CN211637815U - Ultrasonic strengthening orthopedic device - Google Patents

Ultrasonic strengthening orthopedic device Download PDF

Info

Publication number
CN211637815U
CN211637815U CN202020140650.7U CN202020140650U CN211637815U CN 211637815 U CN211637815 U CN 211637815U CN 202020140650 U CN202020140650 U CN 202020140650U CN 211637815 U CN211637815 U CN 211637815U
Authority
CN
China
Prior art keywords
jet
ultrasonic
positive pressure
injection hole
orthopedic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020140650.7U
Other languages
Chinese (zh)
Inventor
翟锰钢
赵夙
于磊
张庆龙
尚晓峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN202020140650.7U priority Critical patent/CN211637815U/en
Application granted granted Critical
Publication of CN211637815U publication Critical patent/CN211637815U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

The utility model discloses an orthopedic device is reinforceed to supersound, include: the ultrasonic generator comprises an ultrasonic power supply and an ultrasonic transducer connected with the ultrasonic power supply, wherein the output end of the ultrasonic transducer is provided with a vibrating body for impacting an ejection body to eject the ejection body; the spraying body is used for impacting the surface of a workpiece and is provided with a pressure bearing surface; the end cover is used for arranging the jet body and is provided with a jet hole in sliding fit with the jet body and an airflow channel communicated with the jet hole, an inlet of the airflow channel is connected with a positive pressure air source so that the airflow channel is filled with positive pressure air, and the airflow channel is aligned to the pressure bearing surface so that the positive pressure air pushes the jet body to collide against the vibrating body. The ultrasonic strengthening orthopedic device can realize the surface strengthening orthopedic process of workpieces in any direction, avoid impurities such as metal chips and the like from entering the device, and is suitable for a heavier jet body with larger size, so that the jet body has higher impact strength.

Description

Ultrasonic strengthening orthopedic device
Technical Field
The utility model relates to a surface strengthening and orthopedic technical field, more specifically say, relate to an ultrasonic strengthening orthopedic device.
Background
As the most promising cold-working surface strengthening treatment process for metal materials at present, ultrasonic strengthening is widely used in the mechanical manufacturing process, and for example, ultrasonic strengthening can be used for surface forming of parts such as aircraft panel parts and carrier rocket tanks, and for straightening of deformed members by mechanical processing such as casting, welding, and pressing.
The ultrasonic strengthening process mainly utilizes a shot piece or a firing pin and other jet pieces to impact the surface of the structural part at a high speed under the action of ultrasonic waves, so that a strengthening layer is generated on the surface of the structural part, and the fatigue life, the stress corrosion resistance and the like of the structural part are improved.
The ultrasonic strengthening equipment in the prior art is started again after the spraying piece impacts a workpiece mainly by means of the gravity of the spraying piece or negative pressure suction, so that the spraying piece continuously collides with an amplitude transformer of ultrasonic vibration, the spraying piece is continuously excited to be sprayed out, and the surface of the workpiece is strengthened.
However, when the spray member is activated by its own weight, the workpiece must be suspended and the ultrasonic reinforcement device is located right under the workpiece, so that the processing direction of the workpiece is limited and the workpiece needs to be continuously turned over so that different surfaces of the workpiece face the ultrasonic reinforcement device.
When the spraying piece is started by means of negative pressure suction, on one hand, due to the action of the negative pressure suction, impurities such as metal chips or dust are easily sucked into the ultrasonic strengthening equipment, so that the electrical equipment is in a disconnection risk, equipment faults are caused, or the smoothness of the movement of the spraying piece is influenced, and the manufacturability of the surface treatment of the workpiece is influenced. On the other hand, since the maximum pressure of the negative pressure is one atmosphere, there is an upper limit to the suction pressure, and therefore, this method is only applicable to a very small number or light weight of ejection members, for example, a single-point or line strengthening treatment such as stress relief of a weld or the like is performed using a single firing pin or a very small number of firing pins. For the ejection member with a large size and a heavy gravity, the ejection member cannot be absorbed to the surface of the ultrasonic vibration horn under the negative pressure condition in general so that the ejection member is ejected, or the impact force of the ejection member is small, so that the strength of the surface of the workpiece after the strengthening treatment is low.
In summary, those skilled in the art need to solve the above-mentioned problems, how to provide an ultrasonic strengthening and shape-correcting device that can realize a surface strengthening and shape-correcting process of a workpiece in different directions, prevent impurities such as metal chips from entering the inside of the device, and is suitable for a heavy and large-sized injection member.
Disclosure of Invention
In view of this, the present invention provides an ultrasonic strengthening orthopedic device, which can realize a surface strengthening orthopedic process of a workpiece in any direction, prevent impurities such as metal chips from entering the ultrasonic strengthening orthopedic device, and is suitable for a heavier and larger-sized jet body, so that the jet body has a larger impact strength.
In order to achieve the above object, the present invention provides the following technical solutions:
an ultrasonically enhanced orthopedic device comprising:
the ultrasonic generator comprises an ultrasonic power supply and an ultrasonic transducer connected with the ultrasonic power supply, wherein the output end of the ultrasonic transducer is provided with a vibrating body used for impacting a jet body to enable the jet body to be jetted out;
the spray body is used for impacting the surface of a workpiece and is provided with a pressure bearing surface;
the end cover is used for arranging the jet body, the end cover is provided with a jet hole in sliding fit with the jet body and an air flow channel communicated with the jet hole, an inlet of the air flow channel is connected with a positive pressure air source so that the air flow channel is filled with positive pressure air, and the air flow channel is aligned to the pressure bearing surface so that the positive pressure air pushes the jet body to collide against the vibrating body.
Preferably, the air flow passage is disposed perpendicular to an axis of the injection hole, and the pressure receiving surface is an inclined surface inclined with respect to a moving direction of the injection body.
Preferably, the end cover comprises a cover body and a top cover arranged at one end of the cover body, a sinking groove is formed in one end, facing the top cover, of the cover body, the sinking groove and the inner end face of the top cover form the airflow channel, the cover body is provided with a connecting hole communicated with the sinking groove, and an air pipe connected with the positive pressure air source is in sealing connection with the connecting hole.
Preferably, the top cover is provided with a first injection hole penetrating through the thickness of the top cover, the cover body is provided with a second injection hole penetrating through the thickness of the cover body, and the first injection hole and the second injection hole are arranged in a one-to-one correspondence manner;
the injection body includes a first columnar portion for slidably fitting with the first injection hole and a second columnar portion for slidably fitting with the second injection hole;
the first columnar part and the second columnar part are in transitional connection through the pressure bearing face, and the minimum radial dimension of the pressure bearing face is larger than or equal to the aperture of the first injection hole.
Preferably, the end cover further comprises a partition plate arranged at the other end of the cover body, the partition plate is provided with third injection holes, and the third injection holes and the second injection holes are arranged in a one-to-one correspondence manner;
the injection body further comprises a third cylindrical part which is in sliding fit with the third injection hole, a limiting part is arranged between the second cylindrical part and the third cylindrical part, and the minimum radial dimension of the limiting part is larger than or equal to the aperture of the third injection hole.
Preferably, the ultrasonic jet head further comprises a controller respectively connected with the ultrasonic power supply and the positive pressure air source, and the controller is used for controlling the output power of the ultrasonic power supply and the air flow of the positive pressure air source so as to enable the jet body to have preset impact strength by adjusting the output power and the air flow.
Preferably, the ejection device further comprises a sensor for detecting the impact strength of the ejection body, and the sensor is connected with the controller, so that the controller controls the output power and the air flow according to a detection signal of the sensor.
Preferably, the shape of the impact end of the spray body, which is used for contacting with the surface of the workpiece, is a plane, a cambered surface, a spherical surface or a pointed angle.
Preferably, the vibrating body and the ultrasonic transducer are connected by a stud.
The utility model provides an orthopedic device is reinforceed to supersound starts the injection body through the gaseous positive pressure of malleation, makes injection body and pendulum collision to turn into the high-speed impact of injection body to workpiece surface through the pendulum with ultrasonic energy, make workpiece surface produce plastic deformation, with this enhancement or orthopedic technology that realizes workpiece surface.
Compared with the prior art that the spraying piece is started by the gravity of the spraying piece or by means of negative pressure suction, the spraying body is started by positive pressure gas, and the surface strengthening or shape righting process of the workpiece in different directions can be realized; secondly, impurities such as metal chips and dust can be prevented from entering the interior of the ultrasonic strengthening shape correcting device, the influence of external impurities on the running performance of the ultrasonic strengthening shape correcting device is avoided, the protection level of the ultrasonic strengthening shape correcting device is improved, and the ultrasonic strengthening shape correcting device can work in a severe environment; in addition, the pressure of the positive pressure gas is not limited by the atmospheric pressure, and the negative pressure gas is not limited like the upper limit of the negative pressure when the negative pressure is adopted, so that the jet body with larger weight or size can be driven, the jet body has higher impact strength and efficiency, and the jet body is particularly suitable for the strengthening and shape righting process of large structural parts.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required to be used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the provided drawings without creative efforts.
Fig. 1 is a schematic structural diagram of an ultrasound-enhanced orthopedic device according to an embodiment of the present invention;
FIG. 2 is a schematic view of the structure of the jet body according to an embodiment of the present invention;
FIG. 3 is a schematic view of different shapes of the impact end of the jet body in an embodiment of the invention;
FIG. 4 is a schematic view of a jet body according to another embodiment of the present invention;
FIG. 5 is a schematic illustration of a different shape of the impact end of the jet body in another embodiment of the invention;
FIG. 6 is a schematic view of the impact teeth of the impact end of the jet body according to an embodiment of the present invention;
fig. 7 is a control block diagram of an ultrasound-enhanced orthopedic device according to an embodiment of the present invention.
The reference numerals in fig. 1 to 7 are as follows:
11 is an ultrasonic power supply, 12 is an ultrasonic transducer, 13 is a vibrating body, 14 is a stud, 2 is a jet body, 21 is a pressure-bearing surface, 22 is a first columnar part, 221 is an impact end, 222 is an impact tooth, 23 is a second columnar part, 24 is a third columnar part, 25 is a limiting part, 3 is an end cover, 31 is an air flow channel, 32 is a cover body, 33 is a top cover, 34 is a clapboard, 4 is a positive pressure air source, 41 is an air pipe, 42 is an air flow control unit, 5 is a controller, 6 is a sensor and 7 is a shell.
Detailed Description
The technical solutions in the embodiments of the present invention will be described clearly and completely with reference to the accompanying drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only some embodiments of the present invention, not all embodiments. Based on the embodiments in the present invention, all other embodiments obtained by a person skilled in the art without creative efforts belong to the protection scope of the present invention.
The core of the utility model is to provide an orthopedic device is reinforceed to supersound can realize that the orthopedic technology is reinforceed to the surface of work piece arbitrary direction, avoids impurity such as metal fillings to get into this orthopedic device is reinforceed to supersound inside, and applicable in the great ejection body of heavier and size, makes the ejection body have great impact strength.
Referring to fig. 1-7, fig. 1 is a schematic structural diagram of an ultrasound-enhanced orthopedic device according to an embodiment of the present invention; FIG. 2 is a schematic view of the structure of a jet body in one embodiment; FIG. 3 is a schematic illustration of various shapes of an impact end of a jet body in one embodiment; FIG. 4 is a schematic view showing the structure of a jet body in another embodiment; FIG. 5 is a schematic illustration of a different shape of the impact end of the jet body in another embodiment; FIG. 6 is a schematic view of the configuration of the impact teeth at the impact end of the jet body; fig. 7 is a control block diagram of an ultrasound-enhanced orthopedic device according to an embodiment of the present invention.
The utility model provides an ultrasonic strengthening orthopedic device, which mainly comprises an ultrasonic power supply 11, an ultrasonic transducer 12, a vibrating body 13, an injection body 2, an end cover 3, a positive pressure air source 4 and the like.
Specifically, the ultrasonic transducer 12 is connected to the ultrasonic power source 11, the vibration body 13 is provided at an output end of the ultrasonic transducer 12, the ultrasonic power source 11 is configured to input a high-frequency current into the ultrasonic transducer 12, the ultrasonic transducer 12 is configured to convert an electric power input by the ultrasonic power source 11 into a mechanical power of longitudinal wave vibration and transmit the longitudinal wave vibration to the vibration body 13, and the vibration body 13 is configured to impact the ejection body 2 so that the ejection body 2 is ejected.
The jet body 2 is used for continuously impacting the surface of the workpiece under the action of the vibrating body 13 so as to realize an ultrasonic strengthening process on the surface of the workpiece.
The end cover 3 is used for arranging the injection body 2, and the end cover 3 is provided with an injection hole and an air flow passage 31, wherein the injection hole is used for being matched with the injection body 2 in a sliding mode, so that the injection body 2 can move relative to the injection hole under the action of force.
The air flow passage 31 is communicated with the injection hole, and the inlet of the air flow passage 31 is connected with the positive pressure air source 4, so that the air flow passage 31 is filled with positive pressure air by the positive pressure air source 4.
The jet body 2 is provided with a pressure bearing surface 21 for receiving the pressure of the gas at positive pressure, and it will be appreciated that the gas flow passages 31 are aligned with the pressure bearing surface 21 to enable the gas at positive pressure to act on the pressure bearing surface 21 to cause the gas at positive pressure to urge the jet body 2 against the vibration body 13 to effect actuation of the jet body 2.
That is to say, in the working process, the positive pressure gas pushes the ejection body 2, so that the ejection body 2 collides against the vibration body 13, the vibration body 13 vibrates at high frequency under the action of the ultrasonic transducer 12, and at the moment that the ejection body 2 collides against the vibration body 13, the ejection body 2 is ejected onto a workpiece, so that the ejection body 2 impacts the surface of the workpiece, the ejection body 2 rebounds after impacting and colliding with the surface of the workpiece, at this time, the ejection body 2 collides against the vibration body 13 again under the positive pressure of the positive pressure gas, and the operation is repeated in such a reciprocating way, so that the ejection body 2 continuously impacts the surface of the workpiece, and the purpose of performing ultrasonic strengthening and shape correction on the surface of the.
Therefore, the utility model discloses a positive pressure of malleation gas starts jet body 2, makes jet body 2 and pendulum 13 collide to turn into the high-speed impact of jet body 2 to the work piece surface through pendulum 13 with ultrasonic energy, make the work piece surface produce plastic deformation, with this reinforcing or orthopedic technology of realization work piece surface.
Compared with the prior art that the spraying piece is started by the gravity of the spraying piece or by means of negative pressure suction, the positive pressure gas starts the spraying body 2, and the surface strengthening or shape righting process of the workpiece in different directions can be realized; secondly, impurities such as metal chips and dust can be prevented from entering the interior of the ultrasonic strengthening shape correcting device, the influence of external impurities on the running performance of the ultrasonic strengthening shape correcting device is avoided, the protection level of the ultrasonic strengthening shape correcting device is improved, and the ultrasonic strengthening shape correcting device can work in a severe environment; in addition, because the pressure of the positive pressure gas is not limited by the atmospheric pressure and is not limited like the upper limit of the negative pressure when the negative pressure is adopted, the ejection body 2 with larger weight or size can be driven, so that the ejection body 2 has higher impact strength and efficiency, and is particularly suitable for the strengthening and shape righting process of large structural parts.
It should be noted that the pressure-bearing face 21 of the jet body 2 is always within the alignment range of the gas flow passage 31 during the entire stroke of the jet body 2, so that the positive pressure gas can always act on the pressure-bearing face 21, and the situation that the positive pressure gas cannot activate the jet body 2 is avoided.
In consideration of the force applied to the pressure receiving face 21, the air flow path 31 is provided perpendicular to the axis of the injection hole on the basis of the above-described embodiment, and the pressure receiving face 21 is an inclined face inclined with respect to the moving direction of the jet body 2.
That is, the positive pressure gas directly acts on the inclined surface of the ejection body 2 in a direction perpendicular to the moving direction of the ejection body 2, and generates pressure on the inclined surface, causing the ejection body 2 to collide against the vibration body 13 to activate the ejection body 2.
In consideration of the specific structure of the end cap 3 and the specific arrangement of the gas flow channel 31, on the basis of the above-mentioned embodiment, the end cap 3 includes a cap body 32 and a top cap 33 provided at one end of the cap body 32, the end of the cap body 32 facing the top cap 33 is provided with a sunken groove, the sunken groove and the inner end surface of the top cap 33 form the gas flow channel 31, the cap body 32 is provided with a connecting hole communicated with the sunken groove, and a gas pipe 41 connected with the positive pressure gas source 4 is hermetically connected with the connecting hole.
That is, in the present embodiment, the cover 32, the top cover 33 and the air pipe 41 form a closed high-pressure air chamber, that is, the air flow passage 31, and the positive pressure air is supplied from the positive pressure air source 4 to the sink via the air pipe 41 to activate the jet body 2.
The lid 32 and the top cover 33 may be fixed by welding, by bolts, or the like.
Preferably, the ultrasonic generator further comprises a shell 7, the cover 32 is fixedly connected with the shell 7, the ultrasonic transducer 12 and the vibrating body 13 are arranged in the shell 7, and the air pipe 41 is connected with the connecting hole through the inner space of the shell 7.
In order to make the pressure-bearing face 21 be acted on by the pressure of the positive pressure gas in the whole stroke of the injection body 2, on the basis of the above-mentioned embodiment, the top cover 33 is provided with a first injection hole penetrating through the thickness thereof, the cover body 32 is provided with a second injection hole penetrating through the thickness thereof, and the first injection hole and the second injection hole are arranged in one-to-one correspondence; the injector body 2 includes a first cylindrical portion 22 and a second cylindrical portion 23, the first cylindrical portion 22 being adapted to be slidably fitted with a first injection hole, the second cylindrical portion 23 being adapted to be slidably fitted with a second injection hole; the first cylindrical portion 22 and the second cylindrical portion 23 are transitionally connected by the pressure-bearing face 21, and the minimum radial dimension of the pressure-bearing face 21 is greater than or equal to the aperture of the first injection hole.
It will be appreciated that, since the pressure receiving face 21 is an inclined face, and as is known from the force applied to the inclined face, the radial dimension of the pressure receiving face 21 gradually decreases from the end thereof connected to the second cylindrical portion 23 to the end thereof connected to the first cylindrical portion 22, that is, the radial dimension of the second cylindrical portion 23 is larger than that of the first cylindrical portion 22.
Since the minimum radial dimension of the pressure-bearing face 21 is greater than or equal to the aperture of the first injection hole, that is, the pressure-bearing face 21 cannot pass through the first injection hole, when the portion of the pressure-bearing face 21 with the minimum radial dimension moves to the first injection hole, the pressure-bearing face 21 abuts against the aperture wall of the first injection hole, and the injector 2 cannot continue to move in the direction close to the first injection hole, that is, at the maximum stroke position of the injector 2, at this time, the end of the injector 2 extending out of the first injection hole contacts with the workpiece surface, and impacts the workpiece surface.
Obviously, at this time, the positive pressure gas in the gas flow channel 31 may act on the entire inclined surface, and after the collision of the jet body 2 with the workpiece is completed, the jet body 2 collides against the vibration body 13 in the opposite direction by the positive pressure gas.
In view of the convenience of installation, the end cover 3 further includes a partition plate 34, the partition plate 34 is disposed at one end of the cover 32 far from the top cover 33, the partition plate 34 is provided with third injection holes, and the third injection holes and the second injection holes are arranged in one-to-one correspondence; the injector body 2 further includes a third cylindrical portion 24 slidably fitted to the third injection hole, a stopper portion 25 is provided between the second cylindrical portion 23 and the third cylindrical portion 24, and a minimum radial dimension of the stopper portion 25 is greater than or equal to a bore diameter of the third injection hole.
That is, the present embodiment mechanically restricts the stopper portion 25 by the partition 34, and prevents the injection body 2 from coming off from the second injection hole during the mounting process.
The lid 32 and the spacer 34 may be fixed by welding, by bolts, or the like.
It should be further noted that, in the above embodiments, the present invention does not limit the specific shape of the impact end 221 of the jetting body 2 for contacting with the workpiece surface, as shown in fig. 3 and 5, in order to adapt the jetting body 2 to workpiece surfaces with different shapes, on the basis of the above embodiments, the shape of the impact end 221 of the jetting body 2 for contacting with the workpiece surface is a plane, an arc, a sphere, a sharp angle, or the like, which can be selected by those skilled in the art according to actual needs.
On this basis, as shown in fig. 6, the impact end 221 of the jet body 2 is preferably provided with impact teeth 222, and the shape of the impact teeth 222 can be selected according to actual needs.
In addition, the present invention does not limit the specific material of the jetting body 2, for example, the jetting body 2 can be a metal jetting body 2 or a ceramic jetting body 2, so that the jetting body 2 can meet the strengthening and shape-righting treatment requirements of different material surfaces.
Further, in the above embodiments, the specific number of the injection bodies 2 is not limited, and can be selected by those skilled in the art according to actual needs.
It is understood that the area of the working surface of the vibrating body 13 increases as the number of the jet bodies 2 increases, so that the working surface of the vibrating body 13 can completely cover all the jet bodies 2, so as to improve the treatment efficiency of the ultrasonic strengthening process.
In order to make the ejection body 2 have a larger stroke, on the basis of the above embodiments, the vibration body 13 is a variable amplitude vibration body 13 for amplifying the amplitude of the vibration output by the ultrasonic transducer 12, and the specific structure of the variable amplitude vibration body 13 can be referred to in the prior art, and is not limited in detail herein.
In consideration of the convenience of connecting the vibration body 13 and the ultrasonic transducer 12, it is preferable that the vibration body 13 and the ultrasonic transducer 12 are connected by a stud 14. Of course, the vibrating body 13 and the ultrasonic transducer 12 may be fixedly connected by other mechanical connection means such as welding.
In order to provide the jet body 2 with a proper impact strength, on the basis of any one of the above embodiments, the jet body 2 further comprises a controller 5 connected to the ultrasonic power supply 11 and the positive pressure gas supply 4, respectively, and the controller 5 is configured to control the output power of the ultrasonic power supply 11 and the gas flow rate of the positive pressure gas supply 4 so as to provide the jet body 2 with a preset impact strength by adjusting the output power of the ultrasonic power supply 11 and the gas flow rate of the positive pressure gas supply 4.
It can be understood that the impact strength of the jet body 2 is related to the positive pressure applied thereto by the positive pressure gas and the vibration energy of the vibration body 13, therefore, the present embodiment controls the output power of the ultrasonic power source 11 and the gas flow of the positive pressure gas source 4 respectively by the controller 5 to make the positive pressure generated by the positive pressure gas on the jet body 2 and the vibration energy of the vibration body 13 act together to make the jet body 2 have the appropriate impact strength.
It should be noted that the preset impact strength refers to the impact strength of the jetting body 2 set by a person skilled in the art according to actual needs, and the specific size of the preset impact strength is not limited by the present invention.
Preferably, the positive pressure gas source device further comprises a gas flow control unit 42 respectively connected to the positive pressure gas source 4 and the controller 5, and the controller 5 controls the gas flow of the positive pressure gas source 4 through the gas flow control unit 42, so as to control the magnitude of the positive pressure acting on the jet body 2.
It should be noted that the present invention does not limit the specific control method of the controller 5, for example, when the impact strength of the spraying body 2 does not reach the preset impact strength, and the output power of the ultrasonic power supply 11 does not reach the maximum output power, the output power of the ultrasonic power supply 11 is continuously increased until the output power of the ultrasonic power supply 11 reaches the maximum output power, that is, at this time, the impact strength of the spraying body 2 is increased by increasing the output power of the ultrasonic power supply 11.
When the output power of the ultrasonic power supply 11 reaches the maximum output power thereof and the impact strength of the ejection body 2 does not reach the preset impact strength yet, the controller 5 controls the air flow of the positive pressure air source 4 to be continuously increased until the air flow of the positive pressure air source 4 reaches the maximum air flow thereof, that is, at this time, when the output power of the ultrasonic power supply 11 reaches the maximum output power thereof, the impact strength of the ejection body 2 is increased by increasing the air flow of the positive pressure air source 4.
When the impact strength of the jet body 2 is greater than the preset impact strength and the output power of the ultrasonic power supply 11 is greater than the minimum output power thereof, the impact strength of the jet body 2 is reduced by controlling the output power of the ultrasonic power supply 11 to be continuously reduced by the controller 5 until the output power of the ultrasonic power supply 11 reaches the minimum output power thereof.
When the output power of the ultrasonic power supply 11 reaches the minimum output power and the impact strength of the jet body 2 is still greater than the preset impact strength, the controller 5 controls the air flow of the positive pressure air source 4 to be continuously reduced, so as to further reduce the impact strength of the jet body 2 until the air flow of the positive pressure air source 4 reaches the minimum air flow.
In order to monitor the impact strength of the jetting body 2 in real time, a sensor 6 for detecting the impact strength of the jetting body 2 is further included on the basis of the above embodiment, and the sensor 6 is connected to the controller 5, so that the controller 5 controls the output power of the ultrasonic power supply 11 and the air flow of the positive pressure air supply 4 according to the detection signal of the sensor 6.
That is, in the present embodiment, the real-time impact strength of the jetting body 2 is detected by the sensor 6, and the real-time impact strength signal is sent to the controller 5, and after receiving the real-time impact strength signal, the controller 5 compares the real-time impact strength of the jetting body 2 with the initial value of the preset impact strength, so as to control the output power of the ultrasonic power source 11 and the air flow of the positive pressure air source 4 according to the comparison result, thereby achieving the purpose of adjusting the impact strength of the jetting body 2.
It should be noted that the present embodiment does not limit the specific structure of the sensor 6 and the arrangement manner thereof, as long as the impact strength of the ejection body 2 can be detected, for example, the sensor 6 may be a pressure sensor 6, and the pressure sensor 6 may be preferably arranged on the working surface of the vibration body 13.
It is further noted that, in the present specification, relational terms such as first and second, and the like are used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions.
The embodiments are described in a progressive manner in the specification, each embodiment focuses on differences from other embodiments, and the same and similar parts among the embodiments are referred to each other.
The ultrasonic strengthening orthopedic device provided by the utility model is introduced in detail above. The principles and embodiments of the present invention have been explained herein using specific examples, and the above descriptions of the embodiments are only used to help understand the method and its core ideas of the present invention. It should be noted that, for those skilled in the art, without departing from the principle of the present invention, the present invention can be further modified and modified, and such modifications and modifications also fall within the protection scope of the appended claims.

Claims (9)

1. An ultrasonically enhanced orthopedic device, comprising:
the ultrasonic jet device comprises an ultrasonic power supply (11) and an ultrasonic transducer (12) connected with the ultrasonic power supply (11), wherein the output end of the ultrasonic transducer (12) is provided with a vibrating body (13) which is used for impacting a jet body (2) to enable the jet body (2) to jet out;
the spray body (2) is used for impacting the surface of a workpiece, and the spray body (2) is provided with a pressure bearing surface (21);
the end cover (3) is used for arranging the jet body (2), the end cover (3) is provided with a jet hole in slidable fit with the jet body (2) and an air flow channel (31) communicated with the jet hole, the inlet of the air flow channel (31) is connected with a positive pressure air source (4) so that the air flow channel (31) is filled with positive pressure air, and the air flow channel (31) is aligned with the pressure bearing surface (21) so that the positive pressure air pushes the jet body (2) to collide against the vibrating body (13).
2. The ultrasound-augmented orthopedic device according to claim 1, characterized in that the air flow passage (31) is disposed perpendicular to the axis of the injection hole, and the pressure bearing face (21) is an inclined face inclined with respect to the direction of movement of the jet body (2).
3. The ultrasound-augmented orthopedic device according to claim 2, characterized in that the end cap (3) comprises a cap body (32) and a top cap (33) provided at one end of the cap body (32), the end of the cap body (32) facing the top cap (33) is provided with a sunken groove, the sunken groove and the inner end surface of the top cap (33) form the air flow channel (31), the cap body (32) is provided with a connecting hole communicated with the sunken groove, and an air pipe (41) connected with the positive pressure air source (4) is in sealing connection with the connecting hole.
4. The ultrasound-augmented orthopedic device of claim 3, characterized in that the top cover (33) is provided with a first injection hole through its thickness, the cap body (32) is provided with a second injection hole through its thickness, and the first injection hole and the second injection hole are arranged in one-to-one correspondence;
the injection body (2) comprises a first cylindrical portion (22) for slidable fitting with the first injection hole and a second cylindrical portion (23) for slidable fitting with the second injection hole;
the first cylindrical portion (22) and the second cylindrical portion (23) are transitionally connected through the pressure bearing face (21), and the minimum radial dimension of the pressure bearing face (21) is larger than or equal to the aperture of the first injection hole.
5. The ultrasound-augmented orthopedic device according to claim 4, characterized in that the end cap (3) further comprises a partition plate (34) provided at the other end of the cap body (32), the partition plate (34) is provided with third injection holes, and the third injection holes are provided in one-to-one correspondence with the second injection holes;
the injection body (2) further comprises a third cylindrical part (24) which is in sliding fit with the third injection hole, a limiting part (25) is arranged between the second cylindrical part (23) and the third cylindrical part (24), and the minimum radial dimension of the limiting part (25) is larger than or equal to the aperture of the third injection hole.
6. The ultrasound augmentation orthopaedic device according to any one of claims 1 to 5, further comprising a controller (5) connected to the ultrasonic power source (11) and the positive pressure gas source (4), respectively, for controlling the output power of the ultrasonic power source (11) and the gas flow rate of the positive pressure gas source (4) to cause the jet body (2) to have a preset impact strength by adjusting the output power and the gas flow rate.
7. The ultrasound intensified orthopedic device according to claim 6, characterized by further comprising a sensor (6) for detecting the impact strength of the jet body (2), wherein the sensor (6) is connected to the controller (5) so that the controller (5) controls the output power and the air flow amount according to a detection signal of the sensor (6).
8. The ultrasound-augmented orthopedic device of claim 6, characterized in that the impact end (221) of the jet body (2) for contact with a workpiece surface is shaped as a plane, an arc, a sphere, or a cusp.
9. The ultrasound-augmented orthopedic device according to claim 6, characterized in that the vibration body (13) is connected with the ultrasound transducer (12) by a stud (14).
CN202020140650.7U 2020-01-21 2020-01-21 Ultrasonic strengthening orthopedic device Active CN211637815U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020140650.7U CN211637815U (en) 2020-01-21 2020-01-21 Ultrasonic strengthening orthopedic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020140650.7U CN211637815U (en) 2020-01-21 2020-01-21 Ultrasonic strengthening orthopedic device

Publications (1)

Publication Number Publication Date
CN211637815U true CN211637815U (en) 2020-10-09

Family

ID=72684388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020140650.7U Active CN211637815U (en) 2020-01-21 2020-01-21 Ultrasonic strengthening orthopedic device

Country Status (1)

Country Link
CN (1) CN211637815U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111215477A (en) * 2020-01-21 2020-06-02 中国科学院宁波材料技术与工程研究所 Ultrasonic strengthening orthopedic device and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111215477A (en) * 2020-01-21 2020-06-02 中国科学院宁波材料技术与工程研究所 Ultrasonic strengthening orthopedic device and control method thereof

Similar Documents

Publication Publication Date Title
CN110468265A (en) A kind of deep hole ultrasonic vibration shock peening device and method
CN107336142B (en) A kind of device and method of electromagnetism assisting ultrasonic shot-peening
CN107042254B (en) Metal sheet forming method and device based on laser blast wave and vibrotechnique
CN211637815U (en) Ultrasonic strengthening orthopedic device
CN107739798B (en) A kind of pressure-auxiliary ultrasonic vibration can fitting surface intensifying device and method
CN107630127B (en) A kind of swing type ultrasonic shot peening strengthening device
CN109420988A (en) Full angle flexibility pin type ultrasonic shot peening device
CN107488778B (en) A kind of ultrasonic shot peening strengthening device
CN107378234B (en) The device and method of ultrasonic vibration auxiliary high speed impact pressure welding metal foil plate
CN107630128B (en) A kind of the ladder array formula ultrasonic shot peening intensifying device and method of fan blade
CN111775060B (en) Ultrasonic shot blasting device for shaft parts
CN108357654A (en) A kind of underwater soft robot of chemistry exergonic reaction driving
CN110724804A (en) Ultrasonic-assisted vibration shot blasting strengthening process method for tooth root and tooth surface
JP4707663B2 (en) Stress pulse generating method and impact device in tool by working fluid actuated impact device.
CN111926160B (en) Ultrasonic shot blasting device for surface strengthening of cylindrical gear
CN108239694B (en) A kind of ultrasonic impact shot-blast unit
CN113151665B (en) Electroplastic and laser shock composite strengthening method and device for large workpiece
CN107574293A (en) A kind of ultrasonic shot peening strengthening device
US20100294010A1 (en) Shot peening apparatus and oscillator for shot peening
CN111215477A (en) Ultrasonic strengthening orthopedic device and control method thereof
CN112974635B (en) Forming device and forming method of structural wall plate
CN103555928A (en) Novel vehicle-mounted laser shock peening apparatus
CN111167887A (en) Ultrasonic strengthening orthopedic device
CN203174172U (en) Angle beam probe ultrasonic peening device utilizing stepped ultrasonic peening pin
CN115213822B (en) Non-submerged ultrasonic cavitation auxiliary water jet nozzle structure

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant