CN211400921U - Double-layer heat dissipation building material structure - Google Patents

Double-layer heat dissipation building material structure Download PDF

Info

Publication number
CN211400921U
CN211400921U CN201922372133.2U CN201922372133U CN211400921U CN 211400921 U CN211400921 U CN 211400921U CN 201922372133 U CN201922372133 U CN 201922372133U CN 211400921 U CN211400921 U CN 211400921U
Authority
CN
China
Prior art keywords
heat dissipation
air
radiating
building material
cavity clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201922372133.2U
Other languages
Chinese (zh)
Inventor
唐玉敏
虞红伟
陈钰辉
余金金
何瑞萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Shizi New Energy Technology Co ltd
Original Assignee
Zhejiang Shizi New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Shizi New Energy Technology Co ltd filed Critical Zhejiang Shizi New Energy Technology Co ltd
Priority to CN201922372133.2U priority Critical patent/CN211400921U/en
Application granted granted Critical
Publication of CN211400921U publication Critical patent/CN211400921U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Floor Finish (AREA)

Abstract

The utility model discloses a double-deck heat dissipation building materials structure, including two vertical parallel arrangement's heating panel, reserve in the middle of two heating panels and have the cavity clearance, the cavity clearance left and right sides is sealed by the connecting plate, open formation air convection passageway in both sides about the cavity clearance, the cold air that gets into the air bed becomes hot-air with the heating panel heat transfer, the hot-air rises from the middle space clearance and discharges to the external environment from the top in, the cavity clearance is compared the external environment and is formed the negative pressure, the cold air in the environment gets into from the import below the middle space clearance again, form the air circulation return circuit, make the air backward flow form the radiating effect, the radiating space is bigger, improve the radiating effect of radiator; a hollow space is formed between the two heating plates, so that the material consumption of the heat dissipation plate body is reduced, the heat dissipation plate body can be used as a building material, and the construction cost is reduced.

Description

Double-layer heat dissipation building material structure
Technical Field
The utility model belongs to new forms of energy technique and building materials field relate to a double-deck heat dissipation building materials structure.
Background
The radiating fins are used as household products necessary for warming in winter, and are divided into pure aluminum radiators, die-cast aluminum radiators, aluminum alloy radiators, copper-aluminum composite radiators, steel-rich sheet radiators and copper-aluminum rich sheet radiators according to different materials, the composite radiators mostly pass through the space in an air convection heating chamber, the smaller the thermal resistance of the wall surfaces of the radiators is, the larger the heat transfer coefficient is, the better the heat transfer coefficient is; the simpler the heat sink structure, the more convenient mass production and assembly. Most of the existing radiator structures are of integral aluminum alloy or aluminum structures, the radiating fins are heavy in structure and large in material consumption, heat is radiated outwards mainly through two sides of the radiating fins, the air convection speed is low, and the radiating effect is attenuated quickly.
SUMMERY OF THE UTILITY MODEL
For overcoming the not enough of above-mentioned prior art, the utility model aims at providing a heat dissipation capacity is big, simple structure's double-deck heat dissipation building materials structure provides the air convection velocity, has promoted the heat dissipation capacity of radiator, the lift system energy efficiency ratio.
In order to achieve the above object, the utility model adopts the following technical scheme:
the utility model provides a double-deck heat dissipation building materials structure, includes two vertical parallel arrangement's heating panel, and two heating panels all are connected with heat transmission pipeline, and two heating panels link to each other through the connecting plate of both sides, and the interval certain distance sets up, reserve in the middle of two heating panels and have the cavity clearance, and the cavity clearance left and right sides is sealed by the connecting plate, and open formation air convection channel in both sides about the cavity clearance.
Furthermore, radiating fins for radiating are arranged on the outer side surfaces of the two radiating plates.
Further, the heat dissipation fins are arranged at a certain interval from the discrete hot plate.
Further, the radiating fins are of a strip-shaped structure, and the plurality of radiating fins are uniformly arranged on the radiating plate at intervals.
Furthermore, the heat dissipation plate, the heat dissipation fins and the connecting plate are all made of aluminum materials.
Further, the thickness of the hollow gap is not less than the thickness of the radiating plate.
The utility model discloses following beneficial effect has:
adopt the middle structure that sets up the interval clearance of parallel arrangement heating panel, the space of reserving in the middle of two hot plates becomes the air bed of air reflux, the cold air that gets into the air bed becomes hot-air with the heating panel heat transfer, hot-air rises from the middle space clearance and discharges to the external environment in the top, the external environment forms the negative pressure is compared to the cavity clearance, cold air in the environment gets into from the import below the middle space clearance once more, form air circulation return circuit, make the air reflux form the radiating effect, the radiating space is bigger, the radiating effect of radiator is improved.
A hollow space is formed between the two heating plates, so that the material consumption of the heat dissipation plate body is reduced, the heat dissipation plate body can be used as a building material, and the construction cost is reduced.
Radiating fins for radiating are arranged on the outer side faces of the two radiating plates, and the heat exchange efficiency is further improved.
Drawings
Fig. 1 is a schematic structural diagram of the present invention;
FIG. 2 is a sectional view taken along line A-A of FIG. 1;
FIG. 3 is a sectional view taken along line B-B of FIG. 1;
in the figure: 1-water inlet pipe, 2-heat dissipation plate, 3-heat dissipation fin, 4-connecting plate and 5-hollow gap.
Detailed Description
The present invention will be described in further detail with reference to the following specific examples, which should not be construed as limiting the invention.
As shown in fig. 1-3, the utility model discloses a double-deck heat dissipation building materials structure, heating panel 2 including two vertical parallel arrangement, two heating panels all are connected with heat transmission pipeline 1, heat transmission pipeline 1 connects the circulation heat pipeline of heating panel 2, circulation heat pipeline evenly distributed is in heating panel 2, dispel the heat to heating panel 2, two heating panels 2 link to each other through connecting plate 4 of both sides, and the certain distance setting of interval, it has cavity clearance 5 to reserve in the middle of two heating panels 2, the cavity clearance left and right sides is sealed by connecting plate 4, connecting plate 4 is as an organic whole with the heating panel welding of both sides, the open air convection channel that forms in both sides about the cavity clearance, make the cold air get into from the bottom and discharge from the top export after becoming hot-air, release the heat of heating panel 2 in the.
As shown in fig. 2 and 3, the outer side surfaces of the two heat dissipation plates 2 are provided with heat dissipation fins 3 for heat dissipation, the heat dissipation fins 3 are arranged at a certain interval from the heat dissipation plates 2, so that cold air can enter between the fins and the heat dissipation plates 2, the heat exchange area is increased, and the heat exchange efficiency is further improved.
Radiating fin 3 is rectangular form structure, and the interval certain distance evenly arranges on heating panel 2 between a plurality of radiating fin 3, adopts regular radiating fin, convenient processing, and overall layout is simple.
In order to improve the heat dissipation efficiency, the heat dissipation plate 2, the heat dissipation fins 3 and the connecting plate 4 are all made of aluminum materials, and the thickness of the hollow gap 5 is not less than that of the heat dissipation plate 2, so that air can flow back from the hollow gap to the maximum extent, and the heat transfer effect is ensured.
Through the design of the heat collecting plate working medium flow channel in a partition mode, under the working condition that the pressure drop of the heat collecting plate is kept unchanged or even reduced, the heat absorption capacity of the heat collecting plate is improved, the power consumption of a compressor is reduced, and therefore the energy efficiency ratio is improved.
Finally, it should be noted that: the above embodiments are only used for illustrating the technical solutions of the present invention and not for limiting the same, and although the present invention is described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: modifications and equivalents may be made to the embodiments of the invention without departing from the spirit and scope of the invention, which is intended to be covered by the claims.

Claims (6)

1. The utility model provides a double-deck heat dissipation building materials structure which characterized in that: including two vertical parallel arrangement's heating panel (2), two heating panels all are connected with heat transmission pipeline (1), and two heating panels (2) link to each other through connecting plate (4) of both sides, and the certain distance setting of interval, reserve in the middle of two heating panels (2) and have cavity clearance (5), and the cavity clearance left and right sides is sealed by connecting plate (4), and open formation air convection passageway in both sides about the cavity clearance.
2. The dual-layer heat dissipating building material structure of claim 1, wherein: radiating fins (3) for radiating are arranged on the outer side surfaces of the two radiating plates (2).
3. The dual-layer heat dissipating building material structure of claim 2, wherein: the radiating fins (3) are arranged at a certain interval from the radiating plate (2).
4. The dual-layer heat dissipating building material structure of claim 3, wherein: the radiating fins (3) are of a strip-shaped structure, and the radiating fins (3) are uniformly arranged on the radiating plate (2) at intervals.
5. The dual layer heat dissipating building material structure of any of claims 1-4, wherein: the heat dissipation plate (2), the heat dissipation fins (3) and the connecting plate (4) are all made of aluminum materials.
6. The dual layer heat dissipating building material structure of any of claims 1-4, wherein: the thickness of the hollow gap (5) is not less than that of the heat dissipation plate (2).
CN201922372133.2U 2019-12-25 2019-12-25 Double-layer heat dissipation building material structure Active CN211400921U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201922372133.2U CN211400921U (en) 2019-12-25 2019-12-25 Double-layer heat dissipation building material structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201922372133.2U CN211400921U (en) 2019-12-25 2019-12-25 Double-layer heat dissipation building material structure

Publications (1)

Publication Number Publication Date
CN211400921U true CN211400921U (en) 2020-09-01

Family

ID=72233094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201922372133.2U Active CN211400921U (en) 2019-12-25 2019-12-25 Double-layer heat dissipation building material structure

Country Status (1)

Country Link
CN (1) CN211400921U (en)

Similar Documents

Publication Publication Date Title
CN108589960B (en) Phase-change heat collection-radiating wall system operated under all working conditions
CN105352345B (en) Micro-channel heat exchanger and its air conditioner
CN206056342U (en) A kind of low temp heating piece
CN106323042A (en) Low-temperature heating radiator
CN201876179U (en) Heat exchange tube and energy-saving radiator
CN211400921U (en) Double-layer heat dissipation building material structure
CN112229240A (en) Low-temperature heating radiating tube and radiator
CN209857688U (en) Novel little logical board, and possess radiator and air conditioner end equipment of this little logical board
CN209263711U (en) A kind of radiator
CN218270308U (en) High-efficient exhaust heat abstractor
CN110926255A (en) Double-layer heat dissipation building material structure
CN102003906A (en) Heat exchange tube and energy-saving heat radiator
CN102944064B (en) Tube-plate water-circulating heat exchanger
CN210463271U (en) Annular C-shaped opening micro-channel parallel flow heat exchanger
CN109612300B (en) Micro-through plate
CN214620727U (en) Sectional type convection fin radiator
CN201992912U (en) Heat exchanger
CN201964803U (en) Heating heat sink
CN202915565U (en) Tube plate water cycle heat exchanger
CN205049034U (en) Aluminium tubular heat exchanger
CN203489454U (en) Underground water-cooled air conditioner surface cooler
CN218071435U (en) Solar photovoltaic photo-thermal utilization system with baffling heat exchange plates
CN2779324Y (en) Steel-aluminum column wing radiator
CN210399127U (en) Radiator for bathroom
CN210292067U (en) Aluminum plate radiator

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant