CN211402089U - Bionic microstructure friction and wear process information acquisition device - Google Patents
Bionic microstructure friction and wear process information acquisition device Download PDFInfo
- Publication number
- CN211402089U CN211402089U CN201922141807.8U CN201922141807U CN211402089U CN 211402089 U CN211402089 U CN 211402089U CN 201922141807 U CN201922141807 U CN 201922141807U CN 211402089 U CN211402089 U CN 211402089U
- Authority
- CN
- China
- Prior art keywords
- plate
- fixed
- friction
- slider
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000011664 nicotinic acid Substances 0.000 title claims abstract description 20
- 230000008569 process Effects 0.000 title claims abstract description 20
- 230000007246 mechanism Effects 0.000 claims abstract description 28
- 238000012806 monitoring device Methods 0.000 claims abstract description 25
- 238000012360 testing method Methods 0.000 claims abstract description 25
- 230000001133 acceleration Effects 0.000 claims abstract description 12
- 230000007935 neutral effect Effects 0.000 claims abstract description 3
- 230000008878 coupling Effects 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 238000009434 installation Methods 0.000 claims 2
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 abstract description 3
- 230000000295 complement effect Effects 0.000 abstract 1
- 230000003592 biomimetic effect Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010249 in-situ analysis Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
一种仿生微结构摩擦磨损过程信息采集装置属仿生微结构摩擦磨损检测技术领域,本实用新型中动力机构固接于实验台基座的底板前部;摩擦机构的二导轨分别固接于实验台基座的二U形板上面;侧面监测装置的高速摄像机Ⅰ固接于实验台基座中平板Ⅱ右后部上面,红外热成像仪固接于实验台基座中平板Ⅱ的左前部上面;加载及俯视监测装置经底座的后面,固接于实验台基座中立板的前面;本实用新型中力传感器和加速度传感器互补,使摩擦力测量精度提高;用力传感器实时反馈,能实现精确加载;可更换不同摩擦试样探究不同仿生微结构对摩擦性能的影响;可更换不同摩擦片,快速准确实时监测不同试样的摩擦力学特性、磨损、温度和应力变化。
A bionic microstructure friction and wear process information acquisition device belongs to the technical field of bionic microstructure friction and wear detection. In the utility model, a power mechanism is fixed to the front part of a bottom plate of a base of an experimental bench; two guide rails of the friction mechanism are respectively fixed to the experimental bench. On the top of the two U-shaped plates of the base; the high-speed camera I of the side monitoring device is fixed on the upper right rear of the flat plate II in the base of the test bench, and the infrared thermal imager is fixed on the upper left front of the flat plate II in the base of the test bench; The loading and top-view monitoring device is fixedly connected to the front of the neutral plate of the base of the test bench through the back of the base; the force sensor and the acceleration sensor in the utility model complement each other, so that the measurement accuracy of friction force is improved; the real-time feedback of the force sensor can realize accurate loading; Different friction samples can be replaced to explore the influence of different bionic microstructures on friction performance; different friction plates can be replaced to quickly and accurately monitor the friction mechanical properties, wear, temperature and stress changes of different samples in real time.
Description
技术领域technical field
本实用新型属于仿生微结构摩擦磨损检测领域,尤其涉及一种仿生微结构摩擦磨损过程信息采集装置。The utility model belongs to the field of bionic microstructure friction and wear detection, in particular to a bionic microstructure friction and wear process information acquisition device.
背景技术Background technique
摩擦学是研究物体相对运动过程中表面间相互作用的科学。它是一门交叉学科,涉及机械、物理和化学等领域。由摩擦引起的表面形貌、表面组成和结构的变化是非常复杂的。由于表面的性质、材料种类、润滑状态以及环境气氛作用等的多样性,在实验过程中,摩擦界面随时间迅速变化,因此需对摩擦接触表面进行即时的原位分析。Tribology is the science of the interaction between surfaces during the relative motion of objects. It is an interdisciplinary subject involving fields such as mechanics, physics and chemistry. The changes in surface topography, surface composition and structure caused by friction are very complex. Due to the diversity of surface properties, material types, lubrication states, and the effect of ambient atmosphere, the friction interface changes rapidly with time during the experiment, so an immediate in-situ analysis of the friction contact surface is required.
在仿生学研究过程中,对所仿生的形态的摩擦磨损的性能的研究也是一项非常重要的研究内容,对仿生结构性能的评估和优化设计有着重要意义。目前现有的摩擦测试仪器大都是在旋转的摩擦片上进行的,这会导致试样不同位置摩擦的线速度是不一致的,而速度对于磨损情况有较大的影响。并且目前的摩擦磨损测量仪器不能实现即时的信息采集分析,无法实时观察摩擦过程中的磨损情况。In the process of bionics research, the research on the friction and wear performance of the bionic form is also a very important research content, which is of great significance to the evaluation and optimization of the bionic structure performance. At present, most of the existing friction test instruments are carried out on the rotating friction plate, which will lead to inconsistent linear speed of friction at different positions of the sample, and the speed has a great influence on the wear condition. In addition, the current friction and wear measuring instruments cannot realize real-time information collection and analysis, and cannot observe the wear situation in the friction process in real time.
综上所述,仿生微结构摩擦检测技术的发展迫切需要一种仿生微结构摩擦磨损过程信息采集装置,可以精确快速测试被测试样的摩擦力学和磨损特性并可以实时观察试样摩擦磨损情况。设计开发出一种仿生微结构摩擦磨损过程信息采集装置,具有重要意义与实际应用价值。In summary, the development of biomimetic microstructure friction detection technology urgently needs a biomimetic microstructure friction and wear process information acquisition device, which can accurately and quickly test the friction mechanics and wear characteristics of the test sample and observe the friction and wear condition of the sample in real time. The design and development of a bionic microstructure friction and wear process information acquisition device has important significance and practical application value.
发明内容SUMMARY OF THE INVENTION
本实用新型的目的在于提供一种仿生微结构摩擦磨损过程信息采集装置,可快速准确测试不同试样的摩擦力学特性和磨损特性。The purpose of the utility model is to provide a bionic microstructure friction and wear process information acquisition device, which can quickly and accurately test the friction mechanical properties and wear properties of different samples.
本实用新型由实验台基座A、动力机构B、摩擦机构C、侧面监测装置D和加载及俯视监测装置E组成,动力机构B经其上的轴承座Ⅰ14、轴承座Ⅱ20、电机支架10的横板11固接于实验台基座A的底板1前部上面;摩擦机构C的导轨Ⅰ30下面固接于实验台基座A的U形板Ⅱ8上面,摩擦机构C的导轨Ⅱ31下面固接于实验台基座A的U形板Ⅰ2上面;侧面监测装置D的高速摄像机Ⅰ37经支架Ⅰ36的横板固接于实验台基座A中平板Ⅱ6的右后部上面,侧面监测装置D的红外热成像仪40经立杆38固接于实验台基座A中平板Ⅱ6的左前部上面;加载及俯视监测装置E经底座53的后面,固接于实验台基座A中立板5的前面。The utility model is composed of a test bench base A, a power mechanism B, a friction mechanism C, a side monitoring device D and a loading and top-view monitoring device E. The power mechanism B passes through the bearing seat I14, the bearing seat II20 and the
所述的实验台基座A由底板1、U形板Ⅰ2、侧板Ⅰ3、平板Ⅰ4、立板5、平板Ⅱ6、侧板Ⅱ7和U形板Ⅱ8组成,U形板Ⅰ2固接于底板1右后部上面;侧板Ⅰ3下端固接于底板1近后部右侧面;平板Ⅰ4右端与侧板Ⅰ3上端成直角固接,立板5下端固接于平板Ⅰ4左后部上面;平板Ⅱ6成丁字形固接于侧板Ⅱ7上端;侧板Ⅱ7下端固接于底板1近后部左侧面;U形板Ⅱ8固接于底板1左后部上面。The experimental bench base A is composed of a bottom plate 1, a U-shaped plate I2, a side plate I3, a flat plate I4, a vertical plate 5, a flat plate II6, a side plate II7 and a U-shaped plate II8, and the U-shaped plate I2 is fixed to the bottom plate 1. The top of the right rear; the lower end of the side plate I3 is fixed to the right side of the bottom plate 1 near the rear; the right end of the flat plate I4 is fixed to the upper end of the side plate I3 at a right angle, and the lower end of the vertical plate 5 is fixed to the upper left rear of the flat plate I4; the flat plate II6 It is fixed on the upper end of the side plate II7 in a T-shape; the lower end of the side plate II7 is fixed on the left side of the bottom plate 1 near the rear; the U-shaped plate II8 is fixed on the upper left rear of the bottom plate 1.
所述的动力机构B由电机9、电机支架10、弹性联轴器13、轴承座Ⅰ14、丝杠轴16、滑块18和轴承座Ⅱ20组成,其中支架10为由立板12和横板11组成的直角形支架,电机9固接于电机支架10的立板12前面,电机9的输出端与弹性联轴器13前端固接;滑块18上设有中心螺纹孔17和平板19,滑块18的中心螺纹孔17与丝杠轴16中部螺纹连接;丝杠轴16 后端与轴承座Ⅱ20的轴承Ⅱ21内圈过盈连接,丝杠轴16中部与滑块18的中心螺纹孔螺纹连接,丝杠轴16近前端与轴承座Ⅰ14的轴承Ⅰ15内圈过盈连接,丝杠轴16前端与弹性联轴器 13后端固接。The power mechanism B is composed of a motor 9, a
所述的摩擦机构C由往复丝杠滑块连接件22、力传感器Ⅰ23、摩擦片安装板连接件24、摩擦片26、左纵板27、右纵板28、前横板25、加速度传感器29、导轨Ⅰ30、导轨Ⅱ31、滑块Ⅰ32、滑块Ⅱ33、滑块Ⅲ34和滑块Ⅳ35、右纵板组成,左纵板27和右纵板28之间固接摩擦片26,左纵板27上面中间固接加速度传感器29;右纵板28下面靠后固接滑块Ⅰ32,右纵板28下面靠前固接滑块Ⅱ33;左纵板27下面靠后固接滑块Ⅲ34,左纵板27下面靠前固接滑块Ⅳ35;滑块Ⅰ32和滑块Ⅱ33与导轨Ⅱ31滑动连接,滑块Ⅲ34和滑块Ⅳ35与导轨Ⅰ30滑动连接;左纵板27和右纵板28前端固接前横板25,导轨Ⅰ30、力传感器Ⅰ23和导轨Ⅱ31自前至后顺序排列并固接,摩擦片安装板连接件24后端与前横板25前面中心固接。The friction mechanism C is composed of the reciprocating
所述的侧面监测装置D由支架Ⅰ36、高速摄像机Ⅰ37、立杆38、支架Ⅱ39和红外热成像仪40组成,支架Ⅰ36为立板和横板组成的直角板,高速摄像机Ⅰ37固接于支架Ⅰ36的立板;红外热成像仪40固接于支架Ⅱ39左面,立杆38固接于支架Ⅱ39下面。The side monitoring device D is composed of a bracket I36, a high-speed camera I37, a
所述的加载及俯视监测装置E,由摩擦试样41、安装杆42、力传感器Ⅱ43、加载杆44、螺母Ⅰ46、滑台连接件47、滑台48、丝杠49、电机Ⅱ50、底座53、安装架Ⅱ55和高速摄像机Ⅱ56组成,滑台连接件47的前面靠左固接有带孔板对45,滑台连接件47后面靠右固接滑台48;底座53由上板51、下板54、后板52组成,电机Ⅱ50固接于底座53的上板51,丝杠49上端与电机Ⅱ50输出轴固接,丝杠49中部与滑台48的中心螺纹孔螺纹连接,丝杠49 底端与底座53的下板54中心活动连接;安装架Ⅱ55为直角S形板,安装架Ⅱ55上端固接于滑台连接件47后面靠左,安装架Ⅱ55下端前面固接高速摄像机Ⅱ56;摩擦试样41、安装杆 42、力传感器Ⅱ43、加载杆44自下而上顺序排列并固接,加载杆44上部穿过滑台连接件47 的带孔板对45,并经螺母Ⅰ46固接。The loading and top view monitoring device E is composed of
仿生微结构摩擦试样为透明材料制成,底部具有仿生微结构的试样,用于研究不同仿生微结构在摩擦实验中摩擦、磨损性能。The biomimetic microstructure friction sample is made of transparent material and has a biomimetic microstructure at the bottom, which is used to study the friction and wear properties of different biomimetic microstructures in friction experiments.
本实用新型的工作过程如下:实验之前,需要测得力传感器Ⅰ23后段连接的做往复运动的部件摩擦片安装板连接件25,滑块Ⅰ32、滑块Ⅱ33、滑块Ⅲ34、滑块Ⅳ35,摩擦片26,摩擦片安装板,加速度传感器29等的总重量。实验开始时,将仿生微结构摩擦试样41安装在摩擦试样安装杆42上,由力传感器Ⅱ43读出此时的示数,并将此时加载数值调整为零,然后通过电机丝杠模组增加载荷,直到力传感器Ⅱ43的示数达到规定数值,并将力传感器Ⅱ43 的信号用于反馈调节电机丝杠模组对载荷的控制。然后按照实验要求的速度启动电机9驱动往复丝杠轴16旋转使得往复丝杠滑块18做往复运动,进而驱动往复丝杠滑块连接件22做往复运动,从而摩擦片安装板连接件24、摩擦片26、摩擦片安装板等部件做往复运动。同时由力传感器Ⅰ23测得摩擦过程中的力的变化,由加速度传感器29测得整个过程的加速度变化的情况,再根据实验前所测得的力传感器Ⅰ23后面所连接的做往复运动部件的重量之和,就可以计算得到惯性力对力传感器Ⅰ23测量结果的影响,从而得到准确的摩擦过程中摩擦力的变化数据。实验过程中,由高速摄像机Ⅰ37、高速摄像机Ⅱ56分别从侧面和上面拍摄试样的磨损情况;红外热成像仪40实时监测试样的温度分布情况。The working process of the utility model is as follows: before the experiment, it is necessary to measure the reciprocating component friction plate
本实用新型的有益效果在于:可通过更换不同仿生微结构摩擦试样来探究不同仿生微结构对摩擦性能的影响;可以通过更换不同摩擦片快速准确测试试样在不同摩擦条件下的摩擦力学特性和磨损特性;可以实时监控试样的摩擦力学特性、磨损情况以及温度、应力变化情况;由于是往复式摩擦,被测试样摩擦的各点的速度是一致的;采用往复丝杠的驱动方式,速度平稳;采用力传感器和加速度传感器相互补偿的方式,摩擦力的测量结果精度很高。The beneficial effects of the utility model are as follows: the influence of different biomimetic microstructures on friction performance can be explored by replacing friction samples of different biomimetic microstructures; the friction mechanical properties of the samples under different friction conditions can be quickly and accurately tested by replacing different friction plates and wear characteristics; the friction mechanical characteristics, wear conditions, temperature and stress changes of the sample can be monitored in real time; due to the reciprocating friction, the speed of each point of friction of the tested sample is consistent; the driving method of the reciprocating screw is used to The speed is stable; the force sensor and the acceleration sensor are used to compensate each other, and the measurement result of the friction force is very accurate.
附图说明Description of drawings
图1为仿生微结构摩擦磨损过程信息采集装置的轴测图(前右向)Figure 1 is the axonometric view of the bionic microstructure friction and wear process information acquisition device (front right)
图2为仿生微结构摩擦磨损过程信息采集装置的轴测图(后左向)Figure 2 is an axonometric view of the bionic microstructure friction and wear process information acquisition device (backward left)
图3为实验台基座A的轴测图(前右向)Figure 3 is an axonometric view of the base A of the test bench (front right)
图4为动力机构B的轴测图(前右向)Figure 4 is an axonometric view of the power mechanism B (front right)
图5为摩擦机构结构C的轴测图(前右向)Figure 5 is an axonometric view of the friction mechanism structure C (front right)
图6为摩擦机构结构C的轴测图(后左向)Figure 6 is an axonometric view of the friction mechanism structure C (rear left)
图7为侧面监测装置D的轴测图(后左向)Figure 7 is an axonometric view of the side monitoring device D (rear left)
图8为加载及俯视监测装置E的轴测图(后左向)Figure 8 is an axonometric view of the loading and top-view monitoring device E (rear left)
图9为加载及俯视监测装置E的后视图FIG. 9 is a rear view of the loading and top-view monitoring device E
其中:A.实验台基座 B.动力机构 C.摩擦机构 D.侧面监测装置 E.加载及俯视监测装置 1.底板 2.U形板Ⅰ 3.侧板Ⅰ 4.平板Ⅰ 5.立板 6.平板Ⅱ 7.侧板Ⅱ 8.U形板Ⅱ 9.电机 10.电机支架 11.横板 12.立板 13.弹性联轴器 14.带座轴承Ⅰ 15.轴承Ⅰ 16.往复丝杠轴 17.中心螺纹孔 18.往复丝杠滑块 19.平板 20.带座轴承Ⅱ 21.轴承Ⅱ 22.往复丝杠滑块连接件 23.力传感器Ⅰ 24.摩擦片安装板连接件 25.前横板 26.摩擦片 27.左纵板 28.右纵板 29.加速度传感器 30.导轨Ⅰ 31.导轨Ⅱ 32.滑块Ⅰ 33.滑块Ⅱ 34.滑块Ⅲ35.滑块Ⅳ 36.支架Ⅰ 37.高速摄像机Ⅰ 38.立杆 39.支架Ⅱ 40.红外热成像仪 41.仿生微结构摩擦试样 42.摩擦试样安装杆 43.力传感器Ⅱ 44.加载杆 45.带孔板对 46.螺母Ⅱ47.滑台连接件 48.滑台 49.丝杠 50.电机Ⅱ 51.上板 52.后板 53.底座 54.下板 55.高速摄像机安装架Ⅱ 56.高速摄像机ⅡAmong them: A. Test bench base B. Power mechanism C. Friction mechanism D. Side monitoring device E. Loading and top view monitoring device 1.
具体实施方式Detailed ways
以下结合附图对本实用新型进行描述。The present invention will be described below with reference to the accompanying drawings.
如图1至图3所示,本实用新型由实验台基座A、动力机构B、摩擦机构C、侧面监测装置D和加载及俯视监测装置E组成,动力机构B经其上的轴承座Ⅰ14、轴承座Ⅱ20、电机支架10的横板11固接于实验台基座A的底板1前部上面;摩擦机构C的导轨Ⅰ30下面固接于实验台基座A的U形板Ⅱ8上面,摩擦机构C的导轨Ⅱ31下面固接于实验台基座A的U形板Ⅰ2上面;侧面监测装置D的高速摄像机Ⅰ37经支架Ⅰ36的横板固接于实验台基座A中平板Ⅱ6的右后部上面,侧面监测装置D的红外热成像仪40经立杆38固接于实验台基座A中平板Ⅱ6的左前部上面;加载及俯视监测装置E经底座53的后面,固接于实验台基座A中立板 5的前面。As shown in Figures 1 to 3, the utility model is composed of a test bench base A, a power mechanism B, a friction mechanism C, a side monitoring device D, and a loading and top-view monitoring device E. The power mechanism B passes through the bearing seat I14 on it. , the bearing seat II20, the
如图3所示,所述的实验台基座A由底板1、U形板Ⅰ2、侧板Ⅰ3、平板Ⅰ4、立板5、平板Ⅱ6、侧板Ⅱ7和U形板Ⅱ8组成,U形板Ⅰ2固接于底板1右后部上面;侧板Ⅰ3下端固接于底板1近后部右侧面;平板Ⅰ4右端与侧板Ⅰ3上端成直角固接,立板5下端固接于平板Ⅰ4左后部上面;平板Ⅱ6成丁字形固接于侧板Ⅱ7上端;侧板Ⅱ7下端固接于底板1近后部左侧面;U形板Ⅱ8固接于底板1左后部上面。As shown in Figure 3, the experimental bench base A is composed of a bottom plate 1, a U-shaped plate I2, a side plate I3, a flat plate I4, a vertical plate 5, a flat plate II6, a side plate II7 and a U-shaped plate II8. I2 is fixed on the upper right rear of the bottom plate 1; the lower end of the side plate I3 is fixed on the right side near the rear of the bottom plate 1; The upper surface of the rear; the flat plate II6 is fixed to the upper end of the side plate II7 in a T-shape; the lower end of the side plate II7 is fixed to the left side of the bottom plate 1 near the rear; the U-shaped plate II8 is fixed to the upper left rear of the bottom plate 1.
如图4所示,所述的动力机构B由电机9、电机支架10、弹性联轴器13、轴承座Ⅰ14、丝杠轴16、滑块18和轴承座Ⅱ20组成,其中支架10为由立板12和横板11组成的直角形支架,电机9固接于电机支架10的立板12前面,电机9的输出端与弹性联轴器13前端固接;滑块18上设有中心螺纹孔17和平板19,滑块18的中心螺纹孔17与丝杠轴16中部螺纹连接;丝杠轴16后端与轴承座Ⅱ20的轴承Ⅱ21内圈过盈连接,丝杠轴16中部与滑块18的中心螺纹孔螺纹连接,丝杠轴16近前端与轴承座Ⅰ14的轴承Ⅰ15内圈过盈连接,丝杠轴16前端与弹性联轴器13后端固接。As shown in Figure 4, the power mechanism B is composed of a motor 9, a
如图5和图6所示,所述的摩擦机构C由往复丝杠滑块连接件22、力传感器Ⅰ23、摩擦片安装板连接件24、摩擦片26、左纵板27、右纵板28、前横板25、加速度传感器29、导轨Ⅰ30、导轨Ⅱ31、滑块Ⅰ32、滑块Ⅱ33、滑块Ⅲ34和滑块Ⅳ35、右纵板组成,左纵板27和右纵板28之间固接摩擦片26,左纵板27上面中间固接加速度传感器29;右纵板28下面靠后固接滑块Ⅰ32,右纵板28下面靠前固接滑块Ⅱ33;左纵板27下面靠后固接滑块Ⅲ34,左纵板27下面靠前固接滑块Ⅳ35;滑块Ⅰ32和滑块Ⅱ33与导轨Ⅱ31滑动连接,滑块Ⅲ34和滑块Ⅳ35与导轨Ⅰ30滑动连接;左纵板27和右纵板28前端固接前横板25,导轨Ⅰ30、力传感器Ⅰ23和导轨Ⅱ31自前至后顺序排列并固接,摩擦片安装板连接件24后端与前横板25前面中心固接。As shown in FIG. 5 and FIG. 6 , the friction mechanism C is composed of the reciprocating screw
如图7所示,所述的侧面监测装置D由支架Ⅰ36、高速摄像机Ⅰ37、立杆38、支架Ⅱ39和红外热成像仪40组成,支架Ⅰ36为立板和横板组成的直角板,高速摄像机Ⅰ37固接于支架Ⅰ36的立板;红外热成像仪40固接于支架Ⅱ39左面,立杆38固接于支架Ⅱ39下面。As shown in Figure 7, the side monitoring device D is composed of a bracket I36, a high-speed camera I37, a
如附图8和图9所示,所述的加载及俯视监测装置E,由摩擦试样41、安装杆42、力传感器Ⅱ43、加载杆44、螺母Ⅰ46、滑台连接件47、滑台48、丝杠49、电机Ⅱ50、底座53、安装架Ⅱ55和高速摄像机Ⅱ56组成,滑台连接件47的前面靠左固接有带孔板对45,滑台连接件47后面靠右固接滑台48;底座53由上板51、下板54、后板52组成,电机Ⅱ50固接于底座53的上板51,丝杠49上端与电机Ⅱ50输出轴固接,丝杠49中部与滑台48的中心螺纹孔螺纹连接,丝杠49底端与底座53的下板54中心活动连接;安装架Ⅱ55为直角S形板,安装架Ⅱ55上端固接于滑台连接件47后面靠左,安装架Ⅱ55下端前面固接高速摄像机Ⅱ56;摩擦试样41、安装杆42、力传感器Ⅱ43、加载杆44自下而上顺序排列并固接,加载杆44上部穿过滑台连接件47的带孔板对45,并经螺母Ⅰ46固接。As shown in FIGS. 8 and 9 , the loading and top-view monitoring device E consists of a
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922141807.8U CN211402089U (en) | 2019-12-04 | 2019-12-04 | Bionic microstructure friction and wear process information acquisition device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922141807.8U CN211402089U (en) | 2019-12-04 | 2019-12-04 | Bionic microstructure friction and wear process information acquisition device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211402089U true CN211402089U (en) | 2020-09-01 |
Family
ID=72232721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201922141807.8U Active CN211402089U (en) | 2019-12-04 | 2019-12-04 | Bionic microstructure friction and wear process information acquisition device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211402089U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110779864A (en) * | 2019-12-04 | 2020-02-11 | 吉林大学 | A bionic microstructure friction and wear process information acquisition device |
CN112129096A (en) * | 2020-09-23 | 2020-12-25 | 新兴铸管股份有限公司 | Be used for rotary kiln wheel belt anticreep device |
CN114383965A (en) * | 2022-01-10 | 2022-04-22 | 吉林大学重庆研究院 | Constant load multi-grinding surface type porous material sliding friction and wear testing device and method |
-
2019
- 2019-12-04 CN CN201922141807.8U patent/CN211402089U/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110779864A (en) * | 2019-12-04 | 2020-02-11 | 吉林大学 | A bionic microstructure friction and wear process information acquisition device |
CN110779864B (en) * | 2019-12-04 | 2024-10-15 | 吉林大学 | Bionic microstructure friction and wear process information acquisition device |
CN112129096A (en) * | 2020-09-23 | 2020-12-25 | 新兴铸管股份有限公司 | Be used for rotary kiln wheel belt anticreep device |
CN114383965A (en) * | 2022-01-10 | 2022-04-22 | 吉林大学重庆研究院 | Constant load multi-grinding surface type porous material sliding friction and wear testing device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN211402089U (en) | Bionic microstructure friction and wear process information acquisition device | |
CN206146769U (en) | A reciprocating friction and wear testing machine | |
AU2020102029A4 (en) | Sliding friction and wear tester | |
CN108169047B (en) | Friction and wear testing machine for testing film materials | |
CN103149024B (en) | The measurement apparatus of three-point bending mechanical property and method | |
CN107271306B (en) | It is a kind of with draw, the friction-wear detecting apparatus of press mechanism and test method | |
CN109520921B (en) | An optical measuring device for surface friction and lubrication performance of reciprocating friction pair | |
CN108548776B (en) | Rubber material surface friction performance testing device | |
CN102590078A (en) | Rubber dynamic friction wear detection device | |
CN107132183B (en) | A horizontal magnetic shield reciprocating friction and wear testing machine | |
CN106895972B (en) | A kind of stick-slip experimental rig | |
CN204649419U (en) | A kind of plunger-copper sheathing friction pair performance testing device | |
CN215574558U (en) | A detection and evaluation device for sealing and wear-resistant coating | |
CN111024605A (en) | Stepless pressure regulation friction coefficient measuring instrument | |
CN103884595B (en) | Casting sand five intensity vertical device for testing and the sand bond acquisition methods based on this device | |
CN111638126A (en) | Experimental device for testing friction self-excited vibration of rubber material | |
CN103776711B (en) | Way rub accuracy testing platform | |
CN211402088U (en) | Reciprocating type mechanical friction interface in-situ information acquisition device | |
CN110779864A (en) | A bionic microstructure friction and wear process information acquisition device | |
CN114279900B (en) | Device and method for testing real wettability of functional surface of cutter in force, heat and magnetism environment | |
CN113433016B (en) | Dynamic periodic loading reciprocating type friction and wear test device | |
CN203101249U (en) | Device for testing friction coefficient between fabric and skin | |
CN211402009U (en) | Rotation type mechanical friction interface normal position information acquisition device | |
CN211505158U (en) | Stepless pressure regulating friction coefficient measuring instrument | |
CN110726664B (en) | Reciprocating mechanical friction interface in-situ information acquisition device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |