅速发展需要消耗巨量资源,使得地球浅部资源逐渐枯竭,油气、地热、煤矿、金属矿等资源开采不断走向地球深部,深部资源开采将在未来成为常态。因此,向地球深部进军已成为人类未来发展所必须解决的战略科技问题。然而,深部岩体工程实践常面临高应力、高渗透压的复杂赋存环境条件,在高压水体作用下岩体发生水软化的概率持续增高,导致岩体产生显著的性状改变,使得岩体的微细观结构及宏观力学性质发生明显变化,从而难以准确描述岩体的长时力学行为与渗透特性,严重影响深部洞室围岩的长期安全稳定运营。In order to meet the needs of human survival and development and explore the unknown mysteries inside the earth, the development and utilization of deep space resources has become the future trend of human activities and the main way for human sustainable development. At the same time, the rapid development of the world economy needs to consume a huge amount of resources, which makes the shallow resources of the earth gradually depleted, and the exploitation of oil and gas, geothermal, coal mines, metal mines and other resources continues to move to the deep part of the earth, and deep resource exploitation will become the norm in the future. Therefore, marching into the depths of the earth has become a strategic scientific and technological problem that must be solved in the future development of mankind. However, the practice of deep rock mass engineering is often faced with complex environmental conditions of high stress and high osmotic pressure. Under the action of high pressure water, the probability of water softening of the rock mass continues to increase, resulting in significant changes in the properties of the rock mass, making the rock mass The micro-structure and macro-mechanical properties have changed significantly, which makes it difficult to accurately describe the long-term mechanical behavior and permeability characteristics of the rock mass, which seriously affects the long-term safe and stable operation of the surrounding rock in the deep cavern.
目前,人们对深部岩体在高应力高渗透压作用下的长时力学行为和渗透特性鲜有研究,所积累的知识和经验都很少,一个重要原因是现有实验装置难以真实还原深部原位赋存特征。此外,高应力高渗透压的长时稳定控制也是一个关键难点问题。现有MTS三轴实验机主要靠电力驱动压力泵,向缸内注入油液实时动态调节加压控制加载力。在长期测试过程中,实验室在用电高峰期易出现电压不稳定的情况,影响压力泵的功率从而影响其注入油液的量,致使围压缸、轴压缸及渗压通道内的油液压力产生波动,即围压、轴压和渗透压不能保持稳定,导致实验结果不准确。At present, there is little research on the long-term mechanical behavior and permeability characteristics of deep rock mass under the action of high stress and high osmotic pressure, and the accumulated knowledge and experience are very little. An important reason is that the existing experimental equipment is difficult to truly restore the deep original Bit assignment feature. In addition, the long-term stable control of high stress and high osmotic pressure is also a key and difficult problem. The existing MTS three-axis test machine mainly relies on electric power to drive the pressure pump, and injects oil into the cylinder to dynamically adjust the pressure and control the loading force in real time. In the long-term test process, the laboratory is prone to voltage instability during the peak period of power consumption, which affects the power of the pressure pump and thus the amount of oil injected into it, resulting in the confining pressure cylinder, axial pressure cylinder and oil in the osmotic pressure channel. The hydraulic pressure fluctuates, that is, the confining pressure, axial pressure and osmotic pressure cannot be kept stable, resulting in inaccurate experimental results.
实用新型内容Utility model content
针对现有技术中的上述不足,本实用新型提供的深部高应力高渗环境模拟实验系统及其实验方法能够长时稳定模拟深部高应力高渗透压环境的原位实验。In view of the above deficiencies in the prior art, the deep high stress and high permeability environment simulation experiment system and its experimental method provided by the present invention can stably simulate the in-situ experiment of the deep high stress and high permeability environment for a long time.
为了达到上述发明目的,本实用新型采用的技术方案为:In order to achieve the above-mentioned purpose of the invention, the technical scheme adopted by the present utility model is:
提供一种深部高应力高渗环境模拟实验系统,其包括:Provided is a deep high-stress and high-permeability environment simulation experiment system, which includes:
围压系统,其包括下端为开端的围压缸,围压缸的顶部密封连接有两根与其连通的围压管道,其中一根围压管道通过围压泵与围压油箱连通,并在该围压管道上安装围压压力表和控制阀门;另一根围压管道的末端安装有稳压机构;The confining pressure system includes a confining pressure cylinder whose lower end is an open end, and the top of the confining pressure cylinder is sealed and connected with two confining pressure pipelines that communicate with it. A confining pressure gauge and a control valve are installed on the confining pressure pipeline; a voltage stabilizing mechanism is installed at the end of the other confining pressure pipeline;
岩石试样夹持机构,其包括下夹持座和固定于油压缸内顶部的上夹持座,下夹持座的上端直径大于下端直径;上夹持座和下夹持座轴向开设有贯穿其的进水孔;The rock sample clamping mechanism includes a lower clamping seat and an upper clamping seat fixed on the top of the hydraulic cylinder, the upper end diameter of the lower clamping seat is larger than the lower end diameter; the upper clamping seat and the lower clamping seat are axially opened There is a water inlet hole therethrough;
轴压系统,其包括轴压缸,轴压缸的顶部密封连接有两根与其连通的轴压管道,其中一根轴压管道通过轴压泵与轴压油箱连通,并在该轴压管道上安装有轴压压力表和控制阀门;另一个轴压管道的末端安装有稳压机构;The axial compression system includes an axial compression cylinder, and the top of the axial compression cylinder is sealed and connected with two axial compression pipelines that communicate with it. An axial pressure gauge and a control valve are installed; a voltage stabilizing mechanism is installed at the end of the other axial pressure pipeline;
渗透压系统,其包括分别穿入围压缸和轴压缸、与对应进水孔密封连接的渗压管道,两根渗压管道的一端均通过渗压泵与渗压水箱连通,并在渗压管道上安装渗压压力表和控制阀门;两根渗压管道的另一端的末端安装有稳压机构;The osmotic pressure system includes osmotic pressure pipes that penetrate into the confining pressure cylinder and the axial pressure cylinder respectively and are sealed with the corresponding water inlet holes. The osmotic pressure gauge and control valve are installed on the pipeline; the other end of the two osmotic pressure pipelines is equipped with a voltage stabilizing mechanism;
轴压缸的顶端开设有供下夹持座的下端进入的安装孔,下夹持座的下端活动且密封安装于安装孔中,围压缸安装在轴压缸顶端,两者密封连接;所有的泵、控制阀门及压力表均与处理器连接。The top of the axial pressure cylinder is provided with an installation hole for the lower end of the lower clamping seat to enter, the lower end of the lower clamping seat is movable and sealed in the installation hole, the confining pressure cylinder is installed at the top of the axial pressure cylinder, and the two are sealed and connected; all The pump, control valve and pressure gauge are all connected to the processor.
本实用新型的有益效果为:本方案采用稳压机构进行荷载施加,在三种类型压力表的压力达到施加的荷载时,就可以关闭控制阀门和对应的泵,这样在长时间试验时,不需要一直启动用电设备,所以即便外界电压波动也不会影响本系统实验的正常进行。本系统在长时测试过程中通过克服荷载波动问题,使得测试结果更加精确;The beneficial effects of the utility model are as follows: in this scheme, a voltage stabilizing mechanism is used to apply the load, and when the pressure of the three types of pressure gauges reaches the applied load, the control valve and the corresponding pump can be closed, so that during the long-term test, the It is necessary to start the electrical equipment all the time, so even if the external voltage fluctuates, it will not affect the normal operation of the system experiment. This system makes the test results more accurate by overcoming the load fluctuation problem in the long-term test process;
渗透压施加分为上下两部分,将上下两部分所施加的压力差作为渗透压,这样不仅可实现正向渗透实验,还可开展逆向渗透实验。此外,还可使岩石试样所受渗透压力更均匀,更全面。The osmotic pressure application is divided into upper and lower parts, and the pressure difference applied by the upper and lower parts is used as the osmotic pressure, so that not only the forward osmosis experiment but also the reverse osmosis experiment can be carried out. In addition, the osmotic pressure on the rock sample can be made more uniform and comprehensive.
本方案提供的实验系统相对现有的MTS三轴实验机而言,具有结构简单,成本低、便于实现小型化等优点。Compared with the existing MTS three-axis experimental machine, the experimental system provided by this scheme has the advantages of simple structure, low cost, and easy miniaturization.
本方案加入声速实时测试系统后,能第一时间反映岩石试样的损伤劣化情况,并为后续分析提供有力支持;本方案的系统在模拟高应力高渗压(即高围压高渗压)环境时,轴压系统仅作为给下夹持座提供向上的力以加紧岩石试样,并不提供轴向压力,通过该种环境的模拟,可以研究岩石试样在此环境下的劣化机制。After the sound velocity real-time test system is added to this scheme, it can reflect the damage and deterioration of rock samples at the first time, and provide strong support for subsequent analysis; the system of this scheme is simulating high stress and high osmotic pressure (ie high confining pressure and high osmotic pressure) In the environment, the axial compression system is only used to provide upward force to the lower clamping seat to tighten the rock sample, and does not provide axial pressure. Through the simulation of this environment, the deterioration mechanism of the rock sample in this environment can be studied.
附图说明Description of drawings
图1为深部高应力高渗环境模拟实验系统的结构示意图。Figure 1 is a schematic diagram of the structure of the deep high-stress and high-permeability environment simulation experiment system.
图2为岩石试样放置在围压缸内,并装上岩石试样体积变化测试系统和声速实时测试系统的示意图。Figure 2 is a schematic diagram of a rock sample placed in a confining pressure cylinder and a volume change test system and a sound velocity real-time test system installed on the rock sample.
图3为轴压缸和围压缸密封安装在一起的结构示意图。FIG. 3 is a schematic structural diagram of the sealing installation of the axial pressure cylinder and the confining pressure cylinder.
图4为100m深度岩石蠕变测试声速变化曲线。Figure 4 shows the change curve of the sound velocity of the rock creep test at a depth of 100m.
图5为100m深度岩石试样蠕变全过程曲线。Fig. 5 shows the whole creep process curve of the rock sample at a depth of 100m.
其中,1、围压系统;11、围压缸;12、围压管道;13、围压泵;14、围压油箱;15、围压压力表;16、控制阀门;17、稳压机构;171、压杆;172、活塞;173、底座;174、施力部;2、岩石试样夹持机构;21、上夹持座;211、进水孔;22、下夹持座;3、轴压系统;Among them, 1, confining pressure system; 11, confining pressure cylinder; 12, confining pressure pipeline; 13, confining pressure pump; 14, confining pressure oil tank; 15, confining pressure pressure gauge; 16, control valve; 171, pressure rod; 172, piston; 173, base; 174, force application part; 2, rock sample clamping mechanism; 21, upper clamping seat; 211, water inlet; 22, lower clamping seat; 3, Axial compression system;
31、轴压缸;311、安装孔;32、轴压管道;33、轴压泵;34、轴压油箱; 35、轴压压力表;4、渗透压系统;41、渗压管道;42、渗压泵;43、渗压水箱; 44、渗压压力表;5、岩石试样体积变化测试系统;51、环向位移传感器;52、轴向位移传感器;61、超声信号发射器;62、超声信号接收器。31. Axial pressure cylinder; 311. Mounting hole; 32. Axial pressure pipeline; 33. Axial pressure pump; 34. Axial pressure oil tank; 35. Axial pressure pressure gauge; 4. Osmotic pressure system; 41. Osmotic pressure pipeline; 42, osmotic pump; 43. osmotic water tank; 44. osmotic pressure gauge; 5. rock sample volume change test system; 51. circumferential displacement sensor; 52. axial displacement sensor; 61. ultrasonic signal transmitter; 62. Ultrasonic signal receiver.
具体实施方式Detailed ways
下面对本实用新型的具体实施方式进行描述,以便于本技术领域的技术人员理解本实用新型,但应该清楚,本实用新型不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本实用新型的精神和范围内,这些变化是显而易见的,一切利用本实用新型构思的实用新型创造均在保护之列。The specific embodiments of the present invention are described below to facilitate those skilled in the art to understand the present invention, but it should be clear that the present invention is not limited to the scope of the specific embodiments. Various changes are within the spirit and scope of the present utility model defined and determined by the appended claims, and these changes are obvious, and all utility model creations utilizing the concept of the present utility model are included in the protection list.
如图1所示,该深部高应力高渗环境模拟实验系统包括围压系统1、岩石试样夹持机构2、轴压系统3、渗透压系统4、岩石试样体积变化测试系统5和声速实时测试系统。As shown in Figure 1, the deep high-stress and high-permeability environment simulation experiment system includes a
围压系统1包括下端为开端的围压缸11,围压缸11的顶部密封连接(螺纹连接)有两根与其连通的围压管道12,其中一根围压管道12通过围压泵13与围压油箱14连通,并在该围压管道12上安装围压压力表15和控制阀门16;另一根围压管道12的末端安装有稳压机构17。The
在开启围压泵13后,首先会将围压缸11的油液灌满,之后另一根围压管道12内才会存储油液,通过围压管道12内的油液可以给稳压机构17一个向上的力。After the confining pressure pump 13 is turned on, the oil in the confining
岩石试样夹持机构2包括下夹持座22和固定于油压缸内顶部的上夹持座21,下夹持座22的上端直径大于下端直径;上夹持座21为圆柱体结构,上夹持座 21和下夹持座22的轴向均开设有贯穿其的进水孔211。两个进水孔211都呈漏斗形,岩石试样的两端均密封安装于进水孔211的大孔端。The rock
轴压系统3包括轴压缸31,轴压缸31的顶部密封连接有两根与其连通的轴压管道32,其中一根轴压管道32通过轴压泵33与轴压油箱34连通,并在该轴压管道32上安装有轴压压力表35和控制阀门16;另一个轴压管道32的末端安装有稳压机构17。The
在开启轴压泵33后,首先会将轴压缸31的油液灌满,轴压缸31的油液达到一定压力时,其会带动下夹持座22向上运动,以实现对岩石试样的稳定夹持;轴压缸31的油液灌满后,另一根轴压管道32内才会存储油液,通过轴压管道 32内的油液可以给其对应的稳压机构17一个向上的力。After the
渗透压系统4包括分别穿入围压缸11和轴压缸31、与对应进水孔211密封连接的渗压管道41,两根渗压管道41的一端均通过渗压泵42与渗压水箱43连通,并在渗压管道41上安装渗压压力表44和控制阀门16;两根渗压管道41的另一端的末端安装有稳压机构17;The
同理,渗透压系统4在注水时,其也是先将进水孔211内的水灌满,之后渗压管道41邻近稳压机构17才会有水进入,通过渗压管道41内的油液可以给其对应的稳压机构17一个向上的力。Similarly, when the
当渗透压系统4位于岩石试样上部分施加的荷载大于岩石试样下部分施加的荷载时,则岩石试样受到正向渗压作用;反之,则岩石试样受到逆向渗压的作用。When the load applied by the
轴压缸31的顶端开设有供下夹持座22的下端进入的安装孔311,下夹持座 22的下端活动且密封安装于安装孔311中,围压缸11安装在轴压缸31顶端,两者密封连接;所有的泵(围压泵13、轴压泵和渗透泵)、控制阀门及压力表(围压压力表、轴压压力表和渗透压压力表)均与处理器连接。The top end of the
采用本方案进行实验时,放入岩石试样后,首先需要启动轴压系统3,通过轴压系统3的油液提供的压力才能实现岩石试样的夹紧,之后才能实现其他模拟实验的开展。When using this scheme for experiments, after placing the rock sample, the
岩石试样体积变化测试系统5包括用于采集岩石试样径向位移的环向位移传感器51和用于采集岩石试样轴向位移的轴向位移传感器52,环向位移传感器 51和轴向位移传感器52均与处理器连接。The rock sample volume
岩石试样体积变化测试系统5主要用于轴压系统3施加多级轴压时,用于采集岩石试样的轴向和径向位移变化情况。The rock sample volume
如图2所示,声速实时测试系统包括分别安装于岩石试样两端的超声信号发射器61和超声信号接收器62;超声信号接收器62通过数字荧光示波器分别与数据采集器和脉冲接收控制器连接,脉冲接收控制器与超声信号发射器61和数据采集器连接;脉冲接收控制器和数据采集器均与处理器连接。As shown in Figure 2, the sound velocity real-time testing system includes an
超声信号发射器61和超声信号接收器62外表面涂有防锈层,其中的防锈层可以为镀在发射器和接收器外表面的锌;围压管道12、轴压管道32和渗压管道41可以采用软管制成;三种类型的压力表及所有的控制阀门16均可以采用高强度不锈钢制成。The outer surfaces of the
实施时,本方案优选稳压机构17包括放置在管道上的压杆171及放置在管道(围压管道、渗压管道和轴压管道)内、在管道液体压力作用下给压杆171 施加向上的力的活塞172;压杆171一端铰接在底座173上,另一端设有施力部 174。优选施力部174为砝码。During implementation, it is preferred that the
如图3所示,围压缸11的下端外表面设置有法兰盘,轴压缸31的顶端开设有包围安装孔311的安装槽;围压缸11下端安装在安装槽内,并通过多根穿过法兰盘的螺纹连接件固定在轴压缸31的顶部。为了保证两缸的密封连接,可以在安装槽内设置密封圈。As shown in FIG. 3 , the outer surface of the lower end of the confining
本方案还提供一种深部高应力高渗环境模拟实验系统测试不同深度岩石浸水的方法包括步骤101至步骤106。The solution also provides a method for testing water immersion of rocks at different depths by a deep high-stress and high-permeability environment simulation experiment system, including steps 101 to 106 .
在步骤101中,获取岩石试样模拟的赋存深度对应的第一设定轴向预紧力、第一预设渗透压和第一预设围压;之后采用热缩膜紧密包裹岩石试样的圆柱面,并放置于下夹持座22上。In step 101, the first set axial preload force, the first preset osmotic pressure and the first preset confining pressure corresponding to the simulated occurrence depth of the rock sample are obtained; then the rock sample is tightly wrapped with a heat shrinkable film The cylindrical surface is placed on the
其中的赋存深度可以根据具体模拟的环境进行选取,比如100m、1000m、 1400m、1800m、2400m,不过每选取一个不同的赋存深度,其在实验时都需要执行步骤101至步骤106,才能完成一个赋存深度下的岩石试样浸泡。The occurrence depth can be selected according to the specific simulated environment, such as 100m, 1000m, 1400m, 1800m, 2400m, but each time a different occurrence depth is selected, it is necessary to perform steps 101 to 106 during the experiment to complete Immersion of rock samples at an occurrence depth.
在步骤102中,通过轴压系统3的施力部174施加第一设定轴向预紧力,打开轴压泵33向轴压缸31内加入油液,当轴压压力表35的压力等于第一设定轴向预紧力时,关闭轴压泵33。In step 102, the first set axial pre-tightening force is applied through the force applying part 174 of the
当施力部174为砝码时,将第一设定轴向预紧力转换为砝码重量的公式为:When the force-applying portion 174 is a weight, the formula for converting the first set axial preload into the weight of the weight is:
F1=2x1A1/l1,其中,F1为施加在轴压系统3的压杆171右端部的力,l1为轴压系统3的压杆171的长度,x1为轴压系统3的活塞172与底座173的距离, A1为轴压系统3的活塞172的底面积。F 1 =2x 1 A 1 /l 1 , wherein F 1 is the force applied to the right end of the pressing rod 171 of the
在步骤103中,通过围压系统1的施力部174施加第一预设围压,打开围压泵13向围压缸11内加入油液,当围压压力表15的压力等于第一预设围压时,关闭围压泵13;In step 103, the first preset confining pressure is applied by the force applying part 174 of the confining
当施力部174为砝码时,将第一预设围压转换为砝码重量的公式为:When the force-applying portion 174 is a weight, the formula for converting the first preset confining pressure into the weight of the weight is:
F2=σ2x2A2/l2,其中,F2为施加在围压系统1的压杆171右端部的力,σ2为岩石试样的围压,l2为围压系统1的压杆171的长度,x2为围压系统1的活塞 172与底座173的距离,A2为围压系统1的活塞172的底面积。F 2 =σ 2 x 2 A 2 /l 2 , where F 2 is the force applied to the right end of the compression rod 171 of the confining
在步骤104中,通过渗透压系统4的两个施力部174分别施加第一预设压力和第二预设压力,打开两个渗压泵42向渗压管道41和进水孔211输水,当两个渗压压力表44的压力均等于其对应的施力部施加的压力时,关闭两个渗压泵42;其中,第一预设压力和第二预设压力之间的压差为渗透压。In step 104, the first preset pressure and the second preset pressure are respectively applied by the two force applying parts 174 of the
当施力部174为砝码时,将第一设定轴向预紧力转换为砝码重量的公式为:When the force-applying portion 174 is a weight, the formula for converting the first set axial preload into the weight of the weight is:
F3=σ3x3A3/l3,F4=σ4x4A4/l4,σ5=|σ3-σ4|,其中,F3、F4分别为施加在渗透压系统4两根压杆171右端部的力,σ3、σ4分别为岩石试样上部和下部的压力,σ5为岩石试样的渗透压,l3、l4分别为渗透压系统4两根压杆171的长度,x3、x4分别为渗透压系统4两个活塞172与底座173的距离,A3、A4分别为渗透压系统4的两个活塞172的底面积。F 3 =σ 3 x 3 A 3 /l 3 , F 4 = σ 4 x 4 A 4 /l 4 , σ 5 =|σ 3 -σ 4 | The force at the right end of the two compression rods 171 of
在步骤105中,当浸水时间未达到目标实验天数时,若轴压压力表35、围压压力表15或渗压压力表44的数值波动不等于设定阈值时,开启轴压泵33、围压泵13或渗压泵42补充液体,直至轴压压力表35、围压压力表15或渗压压力表44的值恢复原压力(波动前的压力);In step 105, when the immersion time does not reach the target number of test days, if the numerical fluctuation of the axial
在步骤106中,当浸水时间达到目标实验天数时,打开轴压系统3、围压系统1和渗透压系统4的控制阀门16,启动轴压泵33、围压泵13和渗压泵42抽回液体,取出岩石试样。In step 106, when the immersion time reaches the target experimental days, open the
渗水实验完成后,可以吸取少量渗压缸中的液体,开展浸水溶液化学成份、矿物(XRD)、元素(XRF)分析,揭示不同赋存深度真实应力和渗透压力组合条件下的矿物成份溶解过程及物性成份演化规律,探明高应力高渗压条件下水渗透过程中对岩石微细观结构的物理影响机制,揭示高应力环境、高压水体作用下岩石矿物膨胀及润滑作用。After the water seepage experiment is completed, a small amount of liquid in the seepage tank can be absorbed, and the chemical composition, mineral (XRD), and element (XRF) analysis of the soaking solution can be carried out to reveal the dissolution process of mineral components under the combination of true stress and seepage pressure at different occurrence depths. The evolution law of transitivity composition, to prove the physical influence mechanism of water infiltration on rock microstructure under high stress and high osmotic pressure conditions, and to reveal rock mineral expansion and lubrication under the action of high stress environment and high pressure water.
为还原深部特征,基于前述五个不同赋存深度(100m、1000m、1400m、 1800m、2400m)浸水试验的岩石试样,开展深部高应力高渗环境三轴流变测试,其实现方法包括步骤S1至步骤S8。三轴流变试验是基于不同赋存深度浸水试验得到的岩石试样开展的。In order to restore the deep characteristics, based on the rock samples of the five different occurrence depths (100m, 1000m, 1400m, 1800m, 2400m) in the water immersion test, the triaxial rheological test of the deep high stress and high permeability environment is carried out, and the realization method includes step S1 Go to step S8. The triaxial rheological test was carried out based on the rock samples obtained from the water immersion test at different occurrence depths.
在步骤S1中,将浸水实验得到的岩石试样放置于下夹持座22上,通过轴压系统3的施力部174施加第二设定轴向预紧力,打开轴压泵33向轴压缸31 内加入油液,当轴压压力表35的压力等于第二设定轴向预紧力时,关闭轴压泵 33;In step S1, the rock sample obtained by the water immersion test is placed on the
在步骤S2中,将轴向位移传感器52和环向位移传感器51安装到岩石试样上,环向位移传感器51需与岩石试样底面保持水平,轴向位移传感器52需与岩石试样轴线平行,并调整轴向位移和环向位移测量系统至初始值;In step S2, the
基于上述操作,完成岩石试样竖直方向的固定,以便于后续试验。Based on the above operations, the vertical fixation of the rock sample is completed to facilitate subsequent tests.
在步骤S3中,通过围压系统1的施力部174施加第二预设围压,打开围压泵13向围压缸11内加入油液,当围压压力表15的压力等于第二预设围压时,关闭围压泵13;In step S3, the second preset confining pressure is applied by the force applying part 174 of the confining
在步骤S4中,采用渗透压系统4的两个施力部174分别施加第三预设压力和第四预设压力,打开两个渗压泵42向渗压管道41和进水孔211输水,当两个渗压压力表44的压力均等于其对应的施力部施加的压力时,关闭两个渗压泵 42;其中,第三预设压力和第四预设压力之间的压差为渗透压。In step S4 , the two force applying parts 174 of the
在步骤S5中,当轴压压力表35、围压压力表15或渗压压力表44的数值稳定后,启动声速实时测试系统,测岩石试样在长时蠕变过程中的动态声速信息,其实现原理为:In step S5, after the values of the axial
超声信号发射传感器经脉冲接收控制器发出脉冲信号,在岩石试样中传播至超声信号接收传感器,所用时间被数据采集器所记录,根据速度=路程/时间计算得出声波速度,在数字荧光示波器中显示。以100m赋存深度为例,将所得岩石蠕变测试声速变化数据绘制于图4。声波的波速随介质裂隙发育、密度降低、声阻抗增大而降低,随应力增大、密度增大而增加。因此,获取岩石蠕变全过程的声波实时数据,可以反映岩石的损伤劣化性质,从而更好地揭示岩石长时蠕变渗流力学行为特性。The ultrasonic signal transmitting sensor sends a pulse signal through the pulse receiving controller, which propagates to the ultrasonic signal receiving sensor in the rock sample, and the time taken is recorded by the data collector. displayed in. Taking the occurrence depth of 100m as an example, the obtained sound velocity change data of rock creep test are plotted in Fig. 4. The wave velocity of the sound wave decreases with the development of medium cracks, the density decreases, and the acoustic impedance increases, and it increases with the increase of stress and density. Therefore, acquiring the real-time acoustic data of the whole process of rock creep can reflect the damage and deterioration properties of the rock, so as to better reveal the long-term creep and seepage mechanical behavior characteristics of the rock.
在步骤S6中,通过轴压系统3的施力部174施加预设轴压,打开轴压泵33 向轴压缸31内加入油液,直至轴向位移传感器52和环向位移传感器51采集的数据稳定;In step S6, a preset axial pressure is applied by the force applying part 174 of the
在步骤S7中,观察岩石试样是否发生破坏,若未破坏,令预设轴压=预设轴压+设定轴向荷载,返回步骤S6,否则进入步骤S8;In step S7, observe whether the rock sample is damaged, if not, set the preset axial pressure=preset axial pressure+set axial load, return to step S6, otherwise go to step S8;
优选设定轴向荷载为10MP;在轴压系统3施加轴向力过程中,需要记录实验全过程中轴向应变和环向应变随时间的变化情况,并基于此计算岩石试样全程体积应变随时间的变化情况,其中,体积应变=轴向应变+2×环向应变,轴向应变为正值,环向应变为负值。It is preferable to set the axial load to 10MP; in the process of applying the axial force to the
在步骤S8中,打开轴压系统3、围压系统1和渗透压系统4的控制阀门16,启动轴压泵33、围压泵13和渗压泵42抽回液体,取出岩石试样,观察岩石试样的破坏形态。In step S8, open the
以100m赋存深度为例,将该赋存深度的岩石试样蠕变全过程所得数据绘制于图5,分析曲线特征,确定岩石的长期强度,探究不同赋存深度围岩应力- 渗流-裂隙-蠕变耦合机制,揭示高应力高渗透压条件下岩石损伤破坏特征及蠕变渗流力学行为特性,从而服务于深部地下工程的长时安全稳定运营。Taking the occurrence depth of 100m as an example, the data obtained from the entire creep process of the rock sample at this occurrence depth are plotted in Figure 5, the characteristics of the curve are analyzed, the long-term strength of the rock is determined, and the stress-seepage-fracture of the surrounding rock at different occurrence depths is explored. -Creep coupling mechanism, revealing rock damage and failure characteristics and creep seepage mechanical behavior characteristics under high stress and high osmotic pressure conditions, so as to serve the long-term safe and stable operation of deep underground engineering.
实施时,本方案优选启动声速实时测试系统后,还包括观察轴压压力表35、围压压力表15或渗压压力表44的数值波动是否不等于设定阈值;若否,则继续实验;During implementation, this scheme preferably starts the sound velocity real-time test system, and also includes observing whether the numerical fluctuation of the
若是,开启轴压泵33、围压泵13或渗压泵42补充液体,直至轴压压力表 35、围压压力表15或渗压压力表44的值恢复原压力。If so, open the
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020483801.9U CN211740920U (en) | 2020-04-03 | 2020-04-03 | Deep high stress and high permeability environment simulation experiment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020483801.9U CN211740920U (en) | 2020-04-03 | 2020-04-03 | Deep high stress and high permeability environment simulation experiment system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211740920U true CN211740920U (en) | 2020-10-23 |
Family
ID=72854303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020483801.9U Active CN211740920U (en) | 2020-04-03 | 2020-04-03 | Deep high stress and high permeability environment simulation experiment system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211740920U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112904761A (en) * | 2021-01-15 | 2021-06-04 | 四川大学 | Calibration platform osmotic pressure control system and control method thereof |
CN113323663A (en) * | 2021-06-03 | 2021-08-31 | 安徽理工大学 | Associated resource is exploitation intelligent experimental apparatus in coordination altogether |
CN115290468A (en) * | 2022-07-18 | 2022-11-04 | 四川大学 | Capsule-shaped environment simulation body structure for Hopkinson rod test system |
-
2020
- 2020-04-03 CN CN202020483801.9U patent/CN211740920U/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112904761A (en) * | 2021-01-15 | 2021-06-04 | 四川大学 | Calibration platform osmotic pressure control system and control method thereof |
CN112904761B (en) * | 2021-01-15 | 2022-02-01 | 四川大学 | Calibration platform osmotic pressure control system and control method thereof |
CN113323663A (en) * | 2021-06-03 | 2021-08-31 | 安徽理工大学 | Associated resource is exploitation intelligent experimental apparatus in coordination altogether |
US11953512B2 (en) | 2021-06-03 | 2024-04-09 | Anhui University of Science and Technology | Intelligent experimental device for collaborative mining of associated resources |
CN115290468A (en) * | 2022-07-18 | 2022-11-04 | 四川大学 | Capsule-shaped environment simulation body structure for Hopkinson rod test system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN211740920U (en) | Deep high stress and high permeability environment simulation experiment system | |
CN107576562B (en) | Multi-field coupling true triaxial test system and test method thereof | |
CN107121359B (en) | It shakes out containing hydrate sediment-mechanics parameter coupling process simulator and method | |
RU2331057C2 (en) | Method and device for evaluation of physical parametres of undeground deposit of mineral wealth on base of study of rock fragments selected from this deposit | |
CN108982228B (en) | True triaxial test device for combustible ice sediments | |
CN203534910U (en) | Triaxial creep testing device for stress, seepage and chemical coupling of rock | |
CN104502224B (en) | Saturation water Coal Under rock isothermal desorption curve determination device and method | |
CN109298162A (en) | Different phase carbon dioxide fracturing shale device and experimental method | |
CN111289377A (en) | Deep high-stress high-permeability environment simulation experiment system and experiment method thereof | |
CN106525686B (en) | A kind of customization pulsed rock fracture in dynamic indentation imitative experimental appliance and its experimental method | |
CN107894383A (en) | Permeability measuring apparatus containing hydrate sediment and its method under condition of triaxial stress | |
CN103323352A (en) | Experimental device and method for dynamic triaxial mechanical-acoustic-electrical synchronous testing of natural gas hydrate sediment | |
CN110057740A (en) | High temperature and pressure coal petrography supercritical carbon dioxide pressure break-creep-seepage tests method | |
CN106018236A (en) | Multifunctional integrated cap pressing type pressure chamber in rock coupling penetration test and test method | |
CN105910971A (en) | Combined measurement method for organic matter-rich compact rock core gas permeability and diffusion coefficient | |
CN105203411A (en) | Slit shear-seepage coupling test system of triaxial cell and test method | |
CN101135622A (en) | Rock dual linkage triaxial rheometer | |
CN111811946A (en) | Rock stress-chemical coupling creep test device and test method based on real water environment | |
CN103983533B (en) | A kind of gas bearing shale crack develops and seepage flow characteristics test device and method | |
CN203929557U (en) | A kind of gas bearing shale crack develops and seepage flow characteristics proving installation | |
CN102135478A (en) | Triaxial test device for testing transubstantiation of sediments of gas hydrate | |
CN104374684A (en) | System for testing permeability of unloading coal and rock mass in mining process and application thereof | |
CN109490119B (en) | A method for determining damage variables of rock materials | |
CN201083668Y (en) | Rock double-linkage three axis rheogeniometer | |
CN113790853B (en) | Comprehensive test platform for dynamic tightness of gas storage cover layer rock |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |