CN211402765U - Optical fiber acoustic sensing well-ground seismic data combined mining system - Google Patents
Optical fiber acoustic sensing well-ground seismic data combined mining system Download PDFInfo
- Publication number
- CN211402765U CN211402765U CN202020320802.1U CN202020320802U CN211402765U CN 211402765 U CN211402765 U CN 211402765U CN 202020320802 U CN202020320802 U CN 202020320802U CN 211402765 U CN211402765 U CN 211402765U
- Authority
- CN
- China
- Prior art keywords
- well
- ground
- seismic data
- component
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 32
- 238000005065 mining Methods 0.000 title claims description 4
- 230000005284 excitation Effects 0.000 claims abstract description 19
- 239000000835 fiber Substances 0.000 claims description 45
- 230000003287 optical effect Effects 0.000 claims description 32
- 230000001133 acceleration Effects 0.000 claims description 25
- 239000013078 crystal Substances 0.000 claims description 19
- 238000005553 drilling Methods 0.000 claims description 17
- 238000010892 electric spark Methods 0.000 claims description 17
- 239000002360 explosive Substances 0.000 claims description 17
- 238000013480 data collection Methods 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000011156 evaluation Methods 0.000 abstract description 4
- 230000001360 synchronised effect Effects 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 238000001228 spectrum Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 description 10
- 239000011435 rock Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000005755 formation reaction Methods 0.000 description 7
- 238000000253 optical time-domain reflectometry Methods 0.000 description 6
- 238000007418 data mining Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
本实用新型公开一种基于分布式光纤声波传感井地地震数据联采系统,为解决现有技术存在的井中和地面地震数据分别采集时存在的每个震源点重复激发时造成的能量不一致,频谱不一致,震源和地面的耦合也不完全一致的问题;本实用新型基于井中的分布式光纤声波传感地震数据采集单元和地面地震数据采集单元构成的井中─地面地震数据联合立体采集系统,进行井中─地面联合立体勘探和同步采集地面和井中地震数据,实现高密度、高效益、高分辨率、低成本的井─地联合立体地震勘探技术,进行油气资源勘探与综合评价。
The utility model discloses a combined acquisition system for well-ground seismic data based on distributed optical fiber acoustic wave sensing, in order to solve the energy inconsistency caused by repeated excitation of each source point when well and ground seismic data are collected separately in the prior art, The frequency spectrum is inconsistent, and the coupling between the source and the ground is not completely consistent; the utility model is based on the well-ground seismic data joint stereo acquisition system composed of the distributed optical fiber acoustic wave sensing seismic data acquisition unit and the ground seismic data acquisition unit in the well, and the Well-ground combined three-dimensional exploration and synchronous acquisition of ground and well seismic data to achieve high-density, high-efficiency, high-resolution, and low-cost well-ground combined three-dimensional seismic exploration technology for oil and gas resource exploration and comprehensive evaluation.
Description
技术领域technical field
本实用新型属于应用地球物理、地球物理勘探技术、地震勘探领域,特别涉及一种基于井中分布式光纤声波传感技术的井中─地面地震数据联采系统和井驱数据处理方法。The utility model belongs to the fields of application geophysics, geophysical exploration technology and seismic exploration, in particular to a well-ground seismic data combined mining system and a well drive data processing method based on well distributed optical fiber acoustic wave sensing technology.
背景技术Background technique
地震波(Seismic Wave)是由地震震源向四处传播的振动,指从震源产生向四周辐射的弹性波。按传播方式可分为纵波(P波)、横波(S波)(纵波和横波均属于体波)和面波(L波)三种类型。地震发生时,震源区的介质发生急速的破裂和运动,这种扰动构成一个波源。由于地球介质的连续性,这种波动就向地球内部及表层各处传播开去,形成了连续介质中的弹性波。地震波的传播速度都因传播介质不同而有差异,通常与岩石类型、围限压力、岩石结构以及其他地质因素有关。Seismic waves are vibrations that propagate from the source of an earthquake to all directions, and refer to elastic waves that radiate from the source to the surrounding area. According to the propagation mode, it can be divided into three types: longitudinal wave (P wave), transverse wave (S wave) (both longitudinal wave and transverse wave belong to body wave) and surface wave (L wave). When an earthquake occurs, the medium in the epicenter area ruptures and moves rapidly, and this disturbance constitutes a wave source. Due to the continuity of the earth's medium, such fluctuations spread to the interior and surface of the earth, forming elastic waves in the continuum. The propagation velocity of seismic waves varies with different propagation media, usually related to rock type, confining pressure, rock structure and other geological factors.
地震勘探是指人工激发所引起的弹性波利用地下介质弹性和密度的差异,通过观测和分析人工地震产生的地震波在地下的传播规律,推断地下岩层的性质和形态的地球物理勘探方法。地震勘探是地球物理勘探中最重要、解决油气勘探问题最有效的一种方法。它是钻探前勘测石油与天然气资源的重要手段,在煤田和工程地质勘查、区域地质研究和地壳研究等方面,也得到广泛应用。Seismic exploration refers to a geophysical exploration method that infers the nature and shape of underground rock formations by observing and analyzing the propagation law of seismic waves generated by artificial earthquakes by using the difference in elasticity and density of underground media caused by artificial excitation. Seismic exploration is the most important and most effective method to solve oil and gas exploration problems in geophysical exploration. It is an important means of exploring oil and natural gas resources before drilling, and it is also widely used in coalfield and engineering geological exploration, regional geological research and crustal research.
地震勘探则是利用人工的方法引起地壳振动(如雷管或炸药爆炸、重锤下落或敲击、电火花或压电晶体或气枪震源在水中或井中激发、可控震源振动),再用精密仪器按一定的观测方式记录爆炸后地面上各接收点的振动信息,利用对原始记录信息经一系列加工处理后得到的成果资料推断地下地质构造的特点。在地表以人工方法激发地震波,在向地下传播时,遇有介质性质不同的岩层分界面,地震波将发生反射与折射,在地表或井中用检波器接收这种地震波。收到的地震波信号与震源特性、检波点的位置、地震波经过的地下岩层的性质和结构有关。通过对地震波记录进行处理和解释,可以推断地下岩层的性质和形态。Seismic exploration is to use artificial methods to cause crustal vibration (such as detonator or explosive explosion, heavy hammer falling or knocking, electric spark or piezoelectric crystal or air gun source excited in water or well, vibrator vibration), and then use precision instruments. The vibration information of each receiving point on the ground after the explosion is recorded according to a certain observation method, and the characteristics of the underground geological structure are inferred by using the result data obtained after a series of processing of the original recorded information. The seismic waves are artificially excited on the surface, and when they propagate underground, the seismic waves will be reflected and refracted when encountering the interface of rock layers with different medium properties. The received seismic wave signal is related to the characteristics of the source, the location of the detection point, and the nature and structure of the underground rock strata through which the seismic wave passes. By processing and interpreting seismic wave records, the properties and morphology of subsurface rock formations can be inferred.
在对地震勘探所获取的地震数据进行处理和解释的过程中,计算出各种地震波在地层中传播的速度和地下介质(地层或岩层)的弹性或粘弹性参数是必须和非常重要的步骤之一。如果不能准确的获取地下地层的地震波速度和地下介质(地层或岩层)的弹性或粘弹性参数,则会非常不利于或者无法进行后续的地震数据的处理和解释。因此,准确的测量和计算地下地层的地震波速度和地下介质(地层或岩层)的弹性或粘弹性参数,是进行地震勘探数据处理解释的首要任务之一。In the process of processing and interpreting the seismic data acquired by seismic exploration, it is one of the necessary and very important steps to calculate the velocity of various seismic waves propagating in the formation and the elastic or viscoelastic parameters of the underground medium (strata or rock formation). one. If the seismic wave velocity of the subterranean formation and the elastic or viscoelastic parameters of the subterranean medium (stratum or rock formation) cannot be accurately obtained, it will be very disadvantageous or impossible to process and interpret the subsequent seismic data. Therefore, accurate measurement and calculation of the seismic wave velocity of the subsurface and the elastic or viscoelastic parameters of the subsurface medium (strata or rock formation) is one of the primary tasks in the processing and interpretation of seismic exploration data.
现有的地面和井中的地震数据采集系统,使用的是通用的动圈式或数字式地面单分量或三分量检波器和井中的动圈式三分量检波器阵列,进行井─地联合立体同步采集地面和井中地震数据。由于现有的井中动圈式三分量检波器重量大、成本高,测井电缆一次最多能在井里下放100级动圈式三分量检波器,采集数千米深的全井段井中地震数据需要移动或上提井中动圈式三分量检波器阵列数次,每提升一次井中动圈式三分量检波器阵列,地面的所有人工激发震源(炸药或重锤或电火花或气枪或压电晶体或可控震源)点就需要重新激发一次,这不仅造成了井地联合立体采集的地震数据的成本极高,在每个震源点的重复激发很难保证每次激发的能量一致,频谱一致,震源和地面的每次耦合也完全一致。由于以上这些众所周知的原因,通用的动圈式或数字式地面单分量或三分量检波器和井中的动圈式三分量检波器阵列进行井─地联合立体同步采集地面和井中地震数据的作业很难得到推广应用。Existing seismic data acquisition systems on the ground and in wells use general-purpose moving-coil or digital ground single-component or three-component geophones and moving-coil three-component geophone arrays in wells for well-ground joint stereo synchronization Acquire surface and borehole seismic data. Due to the heavy weight and high cost of the existing moving-coil three-component geophones in the well, the logging cable can deploy at most 100-level moving-coil three-component geophones in the well at one time to collect seismic data in the whole well section at a depth of several thousand meters. It is necessary to move or lift the moving coil three-component geophone array in the well several times, and each time the moving coil three-component geophone array in the well is lifted, all artificial excitation sources on the ground (dynamite or heavy hammer or electric spark or air gun or piezoelectric crystal) (or vibroseis) point needs to be re-excited once, which not only causes the high cost of the seismic data collected by the well-ground joint three-dimensional acquisition, but also makes it difficult to ensure that the energy and spectrum of each excitation are consistent for repeated excitation at each source point. Each coupling between the source and the ground is also exactly the same. For these well-known reasons, the well-ground combined stereo synchronous acquisition of surface and wellbore seismic data is very difficult for general-purpose moving-coil or digital surface single- or three-component geophones and moving-coil three-component geophone arrays in wells. Difficult to popularize and apply.
井中-地面地震联合立体勘探技术作为地面地震勘探和井中地震勘探技术结合起来形成的一项新型地震勘探方法,实现了井中与地面地震数据采集的结合,可以达到同步采集、同步处理的目的从而提高勘探区的成像精度,提高目的层反射的信噪比与分辨率。有利于识别特殊地质体,精细的开展储层预测与评价,研究砂体及岩性圈闭;精细研究井旁周围地层的构造、储层及油层的变化特征,是一种新型的地震勘探技术。Well-ground seismic combined three-dimensional exploration technology is a new seismic exploration method formed by the combination of surface seismic exploration and well seismic exploration technology. The imaging accuracy of the exploration area is improved, and the signal-to-noise ratio and resolution of the reflection of the target layer are improved. It is beneficial to identify special geological bodies, carry out detailed prediction and evaluation of reservoirs, study sand bodies and lithological traps; finely study the structure of strata around the well, the variation characteristics of reservoirs and oil layers, and is a new type of seismic exploration technology. .
现有的已知技术,例如:专利申请号为201611224463.1、201810499456.5、201710747770.6、201410140366.9、200710141556.2、201711453533.5、200810138351.3、201110436378.2、200820026051.1、201010134001.7、201510673600.9、201420694552.2、201811088989.0、201280044880.1、201711066824.9、201511001188.2、201280061525.5中均公开了井中-地面地震联合立体勘探技术方案,但是仍然存在:需要井中三分量检波器阵列移动或上提数次才能采集完成全井段的井中地震数据,每提升一次井中三分量检波器阵列,就需要重复激发地面的所有人工激发震源(炸药或重锤或电火花或压电晶体或气枪或可控震源),每个震源点重复激发的能量不一致,频谱不一致,震源和地面的耦合也不完全一致的问题,均会对后续的地面地震数据处理和成像精度产生影响。现有的已知技术,例如:专利申请号为201611224463.1、201810499456.5、201710747770.6、201410140366.9、200710141556.2、201711453533.5、200810138351.3、201110436378.2、200820026051.1、201010134001.7、201510673600.9、201420694552.2、201811088989.0、201280044880.1、201711066824.9、201511001188.2、201280061525.5中均公开了Well-ground seismic combined three-dimensional exploration technical solution, but still exists: the three-component geophone array in the well needs to be moved or lifted several times to collect the well-bore seismic data for the entire well section. Repeated excitation of all artificial excitation sources on the ground (dynamite or heavy hammer or electric spark or piezoelectric crystal or air gun or vibrator), the repeated excitation energy of each source point is inconsistent, the frequency spectrum is inconsistent, and the coupling between the source and the ground is not completely consistent These problems will affect the subsequent ground seismic data processing and imaging accuracy.
实用新型内容Utility model content
为解决上述技术问题,本实用新型公开一种基于分布式光纤声波传感井地地震数据联采系统和井驱数据处理方法,通过井中─地面联合立体勘探和同步采集地面和井中地震数据,实现高密度、高效益、高分辨率、低成本的井─地联合立体地震勘探技术,进行油气资源勘探与综合评价。In order to solve the above-mentioned technical problems, the utility model discloses a combined well-ground seismic data mining system and a well-drive data processing method based on distributed optical fiber acoustic wave sensing. High-density, high-efficiency, high-resolution, low-cost well-ground combined three-dimensional seismic exploration technology for oil and gas resource exploration and comprehensive evaluation.
本实用新型采用的技术方案之一为:基于分布式光纤声波传感井地地震数据联采系统,包括:钻井11、沿全井段布设的井中分布式光纤声波传感铠装光缆12、地面有线检波器13、人工震源激发点14、电缆15以及地面地震和井中地震数据采集车16,所述地面有线检波器13连接电缆15,所述沿全井段布设井中分布式光纤声波传感铠装光缆12连接地面地震和井中地震数据采集车16,所述地面有线检波器13、沿全井段布设井中分布式光纤声波传感铠装光缆12以及地面地震和井中地震数据采集车16同步同时采集并记录地震数据。One of the technical solutions adopted by the utility model is: a combined well-ground seismic data mining system based on distributed optical fiber acoustic wave sensing, comprising:
将电缆15替换为铠装光电复合缆。Replace the
所述地面检波器13为:有线单分量或三分量动圈式检波器、有线单分量或三分量数字式检波器、有线单分量或三分量加速度式检波器、有线单分量或三分量光纤检波器、无线单分量或三分量动圈式检波器、无线单分量或三分量数字式检波器、无线单分量或三分量加速度式检波器、无线单分量或三分量光纤检波器中的一种。The
人工震源激发点14为:地面炸药震源、重锤震源、电火花震源、压电晶体震源、气枪震源、可控震源中的一种。The artificial
本实用新型采用的技术方案之二为:基于分布式光纤声波传感井地地震数据联采系统,包括:钻井21、全井段井中三分量检波器22、地面有线检波器23、人工震源激发点24、电缆25以及地面地震和井中地震数据采集车26,所述地面有线检波器23连接电缆25,所述全井段井中检波器22通过铠装测井电缆连接地面地震和井中地震数据采集车26,所述地面有线检波器23、全井段井中检波器22以及地面地震和井中地震数据采集车26同步同时采集并记录地震数据。The second technical scheme adopted by the utility model is: based on distributed optical fiber acoustic wave sensing well-ground seismic data combined mining system, including:
本实用新型采用的技术方案之三为:基于分布式光纤声波传感井地地震数据联采系统,包括:钻井31、全井段井中分布式光纤声波传感铠装光缆32、地面无线检波器33、人工震源激发点34以及井中地震数据采集车35,所述全井段井中分布式光纤声波传感铠装光缆32连接井中地震数据采集车35,所述地面无线检波器33、全井段井中分布式光纤声波传感铠装光缆32以及井中地震数据采集车35同步同时采集并记录地震数据。The third technical solution adopted by the utility model is: a combined well-ground seismic data mining system based on distributed optical fiber acoustic wave sensing, including:
本实用新型采用的技术方案之四为:基于分布式光纤声波传感井地地震数据联采系统,包括:钻井41、全井段井中三分量检波器42、地面无线检波器43、人工震源激发点44以及井中地震数据采集车45,所述全井段井中检波器42连接井中地震数据采集车45,所述地面无线检波器43、全井段井中检波器42以及井中地震数据采集车45同步同时采集并记录地震数据。The fourth technical solution adopted by the utility model is: a combined well-ground seismic data mining system based on distributed optical fiber acoustic wave sensing, including:
本实用新型的有益效果:本实用新型利用布设在地面的有线或无线节点式单分量或三分量检波器以及地面上均匀或非均匀布设的震源信号,并利用常规地震数据记录仪器和分布式光纤声波传感(DAS)调制解调系统快速高效低成本的同步采集地面三维地震数据和沿井下分布式光纤声波传感铠装光缆的井中地震数据。此实用新型可以实现高密度、高效率、高分辨率、低成本的井中─地面联合立体地震勘探。井中地震数据处理的结果可以提取子波、识别多次波、获取地层的平均和层间纵波速度、横波速度、求取纵波速度和横波速度在不同方位上的速度各向异性、计算纵波和横波在地下介质中传播的衰减系数(特性),然后精细准确的建立井周围地下介质的二维或三维地震波速度模型和地下介质的二维或三维弹性或粘弹性参数模型,并对三维地面地震资料进行静校正处理、去除多次波处理、振幅恢复处理、后续的三维地面地震数据的提高分辨率处理以及各向异性偏移成像和叠前道集数据的Q补偿或和Q偏移成像,并通过综合解释技术进行油气资源的精细勘探与综合评价。Beneficial effects of the present utility model: The utility model utilizes wired or wireless node-type single-component or three-component geophones arranged on the ground and source signals evenly or non-uniformly arranged on the ground, and utilizes conventional seismic data recording instruments and distributed optical fibers. Acoustic Sensing (DAS) modulation and demodulation system quickly, efficiently and cost-effectively acquires ground 3D seismic data and downhole seismic data along the downhole distributed fiber optic acoustic sensing armored cable. The utility model can realize high-density, high-efficiency, high-resolution and low-cost combined well-ground three-dimensional seismic exploration. The results of seismic data processing in the well can extract wavelets, identify multiples, obtain the average and interlayer P-wave velocity, shear-wave velocity, obtain the velocity anisotropy of P-wave velocity and shear-wave velocity in different azimuths, calculate P-wave and shear-wave velocity Attenuation coefficients (characteristics) propagating in the underground medium, and then finely and accurately establish the two-dimensional or three-dimensional seismic wave velocity model of the underground medium around the well and the two-dimensional or three-dimensional elastic or viscoelastic parameter model of the underground medium, and analyze the three-dimensional surface seismic data. Perform static correction processing, multiple removal processing, amplitude recovery processing, subsequent resolution enhancement processing of 3D ground seismic data, anisotropic migration imaging and Q compensation or combined Q migration imaging of prestack gather data, and Fine exploration and comprehensive evaluation of oil and gas resources through comprehensive interpretation technology.
附图说明Description of drawings
图1是本实用新型实施例1对应的地震数据采集系统示意图。FIG. 1 is a schematic diagram of a seismic data acquisition system corresponding to Embodiment 1 of the present invention.
图2是本实用新型实施例2对应的地震数据采集系统示意图。2 is a schematic diagram of a seismic data acquisition system corresponding to Embodiment 2 of the present invention.
图3是本实用新型实施例3对应的地震数据采集系统示意图。3 is a schematic diagram of a seismic data acquisition system corresponding to Embodiment 3 of the present invention.
图4是本实用新型实施例4对应的地震数据采集系统示意图。4 is a schematic diagram of a seismic data acquisition system corresponding to Embodiment 4 of the present invention.
附图标记:11-钻井;12-全井段井中分布式光纤声波传感铠装光缆;13-地面有线单分量或三分量动圈式或数字式或加速度式或光纤检波器;14-地面炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源;15-检波器连接电缆或光纤检波器连接铠装光缆,16-地面地震和井中地震数据采集车;21-钻井;22-全井段井中三分量动圈式或数字式或加速度式或光纤检波器阵列;23-地面单分量或三分量动圈式或数字式或加速度式或光纤检波器;24-地面炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源;25-检波器连接电缆或光纤检波器连接铠装光缆,26-地面地震和井中地震数据采集车;31-钻井;32-全井段井中分布式光纤声波传感铠装光缆;33-地面无线单分量或三分量动圈式或数字式或加速度式或光纤检波器;34-地面炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源;35-井中地震数据采集车;41-钻井;42-全井段井中三分量动圈式或数字式或加速度式或光纤检波器阵列;43-地面无线单分量或三分量动圈式或数字式或加速度式或光纤检波器;44-地面炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源;45-井中地震数据采集车。Reference numerals: 11-drilling; 12-distributed fiber optic acoustic wave sensing armored optical cable in the whole well section; 13-ground wired single-component or three-component moving coil type or digital or acceleration type or fiber optic detector; 14-ground Explosive source or heavy hammer source or electric spark source or piezoelectric crystal source or air gun source or vibroseis; 15- Geophone connecting cable or fiber optic geophone connecting armored optical cable, 16- Ground seismic and well seismic data acquisition vehicle; 21 -Drilling; 22-Three-component moving coil or digital or acceleration or fiber optic geophone array in the whole well section; 23- Surface single-component or three-component moving coil or digital or acceleration or fiber-optic geophone; 24- Ground explosive source or heavy hammer source or electric spark source or piezoelectric crystal source or air gun source or vibroseis; 25- Geophone connecting cable or fiber optic geophone connecting armored optical cable, 26- Ground seismic and well seismic data acquisition vehicle; 31-drilling; 32-distributed fiber optic acoustic wave sensing armored optical cable in the whole well section; 33-ground wireless single-component or three-component moving coil or digital or acceleration or fiber-optic detector; 34-ground explosive source or heavy Hammer source or electric spark source or piezoelectric crystal source or air gun source or vibroseis; 35-well seismic data acquisition vehicle; 41-drilling; 42-three-component moving coil type or digital type or acceleration type or optical fiber in the whole well section Geophone array; 43-Ground wireless single-component or three-component moving coil type or digital or acceleration type or fiber optic detector; 44-Ground explosive source or heavy hammer source or electric spark source or piezoelectric crystal source or air gun source or can Vibration source; 45-well seismic data acquisition vehicle.
具体实施方式Detailed ways
为便于本领域技术人员理解本实用新型的技术内容,下面结合附图对本实用新型内容进一步阐释。In order to facilitate those skilled in the art to understand the technical content of the present invention, the content of the present invention will be further explained below with reference to the accompanying drawings.
实施例1Example 1
以下结合附图详细说明本实用新型。The present utility model will be described in detail below in conjunction with the accompanying drawings.
图1是本实用新型所针对的井中分布式光纤声波传感铠装光缆和地面有线地震数据采集系统示意图。井中─地面联合分布式光纤声波传感地震数据采集系统由图1中所示的钻井11、全井段井中分布式光纤声波传感铠装光缆12、地面有线单分量或三分量动圈式或数字式或加速度式或光纤检波器13、地面炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源14、检波器连接电缆或铠装光缆15和地面地震和井中地震数据采集车16组成。井中分布式光纤声波传感铠装光缆和地面单分量或三分量光纤检波器13使用的纪录仪器都是相位敏感型光时域反射仪(Φ-OTDR),安放在地面地震和井中地震数据采集车16内。FIG. 1 is a schematic diagram of a distributed optical fiber acoustic wave sensing armored optical cable and a ground wired seismic data acquisition system in a well targeted by the present utility model. The well-ground combined distributed optical fiber acoustic wave sensing seismic data acquisition system is composed of the
进行井中─地面联合立体地震数据采集作业时,先在钻井11中沿全井段布设井中分布式光纤声波传感铠装光缆12,在地面按照预先设计好的测网布设有线单分量或三分量动圈式或数字式或加速度式或光纤检波器13,然后在预先设计好的震源位置布设炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源14,最后沿地面预先设计好的人工震源激发点14逐点激发并通过布设在施工现场的检波器13连接电缆或铠装光缆15、沿全井段布设井中分布式光纤声波传感铠装光缆12和地面地震和井中地震数据采集车16同步同时采集并纪录地面和井中地震数据,实现井中─地面联合立体地震勘探。In the well-ground combined three-dimensional seismic data acquisition operation, firstly, in the
井中地震数据采集系统由沿全井段布设的分布式光纤声波传感铠装光缆或沿全井段布设井下三分量动圈式或数字式或加速度式或光纤检波器阵列12和地面的井中地震数据采集车16组成,地面地震数据采集系统由有线或无线节点式单分量或三分量动圈式检波器或数字检波器或加速度检波器或光纤检波器13和地面地震数据采集车16组成,井─地联合光纤地震数据采集系统的作业震源14可以采用地面炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源。The downhole seismic data acquisition system consists of distributed fiber optic acoustic wave sensing armored optical cables along the entire well section or downhole three-component moving coil or digital or acceleration or fiber
实施例2Example 2
以下结合附图详细说明本实用新型。The present utility model will be described in detail below in conjunction with the accompanying drawings.
图2是本实用新型所针对的井中三分量检波器阵列和地面有线地震数据采集系统示意图。井中─地面联合光纤地震数据采集系统由图2中所示的钻井21、全井段井中三分量动圈式或数字式或加速度式或光纤检波器阵列22、地面有线节点式单分量或三分量动圈式或数字式或加速度式或光纤检波器23、地面炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源24、电缆或铠装光缆25和井中地震数据采集车26组成。井中三分量光纤检波器阵列22使用的纪录仪器都是相位敏感型光时域反射仪(Φ-OTDR),安放在地面地震和井中地震数据采集车26内。2 is a schematic diagram of a three-component geophone array in a well and a ground wired seismic data acquisition system targeted by the present invention. The well-surface combined fiber-optic seismic data acquisition system is composed of the
进行井中─地面联合立体地震数据采集作业时,先在钻井21中沿全井段布设井下三分量动圈式或数字式或加速度式或光纤检波器阵列22,在地面按照预先设计好的测网布设有线单分量或三分量动圈式或数字式或加速度式或光纤检波器23,然后在预先设计好的震源位置布设炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源24,最后沿地面预先设计好的人工震源激发点24逐点激发并通过布设在施工现场的检波器23连接电缆或铠装光缆25、井中三分量检波器阵列22和井中地震数据采集车26同步同时采集并纪录地面和井中地震数据,实现井中─地面联合立体地震勘探。In the well-ground combined three-dimensional seismic data acquisition operation, firstly, the downhole three-component moving coil type or digital or acceleration type or fiber
实施例3Example 3
以下结合附图详细说明本实用新型。The present utility model will be described in detail below in conjunction with the accompanying drawings.
图3是本实用新型所针对的井中分布式光纤声波传感铠装光缆和地面无线节点式地震数据采集系统示意图。井中─地面联合光纤地震数据采集系统由图3中所示的钻井31、全井段井中分布式光纤声波传感铠装光缆32、地面无线节点式单分量或三分量动圈式或数字式或加速度式或光纤检波器33、地面炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源34和井中地震数据采集车35组成。井中分布式光纤声波传感铠装光缆32使用的纪录仪器是相位敏感型光时域反射仪(Φ-OTDR),安放在地面地震和井中地震数据采集车35内。FIG. 3 is a schematic diagram of the distributed optical fiber acoustic wave sensing armored optical cable in the well and the ground wireless node type seismic data acquisition system for the utility model. The well-surface combined optical fiber seismic data acquisition system is composed of the
进行井中─地面联合立体地震数据采集作业时,先在钻井31中沿全井段布设井中分布式光纤声波传感铠装光缆32,在地面按照预先设计好的测网布设无线节点式单分量或三分量动圈式或数字式或加速度式或光纤检波器33,然后在预先设计好的震源位置布设炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源34,最后沿地面预先设计好的人工震源激发点34逐点激发并通过布设在施工现场的无线节点式单分量或三分量检波器33、井段布设井中分布式光纤声波传感铠装光缆32和井中地震数据采集车35同步同时采集并纪录地面和井中地震数据,实现井中─地面联合立体地震勘探。In the well-ground combined three-dimensional seismic data acquisition operation, firstly, in the
实施例4Example 4
以下结合附图详细说明本实用新型。The present utility model will be described in detail below in conjunction with the accompanying drawings.
图4是本实用新型所针对的井中三分量检波器阵列和地面无线节点式地震数据采集系统示意图。井中─地面联合分布式光纤声波传感地震数据采集系统由图4中所示的钻井41、井中三分量动圈式或数字式或加速度式或光纤检波器阵列42、地面无线节点单分量或三分量动圈式或数字式或加速度式或光纤检波器43、地面炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源44和地面地震和井中地震数据采集车45组成。井中三分量光纤检波器阵列42和地面单分量或三分量光纤检波器43使用的纪录仪器都是相位敏感型光时域反射仪(Φ-OTDR),安放在地面地震和井中地震数据采集车45内。4 is a schematic diagram of a three-component geophone array in a well and a ground wireless node type seismic data acquisition system targeted by the present invention. The well-ground joint distributed optical fiber acoustic wave sensing seismic data acquisition system is composed of the well 41 shown in FIG. Component moving coil type or digital type or acceleration type or
进行井中─地面联合立体地震数据采集作业时,先在钻井41中沿全井段布设井下三分量动圈式或数字式或加速度式或光纤检波器阵列42,在地面按照预先设计好的测网布设无线节点式单分量或三分量动圈式或数字式或加速度式或光纤检波器43,然后在预先设计好的震源位置布设炸药震源或重锤震源或电火花震源或压电晶体震源或气枪震源或可控震源4,最后沿地面预先设计好的人工震源激发点44逐点激发并通过布设在施工现场的无线节点式单分量或三分量检波器43、井中三分量检波器阵列42和井中地震数据采集车45同步同时采集并纪录地面和井中地震数据,实现井中─地面联合立体地震勘探。In the well-ground combined three-dimensional seismic data acquisition operation, firstly, the downhole three-component moving coil type or digital or acceleration type or fiber
上述4个实施例中的井中分布式光纤声波传感铠装光缆或井下三分量光纤检波器阵列使用的纪录仪器是相位敏感型光时域反射仪(Φ-OTDR),安放在地面地震和井中地震数据采集车内。The recording instrument used in the well-distributed fiber-optic acoustic wave sensing armored fiber-optic cable or the downhole three-component fiber-optic detector array in the above-mentioned 4 embodiments is a phase-sensitive optical time domain reflectometer (Φ-OTDR), which is placed in the ground seismic and wellbore Seismic data collection inside the car.
上述4个实施例中的地面地震数据采集系可以是布设在地面的二维或三维有线或无线节点单分量或三分量动圈式或数字式或加速度式或光纤检波器。The ground seismic data acquisition system in the above four embodiments may be a two-dimensional or three-dimensional wired or wireless node single-component or three-component moving coil type or digital type or acceleration type or fiber optic detector arranged on the ground.
所述的地面有线单分量或三分量光纤检波器使用的纪录仪器是相位敏感型光时域反射仪(Φ-OTDR),安放在地面地震和井中地震数据采集车内。The recording instrument used in the ground wired single-component or three-component fiber optic detector is a phase-sensitive optical time domain reflectometer (Φ-OTDR), which is placed in a vehicle for collecting ground seismic and borehole seismic data.
所述的地面震源可以是炸药震源、或重锤震源、或电火花震源、或压电晶体震源、或气枪震源、或可控震源。The ground source may be an explosive source, a heavy hammer source, or an electric spark source, or a piezoelectric crystal source, or an air gun source, or a vibroseis source.
所述的地面地震数据采集系中检波器的间距相等或不相等的距离为几米至几十米。The geophones in the ground seismic data acquisition system are equally or unequally spaced from several meters to several tens of meters.
所述的井下分布式光纤声波传感铠装光缆的空间采样间距相等距离为0.1米至10米。The space sampling interval of the downhole distributed optical fiber acoustic wave sensing armored optical cable is equal to the distance of 0.1 meters to 10 meters.
所述的井下三分量检波器在井下的间距相等或不相等的距离为几米至几十米。The downhole three-component geophones are equally or unequally spaced in the downhole from several meters to several tens of meters.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本实用新型的原理,应被理解为本实用新型的保护范围并不局限于这样的特别陈述和实施例。对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的权利要求范围之内。Those of ordinary skill in the art will appreciate that the embodiments described herein are intended to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020320802.1U CN211402765U (en) | 2020-03-16 | 2020-03-16 | Optical fiber acoustic sensing well-ground seismic data combined mining system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020320802.1U CN211402765U (en) | 2020-03-16 | 2020-03-16 | Optical fiber acoustic sensing well-ground seismic data combined mining system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211402765U true CN211402765U (en) | 2020-09-01 |
Family
ID=72215158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020320802.1U Active CN211402765U (en) | 2020-03-16 | 2020-03-16 | Optical fiber acoustic sensing well-ground seismic data combined mining system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211402765U (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111239798A (en) * | 2020-03-16 | 2020-06-05 | 中油奥博(成都)科技有限公司 | Fiber-optic acoustic wave sensing combined well-ground seismic data mining system and well-drive data processing method |
CN112130195A (en) * | 2020-10-13 | 2020-12-25 | 中油奥博(成都)科技有限公司 | Time-shifting VSP data acquisition system and method based on distributed optical fiber acoustic sensing |
CN113640866A (en) * | 2021-09-06 | 2021-11-12 | 中油奥博(成都)科技有限公司 | Optical fiber seismic data acquisition system and information acquisition and conversion method thereof |
CN113791443A (en) * | 2021-09-13 | 2021-12-14 | 中油奥博(成都)科技有限公司 | Distributed fiber-optic seismic data acquisition system and data acquisition and conversion method |
-
2020
- 2020-03-16 CN CN202020320802.1U patent/CN211402765U/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111239798A (en) * | 2020-03-16 | 2020-06-05 | 中油奥博(成都)科技有限公司 | Fiber-optic acoustic wave sensing combined well-ground seismic data mining system and well-drive data processing method |
CN112130195A (en) * | 2020-10-13 | 2020-12-25 | 中油奥博(成都)科技有限公司 | Time-shifting VSP data acquisition system and method based on distributed optical fiber acoustic sensing |
CN113640866A (en) * | 2021-09-06 | 2021-11-12 | 中油奥博(成都)科技有限公司 | Optical fiber seismic data acquisition system and information acquisition and conversion method thereof |
CN113791443A (en) * | 2021-09-13 | 2021-12-14 | 中油奥博(成都)科技有限公司 | Distributed fiber-optic seismic data acquisition system and data acquisition and conversion method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111665568B (en) | Micro-logging device and measurement method based on distributed optical fiber acoustic wave sensing technology | |
CN111239798A (en) | Fiber-optic acoustic wave sensing combined well-ground seismic data mining system and well-drive data processing method | |
CN211402765U (en) | Optical fiber acoustic sensing well-ground seismic data combined mining system | |
CN111708080B (en) | Array type well four-component optical fiber seismic data acquisition device and data acquisition method | |
CN112746837A (en) | Shale oil reservoir exploration data acquisition system and method based on distributed optical fiber sensing | |
CN113090251B (en) | Logging VSP Composite Data Acquisition System and Acquisition Processing Method Based on Optical Fiber Sensing | |
CN112130195A (en) | Time-shifting VSP data acquisition system and method based on distributed optical fiber acoustic sensing | |
CN213813970U (en) | Time-shifting VSP data acquisition system based on distributed optical fiber acoustic sensing | |
CN111366987A (en) | Ground earthquake microgravity combined measurement system and data acquisition and processing method | |
CN113847019A (en) | Integrated data acquisition system and method for seismic geology engineering based on optical fiber sensing | |
CN112647936A (en) | Optimized oil reservoir development data acquisition system and method based on distributed optical fiber sensing | |
CN109991662A (en) | Apparatus and method for measuring and calculating two-dimensional or three-dimensional elastic parameters of shallow formation | |
CN209946406U (en) | Device for measuring and calculating two-dimensional or three-dimensional elastic parameters of shallow stratum | |
Takahashi et al. | ISRM suggested methods for borehole geophysics in rock engineering | |
CN112230273A (en) | Seismic transverse wave data acquisition system and acquisition method based on distributed optical fiber sensing | |
CA2961168A1 (en) | Integrating vertical seismic profile data for microseismic anisotropy velocity analysis | |
CN214576965U (en) | Shale oil reservoir exploration data acquisition system based on distributed optical fiber sensing | |
CN111679343A (en) | Seismic and electromagnetic composite data acquisition system and method for predicting oil and gas reserves in underground reservoirs | |
Mari | Well seismic surveying and acoustic logging | |
CN212255727U (en) | Micro-logging device based on distributed optical fiber acoustic wave sensing technology | |
McCann et al. | Application of cross-hole seismic measurements in site investigation surveys | |
CN100552472C (en) | Utilize vertical seismic profiling (VSP) and micro logging to carry out the seismic signal compensation method | |
Aminzadeh et al. | Fundamentals of petroleum geophysics | |
CA2945738C (en) | Methods and systems for identifying and plugging subterranean conduits | |
CN211603583U (en) | Ground earthquake microgravity combined measurement system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |