CN211243606U - A dual-core MCU intelligent ultrasonic minimally invasive scalpel control device - Google Patents
A dual-core MCU intelligent ultrasonic minimally invasive scalpel control device Download PDFInfo
- Publication number
- CN211243606U CN211243606U CN202020005356.5U CN202020005356U CN211243606U CN 211243606 U CN211243606 U CN 211243606U CN 202020005356 U CN202020005356 U CN 202020005356U CN 211243606 U CN211243606 U CN 211243606U
- Authority
- CN
- China
- Prior art keywords
- ultrasonic
- controller
- minimally invasive
- circuit
- dual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 claims description 35
- 238000002955 isolation Methods 0.000 claims description 17
- 230000003993 interaction Effects 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 6
- 230000005669 field effect Effects 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 claims 1
- 238000002324 minimally invasive surgery Methods 0.000 abstract description 6
- 230000000630 rising effect Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 101100537280 Caenorhabditis elegans ddp-1 gene Proteins 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000012827 research and development Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002224 dissection Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 101100119135 Mus musculus Esrrb gene Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Surgical Instruments (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及医学领域,特别是涉及一种双核MCU智能超声微创手术刀控制装置。The utility model relates to the medical field, in particular to a dual-core MCU intelligent ultrasonic minimally invasive scalpel control device.
背景技术Background technique
手术刀,作为一种外科手术必不可少的工具,在整个手术过程中都发挥着极其重要的作用。随着医疗技术的不断进步,手术器械也在不断地改进,出现了钢刀、电刀、超声刀、激光刀、射频刀等。其中超声刀通过将电能转换为机械能,驱动刀头以一定的谐振频率进行高频振动,使组织内的水汽化,蛋白质氢键断裂、变性,细胞崩解,使组织被切开或凝固,在组织分离和组织切割的同时凝血止血。随着计算机技术和微电子技术的迅猛发展,各大企业和高校加速了对微创手术器械的创新与研发,相继出现了新型微创手术器械系统及产品。The scalpel, as an essential tool in surgery, plays an extremely important role in the entire surgical process. With the continuous progress of medical technology, surgical instruments are also constantly improving, and there are steel knives, electric knives, ultrasonic knives, laser knives, radio frequency knives, etc. The ultrasonic knife converts electrical energy into mechanical energy and drives the knife head to vibrate at a high frequency at a certain resonant frequency, so that the water in the tissue is vaporized, the protein hydrogen bonds are broken, denatured, and cells are disintegrated, so that the tissue is cut or solidified. Coagulation and hemostasis are performed simultaneously with tissue dissection and tissue dissection. With the rapid development of computer technology and microelectronics technology, major enterprises and universities have accelerated the innovation and research and development of minimally invasive surgical instruments, and new minimally invasive surgical instrument systems and products have appeared one after another.
随着医疗水平的日渐提高,根据超声刀系统的临床特性,在超声微创手术刀控制装置中,需通过外加机构对刀具频率以及刀具功率进行准确控制,对刀具输出频率与功率进行精确控制,提升微创手术的控制精度。With the increasing medical level, according to the clinical characteristics of the ultrasonic scalpel system, in the ultrasonic minimally invasive scalpel control device, it is necessary to accurately control the frequency and power of the tool through an external mechanism, and accurately control the output frequency and power of the tool. Improve the control precision of minimally invasive surgery.
目前,国内对于现代手术刀控制装置的自主研发缺乏一定的力度和深度,通过使用模糊算法来调节合适的频率。然而,目前这种方案在实际工作中并不实用。由于智能算法消耗了处理器大量的资源,导致产品成本增加。难以在低成本条件下实现对手术刀工作频率的精确控制,手术刀工作频率如果无法达到精确、实时的控制的话,不仅会降低电源的输出功率和效率,而且久之还会降低刀头的质量,影响手术效果。正因为国内高精度控制电源的研发成果还不足,使得现代手术刀发展缓慢,大部分现代手术器械只能依赖进口,这必然提高了医疗成本,使得需要的群众难以体验到良好的医疗效果,这也大大阻碍了这类现代手术刀的大范围普及与应用。At present, the independent research and development of modern scalpel control devices in China lacks a certain strength and depth, and the appropriate frequency is adjusted by using a fuzzy algorithm. However, at present this scheme is not practical in practical work. Since the intelligent algorithm consumes a lot of resources of the processor, the cost of the product increases. It is difficult to accurately control the operating frequency of the scalpel at low cost. If the operating frequency of the scalpel cannot be controlled accurately and in real time, it will not only reduce the output power and efficiency of the power supply, but also reduce the quality of the knife head. affect the outcome of surgery. It is precisely because the research and development results of high-precision control power supply in China are still insufficient that the development of modern scalpels is slow, and most modern surgical instruments can only rely on imports, which will inevitably increase medical costs and make it difficult for the people in need to experience good medical effects. It also greatly hinders the widespread popularization and application of such modern scalpels.
另一方面,考虑超声手术刀的压电特性,其自身的电特性会随着切割或乳化组织的不同而发生变化,为保证手术质量和设备寿命,必须对其进行跟踪控制使其严格工作在谐振状态,如果不能及时调整超声电源的频率,振动系统将工作在非谐振状态,振动系统的输出功率和效率将会降低。On the other hand, considering the piezoelectric properties of the ultrasonic scalpel, its own electrical properties will change with the tissue being cut or emulsified. In order to ensure the quality of the operation and the life of the equipment, it must be tracked and controlled to make it work strictly in the In the resonance state, if the frequency of the ultrasonic power supply cannot be adjusted in time, the vibration system will work in a non-resonant state, and the output power and efficiency of the vibration system will be reduced.
发明内容SUMMARY OF THE INVENTION
本实用新型的目的是提供一种双核MCU智能超声微创手术刀控制装置,对刀具输出频率与功率进行精确控制,使超声换能器维持在谐振状态,提升微创手术的控制精度。The purpose of the utility model is to provide a dual-core MCU intelligent ultrasonic minimally invasive surgical knife control device, which can precisely control the output frequency and power of the knife, maintain the ultrasonic transducer in a resonance state, and improve the control accuracy of minimally invasive surgery.
为实现上述目的,本实用新型提供了如下方案:For achieving the above object, the utility model provides the following scheme:
一种双核MCU智能超声微创手术刀控制装置,包括:超声刀测量器、控制器、直接数字式频率合成器和数字电位计;所述控制器分别与所述超声刀测量器、所述直接数字式频率合成器和所述数字电位计连接;所述直接数字式频率合成器和所述数字电位计连接;所述数字电位计与超声刀连接;A dual-core MCU intelligent ultrasonic minimally invasive surgical knife control device, comprising: an ultrasonic knife measuring device, a controller, a direct digital frequency synthesizer and a digital potentiometer; the controller is respectively connected with the ultrasonic knife measuring device, the direct the digital frequency synthesizer is connected with the digital potentiometer; the direct digital frequency synthesizer is connected with the digital potentiometer; the digital potentiometer is connected with the ultrasonic knife;
所述超声刀测量器用于测量超声刀的实际电流和实际电压;所述控制器用于根据输入的设定功率范围值、所述实际电流和所述实际电压调整所述数字电位计的阻值,并控制所述直接数字式频率合成器输出目标频率的波形;阻值调整后的数字电位计用于根据所述目标频率的波形输出目标电压,并将所述目标电压输入至所述超声刀,以改变所述超声刀的工作功率和工作频率。The ultrasonic knife measuring device is used to measure the actual current and actual voltage of the ultrasonic knife; the controller is used to adjust the resistance value of the digital potentiometer according to the input set power range value, the actual current and the actual voltage, and control the direct digital frequency synthesizer to output the waveform of the target frequency; the digital potentiometer after resistance adjustment is used to output the target voltage according to the waveform of the target frequency, and input the target voltage to the ultrasonic knife, To change the working power and working frequency of the ultrasonic knife.
可选的,所述双核MCU智能超声微创手术刀控制装置,还包括:驱动电路和漏极电压检测电路;Optionally, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: a drive circuit and a drain voltage detection circuit;
所述驱动电路分别与所述直接数字式频率合成器、所述数字电位计、所述漏极电压检测电路和所述超声刀连接;所述漏极电压检测电路与所述控制器连接;所述漏极电压检测电路用于检测所述驱动电路的漏极电压,并将所述漏极电压发送至所述控制器;所述控制器用于控制所述驱动电路工作在饱和区。The drive circuit is respectively connected with the direct digital frequency synthesizer, the digital potentiometer, the drain voltage detection circuit and the ultrasonic knife; the drain voltage detection circuit is connected with the controller; the The drain voltage detection circuit is used for detecting the drain voltage of the driving circuit, and sending the drain voltage to the controller; the controller is used for controlling the driving circuit to work in a saturation region.
可选的,所述驱动电路由两个并联的半导体场效晶体管组成。Optionally, the driving circuit is composed of two parallel semiconductor field effect transistors.
可选的,所述双核MCU智能超声微创手术刀控制装置,还包括:隔离升压变压器;所述驱动电路通过所述隔离升压变压器与所述超声刀连接。Optionally, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: an isolation booster transformer; and the drive circuit is connected to the ultrasound scalpel through the isolation booster transformer.
可选的,所述双核MCU智能超声微创手术刀控制装置,还包括:光耦隔离通信电路,所述控制器通过所述光耦隔离通信电路与所述超声刀测量器连接。Optionally, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: an optocoupler isolation communication circuit, and the controller is connected to the ultrasonic scalpel measuring device through the optocoupler isolation communication circuit.
可选的,所述双核MCU智能超声微创手术刀控制装置,还包括:电源和共模扼流线圈,所述电源分别与所述共模扼流线圈和所述控制器连接,所述共模扼流线圈与所述驱动电路连接,所述电源用于为所述驱动电路提供漏极电压。Optionally, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: a power supply and a common mode choke coil, the power supply is respectively connected to the common mode choke coil and the controller, and the common mode choke coil is respectively connected. The mode choke coil is connected to the driving circuit, and the power supply is used for providing a drain voltage for the driving circuit.
可选的,所述漏极电压检测电路包括:二极管钳位电路、分压电路、电压跟随器和谷值检测电路,所述二极管钳位电路分别与所述分压电路和所述驱动电路连接,所述分压电路与所述电压跟随器连接,所述电压跟随器与所述谷值检测电路连接,所述谷值检测电路与所述控制器连接。Optionally, the drain voltage detection circuit includes: a diode clamp circuit, a voltage divider circuit, a voltage follower and a valley detection circuit, and the diode clamp circuit is respectively connected to the voltage divider circuit and the drive circuit , the voltage divider circuit is connected to the voltage follower, the voltage follower is connected to the valley value detection circuit, and the valley value detection circuit is connected to the controller.
可选的,所述控制器和所述超声刀测量器均为STM32F407单片机。Optionally, both the controller and the ultrasonic knife measuring device are STM32F407 microcontrollers.
可选的,所述双核MCU智能超声微创手术刀控制装置,还包括:人机交互模块,所述人机交互模块与所述控制器连接,所述人机交互模块用于输入所述设定功率范围值。Optionally, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: a human-computer interaction module, the human-computer interaction module is connected to the controller, and the human-computer interaction module is used to input the device. Constant power range value.
根据本实用新型提供的具体实施例,本实用新型公开了以下技术效果:通过设置控制器、直接数字式频率合成器和数字电位计,控制器通过调整直接数字式频率合成器的频率调整输出电流的频率,通过调整数字电位计的电阻控制输出电流的功率,对刀具输出频率与功率进行精确控制,提升微创手术的控制精度。According to the specific embodiment provided by the utility model, the utility model discloses the following technical effects: by setting the controller, the direct digital frequency synthesizer and the digital potentiometer, the controller adjusts the output current by adjusting the frequency of the direct digital frequency synthesizer By adjusting the resistance of the digital potentiometer to control the power of the output current, the output frequency and power of the tool can be precisely controlled, and the control accuracy of the minimally invasive surgery can be improved.
附图说明Description of drawings
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only of the present invention. For some embodiments of the present invention, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本实用新型实施例双核MCU智能超声微创手术刀控制装置的整体示意图;1 is an overall schematic diagram of a dual-core MCU intelligent ultrasonic minimally invasive scalpel control device according to an embodiment of the present invention;
图2为本实用新型实施例双核MCU智能超声微创手术刀控制装置的框图;2 is a block diagram of a dual-core MCU intelligent ultrasonic minimally invasive scalpel control device according to an embodiment of the present invention;
图3为本实用新型实施例双核MCU智能超声微创手术刀控制装置中的控制器与外部结构的连接关系图;3 is a connection diagram of a controller and an external structure in a dual-core MCU intelligent ultrasonic minimally invasive scalpel control device according to an embodiment of the present invention;
图4为本实用新型实施例双核MCU智能超声微创手术刀控制装置中的超声刀测量器与外部结构的连接关系图;Fig. 4 is the connection relation diagram of the ultrasonic knife measuring device and the external structure in the dual-core MCU intelligent ultrasonic minimally invasive surgical knife control device according to the embodiment of the present invention;
图5为本实用新型实施例漏极电压检测电路的示意图;5 is a schematic diagram of a drain voltage detection circuit according to an embodiment of the present invention;
图6为本实用新型实施例为驱动电路提供漏极电压的流程图;6 is a flow chart of providing a drain voltage for a driving circuit according to an embodiment of the present invention;
图7为本实用新型实施例为驱动电路提供栅极电压的流程图;FIG. 7 is a flow chart of providing a gate voltage for a drive circuit according to an embodiment of the present invention;
图8为本实用新型实施例驱动电路为超声刀提供电压的流程图;Fig. 8 is the flow chart that the drive circuit of the embodiment of the present utility model provides the voltage for the ultrasonic knife;
图9为本实用新型实施例中计算相位差的流程图;Fig. 9 is the flow chart of calculating phase difference in the embodiment of the present utility model;
图10为本实用新型实施例计算目标电流和输出频率的流程图。FIG. 10 is a flow chart of calculating target current and output frequency according to an embodiment of the present invention.
符号说明:1-超声刀测量器、2-控制器、3-直接数字式频率合成器、4-数字电位计、5-光耦隔离通信电路、6-主板信息读取模块、7-电阻网络按键状态检测模块、8-超声刀输出模块、9-LED灯、10-人机交互模块、11-电平转换电路、12-触摸屏、13-驱动电路、14-漏极电压检测电路、15-隔离升压变压器、16-二极管钳位电路、17-分压电路、18-电压跟随器、19-谷值检测电路、20-电源、21-共模扼流线圈、22-控制模块。Symbol description: 1- ultrasonic knife measuring instrument, 2- controller, 3- direct digital frequency synthesizer, 4- digital potentiometer, 5- optocoupler isolation communication circuit, 6- motherboard information reading module, 7- resistance network Button state detection module, 8-ultrasonic knife output module, 9-LED light, 10-human-computer interaction module, 11-level conversion circuit, 12-touch screen, 13-drive circuit, 14-drain voltage detection circuit, 15- Isolation step-up transformer, 16-diode clamping circuit, 17-voltage divider circuit, 18-voltage follower, 19-valley detection circuit, 20-power supply, 21-common mode choke coil, 22-control module.
具体实施方式Detailed ways
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。The technical solutions in the embodiments of the present utility model will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present utility model. Obviously, the described embodiments are only a part of the embodiments of the present utility model, rather than all the implementations. example. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
本实用新型的目的是提供一种双核MCU智能超声微创手术刀控制装置,设置了控制器、直接数字式频率合成器和数字电位计,控制器通过调整直接数字式频率合成器输出波形的频率和调整数字电位计的电阻,对刀具输出频率与功率进行精确控制,提升微创手术的控制精度。The purpose of the utility model is to provide a dual-core MCU intelligent ultrasonic minimally invasive scalpel control device, which is provided with a controller, a direct digital frequency synthesizer and a digital potentiometer. The controller adjusts the frequency of the output waveform of the direct digital frequency synthesizer. And adjust the resistance of the digital potentiometer, accurately control the output frequency and power of the tool, and improve the control accuracy of minimally invasive surgery.
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本实用新型作进一步详细的说明。In order to make the above objects, features and advantages of the present utility model more clearly understood, the present utility model will be described in further detail below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
如图1-图4所示,一种双核MCU智能超声微创手术刀控制装置,包括:超声刀测量器1、控制器2、直接数字式频率合成器3和数字电位计4;所述控制器2、所述直接数字式频率合成器3和所述数字电位计4组成控制模块22;所述控制器2分别与所述超声刀测量器1、所述直接数字式频率合成器3和所述数字电位计4连接;所述直接数字式频率合成器3和所述数字电位计4连接;所述数字电位计4与超声刀连接。As shown in Figures 1-4, a dual-core MCU intelligent ultrasonic minimally invasive surgical knife control device includes: an ultrasonic
所述超声刀测量器1用于测量超声刀的实际电流和实际电压,所述超声刀测量器1同时对多处电信号进行测量采样,节省时间;所述控制器2用于根据输入的设定功率范围值、所述实际电流和所述实际电压调整所述数字电位计4的阻值,并通过SPI通信协议与直接数字式频率合成器3通信,控制所述直接数字式频率合成器3输出目标频率的波形;阻值调整后的数字电位计4用于根据所述目标频率的波形输出目标电压,并将所述目标电压输入至所述超声刀,以改变所述超声刀的工作功率和工作频率。The ultrasonic
作为一种可选的实施方式,所述双核MCU智能超声微创手术刀控制装置,还包括:光耦隔离通信电路5,所述控制器2通过所述光耦隔离通信电路与所述超声刀测量器1连接,所述光耦隔离通信电路使用多级高精度运放将所述控制器2与所述超声刀测量器1隔离,防止因有电的连接而引起信号干扰,减少电压控制电路与外部高压电路之间的干扰,减少测量回路对电信号的影响。As an optional implementation manner, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: an optocoupler
作为一种可选的实施方式,所述控制器2和所述超声刀测量器1均为STM32F407单片机,所述单片机功耗低、性能高、速度快且存储量大。As an optional implementation manner, the controller 2 and the ultrasonic
作为一种可选的实施方式,所述双核MCU智能超声微创手术刀控制装置,还包括:主板信息读取模块6,所述主板信息读取模块6与所述控制器2连接,所述主板信息读取模块6用于获取超声刀功率发生器的ID以及其他设置参数。As an optional implementation manner, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: a main board information reading module 6, the main board information reading module 6 is connected to the controller 2, the The main board information reading module 6 is used to obtain the ID and other setting parameters of the ultrasonic blade power generator.
作为一种可选的实施方式,所述双核MCU智能超声微创手术刀控制装置,还包括:电阻网络按键状态检测模块7,所述电阻网络按键状态检测模块7与所述超声刀测量器1连接,所述电阻网络按键状态检测模块7用于读取超声刀设备的ID以及判断超声刀的按键状态。As an optional implementation manner, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: a resistance network button
作为一种可选的实施方式,所述双核MCU智能超声微创手术刀控制装置,还包括:超声刀输出模块8,所述数字电位计4通过所述超声刀输出模块8与超声刀连接,所述超声刀输出模块8用于为超声换能器设备提供接口。As an optional implementation manner, the dual-core MCU intelligent ultrasonic minimally invasive surgical knife control device further includes: an ultrasonic
作为一种可选的实施方式,所述超声刀输出模块8包括滤波电路和接口电路,所述滤波电路连接所述数字电位计4和所述接口电路,所述接口电路连接所述超声刀。As an optional implementation manner, the ultrasonic
作为一种可选的实施方式,所述双核MCU智能超声微创手术刀控制装置,还包括:LED灯9,所述LED灯9与所述超声刀测量器1连接,所述LED灯9用于指示超声刀测量器1工作是否正常。As an optional implementation manner, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: an
作为一种可选的实施方式,所述双核MCU智能超声微创手术刀控制装置,还包括:人机交互模块10,所述人机交互模块10与所述控制器2连接,所述人机交互模块10用于输入所述设定功率范围值。As an optional implementation manner, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: a human-
所述人机交互模块10包括电平转换电路11和触摸屏12,所述电平转换电路11分别与所述触摸屏12和所述控制器2连接。所述电平转换电路11用于将控制器2产生的TTL电平信号转换为触摸屏12可识别的RS232电平信号,将触摸屏12产生的RS232电平信号转换为控制器2可识别的TTL电平信号。所述触摸屏12用于实现可视化的图形界面进而实现人机交互的功能,触摸屏12主要实现功能包括:显示刀柄名称、超声刀功率等级的显示与调节、音量调节、触摸屏12亮度调节、选择超声刀设备激发方式、选择系统语言、手柄测试、显示系统信息、显示超声刀运行时的工作参数、日志读写。The human-
控制器2通过电平转换电路11读取存储在触摸屏12内存中的系统语言、音量、显示亮度等历史数据,然后通过串口向触摸屏12发送指令,完成触摸屏12的初始化。在使用过程中,触摸屏12实时向控制器2发送触摸屏12的使用状态,控制器2根据触摸屏12的使用状态实现用户期望的操作。人机交互模块10采用了可视化的图形界面实现人机交互功能,大大提高了整个设备系统的实用性和可操作性,使得用户可以根据不同的手术需求,通过该图形化界面选择不同的工作模式,这不仅可以进一步丰富设备的功能,也能在手术过程中更好地实时监测系统的工作状态,大大提高了手术的安全性和可靠性。The controller 2 reads the system language, volume, display brightness and other historical data stored in the memory of the
作为一种可选的实施方式,所述电源与所述触摸屏12连接。As an optional implementation manner, the power supply is connected to the
作为一种可选的实施方式,所述电平转换电路11为TIL_RS232电平转换电路。As an optional implementation manner, the
作为一种可选的实施方式,所述TTL-RS232电平转换电路使用SP3232芯片。As an optional implementation manner, the TTL-RS232 level conversion circuit uses an SP3232 chip.
作为一种可选的实施方式,所述双核MCU智能超声微创手术刀控制装置,还包括:驱动电路13和漏极电压检测电路14;为了更好地控制驱动电路13输出的电流,本实用新型采用通过调整驱动电路13栅极电压的方式调整驱动电路13输出的电流。As an optional implementation manner, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: a
所述驱动电路13分别与所述直接数字式频率合成器、所述数字电位计4、所述漏极电压检测电路14和所述超声刀连接;所述漏极电压检测电路14与所述控制器2连接;所述漏极电压检测电路14用于检测所述驱动电路13的漏极电压,并将所述漏极电压发送至所述控制器2;所述控制器2用于控制所述驱动电路13工作在饱和区。所述直接数字式频率合成器中的电压一部分分给所述数字电位计4为驱动电路13提供栅极电压,另一部分直接作为驱动电路的驱动电压,驱动驱动电路工作。The
作为一种可选的实施方式,所述驱动电路13由两个并联的半导体场效晶体管组成。As an optional implementation manner, the driving
作为一种可选的实施方式,所述双核MCU智能超声微创手术刀控制装置,还包括:隔离升压变压器15;所述驱动电路13通过所述隔离升压变压器15与所述超声刀连接,所述隔离升压变压器15对施加于手术刀的电信号与驱动电路13端进行有效的隔离,避免病人接触区的电流以及能量直接流向外界的非隔离电气区域,避免因意外产生的电流信息等无序流动造成接地故障,切断电流接地回路,保证电路工作安全、稳定。As an optional implementation manner, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: an
作为一种可选的实施方式,如图5所示,所述漏极电压检测电路14包括:二极管钳位电路16、分压电路17、电压跟随器18和谷值检测电路19,所述二极管钳位电路16分别与所述分压电路17和所述驱动电路13连接,所述分压电路17与所述电压跟随器18连接,所述电压跟随器18与所述谷值检测电路19连接,所述谷值检测电路19与所述控制器2连接,使用电压跟随器18和分压电路17使电压更稳定,使用分压电路17减小谷值检测电路19的输入电压。As an optional implementation manner, as shown in FIG. 5 , the drain voltage detection circuit 14 includes: a
作为一种可选的实施方式,所述双核MCU智能超声微创手术刀控制装置,还包括:电源20和共模扼流线圈21,所述电源20分别与所述共模扼流线圈21和所述控制器2连接,所述共模扼流线圈21与所述驱动电路13连接,所述共模扼流线圈21过滤共模的电磁干扰信号,所述电源20用于为驱动电路13提供漏极电压,为了减小驱动电路13的漏极电压对驱动电路13输出的电流的影响,需要使驱动电路13始终工作在饱和区。驱动电路13工作在饱和区需要满足条件:Vdsat≥Vgs-Vth,式中Vdsat代表驱动电路13工作在饱和区的漏极电压,Vgs代表漏极电压,Vth代表驱动电路13临界电压。As an optional implementation manner, the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device further includes: a
为了使Vdsat≥Vgs-Vth始终成立而又不因为Vdsat过大导致驱动电路13损耗过大,需要不断调整电源20输出电压改变Vdsat的大小。In order to make V dsat ≥V gs -V th always established without excessive loss of the driving
如图6-图8所示,调整驱动电路13的漏极电压,具体包括:As shown in FIGS. 6-8 , adjusting the drain voltage of the driving
使用二极管钳位电路16测量驱动电路13中两组MOSFET(金属-氧化层半导体场效晶体管)的漏极电压,并过滤最小的漏极电压,将最小的漏极电压按照分压电阻、电压跟随器18和谷值检测电路19的顺序传输,利用谷值检测电路19测出最小的漏极电压的数值;控制器2根据测出的所述最小的漏极电压的数值对电源20输出的电压的PWM波的占空比进行控制,经过共模扼流线圈21之后,为驱动电路13提供漏极电压。Use the
调整驱动电路13的栅极电压,具体包括:Adjusting the gate voltage of the driving
超声刀测量器1中的电压检测电路和电流检测电路分别测量实际电压和实际电流,并且将测得的实际电压和实际电流进行处理,再通过光耦隔离电路5传送给控制器2,控制器2调整直接数字式频率合成器3的输出波形并将输出波形输入到数字电位计4,数字电位计4向驱动电路13输出栅极电压,驱动驱动电路13产生漏极电流,所述漏极电流通过隔离升压变压器15和超声刀输出模块8产生超声刀所需要的电压。The voltage detection circuit and the current detection circuit in the ultrasonic
本实施例双核MCU智能超声微创手术刀控制装置的具体使用方法如下:The specific use method of the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device in this embodiment is as follows:
第一步:超声刀测量器初始化,具体包括:Step 1: Initialize the ultrasonic knife measuring instrument, including:
超声刀测量器上电后,初始化串口和子系统硬件平台。超声刀测量器使用外部晶振作为超声刀测量器的时钟源。分别初始化串口1和串口5,串口1用来连接USB转UART串口模块进行电脑调试或者读取数据,串口5用来实现与控制器通信,最后分别进行各个串口和定时器的初始化。After the ultrasonic knife measuring instrument is powered on, the serial port and subsystem hardware platform are initialized. The ultrasonic knife measurer uses an external crystal oscillator as the clock source of the ultrasonic knife measurer. Initialize
第二步:控制器初始化,具体包括:Step 2: Controller initialization, including:
控制器上电后,初始化串口和子系统硬件平台。控制器使用外部晶振。分别初始化串口1、2、3、4、5,串口1用来控制内部的数模转换器输出,串口2用来与数字电位计通信,串口3用来与直接数字式频率合成器通信,串口4用来与触摸屏通信,串口5用来与超声刀测量器通信,最后分别进行SPI端口和数模转换器、数字电位器、直接数字式频率合成器、定时器和开关电源电压的初始化。After the controller is powered on, the serial port and subsystem hardware platform are initialized. The controller uses an external crystal. Initialize
第三步:控制器初始化触摸屏,具体包括:Step 3: The controller initializes the touch screen, including:
步骤1:划分512字节缓冲区使用循环队列存储触摸屏发出的指令,每隔5ms读取一次指令缓冲区的指令,若缓冲区不为空,则处理缓冲区。Step 1: Divide a 512-byte buffer and use a circular queue to store the instructions sent by the touch screen, read the instructions in the instruction buffer every 5ms, and process the buffer if the buffer is not empty.
步骤2:向触摸屏读取实时时钟指令,收到触摸屏返回的实时时钟指令后通过判断实时时钟指令中的变量地址,若变量地址为0x0010(存储实时时间的变量地址)时,记录指令中的年、月、日、时、分、秒等数据。Step 2: Read the real-time clock command from the touch screen, and judge the variable address in the real-time clock command after receiving the real-time clock command returned by the touch screen. If the variable address is 0x0010 (the variable address for storing real-time time), record the year in the command , month, day, hour, minute, second and other data.
步骤3:向触摸屏发送读NorFlash的指令,收到触摸屏返回的指令后将从NorFlash中读出的历史值分别配置。存储在触摸屏NorFlash中的历史值包括日志内容、显示亮度、系统音量、日志条数、系统语言、功率发生器激发方式。Step 3: Send an instruction to read NorFlash to the touch screen, and configure the historical values read from NorFlash after receiving the instruction returned by the touch screen. The historical values stored in the touch screen NorFlash include log content, display brightness, system volume, log number, system language, and power generator excitation mode.
步骤4:从NorFlash读取出系统语言后,根据系统语言重新配置触摸屏上显示的文字信息。在开发软件KeilMDK中使用的文字编码格式为UTF-8,而在触摸屏中使用的文字编码格式为Unicode,因此在将文字信息发送给触摸屏之前需要将UTF-8编码格式的文字转换位Unicode编码格式。Step 4: After reading the system language from NorFlash, reconfigure the text information displayed on the touch screen according to the system language. The text encoding format used in the development software KeilMDK is UTF-8, and the text encoding format used in the touch screen is Unicode, so before sending text information to the touch screen, the text in the UTF-8 encoding format needs to be converted to Unicode encoding format .
步骤5:设定超声刀的MIN等级为3。Step 5: Set the MIN level of the ultrasonic scalpel to 3.
步骤6:开启看门狗。Step 6: Turn on the watchdog.
第四步:使用定时中断每隔5ms控制一次目标电流与输出频率。Step 4: Use timed interrupt to control the target current and output frequency every 5ms.
第五步:进入工作状态,按下超声刀设备上的启动按钮或者脚踏开关。Step 5: Enter the working state and press the start button or foot switch on the ultrasonic knife device.
第六步:关闭系统:当设备系统关闭时,通过断开医用电源开关将设备系统掉电,以关闭系统。Step 6: Shut down the system: when the equipment system is shut down, power off the equipment system by disconnecting the medical power switch to shut down the system.
最后,如果重新启动设备系统,则重复第一步到第四步,系统再次进入正常工作状态即可。Finally, if the device system is restarted, repeat the first to fourth steps, and the system can enter the normal working state again.
对本实施例提供的双核MCU智能超声微创手术刀控制装置的控制方法简单描述,具体包括:The control method of the dual-core MCU intelligent ultrasonic minimally invasive scalpel control device provided in this embodiment is briefly described, specifically including:
步骤101:根据设定功率范围值,确定期望电流值和期望相位差。Step 101: Determine the expected current value and the expected phase difference according to the set power range value.
步骤102:获取超声刀测量器1测量到的实际电流和所述超声刀测量器1计算的实际相位差;所述实际相位差是由所述实际电流和所述超声刀测量器1测量到的实际电压确定的。Step 102: Obtain the actual current measured by the ultrasonic
所述获取超声刀测量器1测量到的实际电流和所述超声刀测量器1计算的实际相位差,具体包括:使用超声刀测量器1中的模拟数字转换器的电压采集功能、电流采集功能和定时器定时检测超声刀接口电路的电流的幅值和相位、电压的幅值和相位的功能,测量实际电流值并计算实际相位差值。The acquisition of the actual current measured by the ultrasonic
如图9所示,步骤102中实际相位差的计算过程如下:As shown in Figure 9, the calculation process of the actual phase difference in step 102 is as follows:
S1:使能捕获通道CH2,并将CH2初始化。S1: Enable capture channel CH2 and initialize CH2.
S2:判断CH2是否捕获到第一次上升沿,若否,CH2继续进行第一次上升沿的捕获;若是,则Tim6开始计时,Tim8计数清零开始计时且使能捕获通道CH3。S2: Determine whether CH2 captures the first rising edge, if not, CH2 continues to capture the first rising edge; if so, Tim6 starts timing, Tim8 count is cleared to start timing and capture channel CH3 is enabled.
S3:判断CH3是否捕获到第一次上升沿,若否,CH3继续进行第一次上升沿的捕获,若是,则Tim6停止计时并且获取Tim6的数值。S3: Determine whether CH3 captures the first rising edge. If not, CH3 continues to capture the first rising edge. If so, Tim6 stops timing and obtains the value of Tim6.
S4:判断CH2是否捕获到第二次上升沿,若否,CH2继续进行第二次上升沿的捕获,若是,则Tim8停止计时,并获取Tim8的数值,Tim8和Tim6复位。S4: Determine whether CH2 captures the second rising edge. If not, CH2 continues to capture the second rising edge. If so, Tim8 stops timing and obtains the value of Tim8, and Tim8 and Tim6 are reset.
S5:判断CH3是否捕获到第二次上升沿,若否,CH3继续进行第二次上升沿的捕获,若是,Tim8和Tim6复位,后续进行S2,进行下次循环。S5: Determine whether CH3 captures the second rising edge. If not, CH3 continues to capture the second rising edge. If so, Tim8 and Tim6 are reset, and then S2 is performed for the next cycle.
若使能捕获通道CH2捕获的为电流的上升沿,则使能捕获通道CH3捕获的为电压的上升沿。若使能捕获通道CH3捕获的为电流的上升沿,则使能捕获通道CH2捕获的为电压的上升沿。If the enabled capture channel CH2 captures the rising edge of the current, then the enabled capture channel CH3 captures the voltage rising edge. If the enabled capture channel CH3 captures the rising edge of the current, then the enabled capture channel CH2 captures the voltage rising edge.
S6:根据S3得到的Tim6和S4得到的Tim8,计算实际相位差;计算实际相位差的公式具体为: S6: Calculate the actual phase difference according to Tim6 obtained by S3 and Tim8 obtained by S4; the formula for calculating the actual phase difference is as follows:
步骤103:计算电流偏差值和相位差偏差值;所述电流偏差值由所述期望电流值和所述实际电流值确定;所述相位差偏差值由所述期望相位差值和所述实际相位差值确定。Step 103: Calculate the current deviation value and the phase difference deviation value; the current deviation value is determined by the expected current value and the actual current value; the phase difference deviation value is determined by the expected phase difference value and the actual phase The difference is determined.
步骤104:由所述电流偏差值和所述相位差偏差值,计算目标电流和输出频率。Step 104: Calculate the target current and the output frequency from the current deviation value and the phase difference deviation value.
如图10所示,PID算法的过程,具体包括:获取上上次的偏差值、上次的偏差值和这次的偏差值,将获取的偏差值输入公式E=KP*(Err-Err_last)+Ki*Err+Kd*(Err-2*Err_last+Err_last_last)+E′得到目标值,判断是否超出限幅值,如果超出限幅值则将限幅值作为目标值输出,如果没有超出限幅值则直接输出所述得到目标值。E表示的含义为目标值,Err表示的含义为这次的偏差值、Err_last表示的含义为上次的偏差值、Err_last_last表示的含义为上上次的偏差值,E′表示的含义为上次的目标值,KP、KI、KD为PID控制器的参数。As shown in Figure 10, the process of the PID algorithm specifically includes: obtaining the last deviation value, the last deviation value and the current deviation value, and entering the obtained deviation value into the formula E=K P *(Err-Err_last )+K i *Err+Kd*(Err-2*Err_last+Err_last_last)+E′ to get the target value, judge whether the limit value is exceeded, if it exceeds the limit value, the limit value will be output as the target value, if not exceeded The limit value directly outputs the obtained target value. E means the target value, Err means the deviation value this time, Err_last means the last deviation value, Err_last_last means the last deviation value, and E' means the last time The target value of , K P , K I , and K D are the parameters of the PID controller.
步骤104中根据PID算法计算所述目标电流,具体包括:In step 104, the target current is calculated according to the PID algorithm, which specifically includes:
利用I=KP*(ΔI(K)-ΔI(K-1))+Ki*ΔI(K)+Kd*(ΔI(K)-2*ΔI(K-1)+ΔI(K-2))+I′求目标电流。其中I为目标电流,ΔI(K)为本次电流偏差值、ΔI(K-1)为上次电流偏差值、ΔI(K-2)为上上次电流偏差值、KP、Ki、Kd为PID控制器的参数、I′为上次的目标电流。Using I=K P *(ΔI (K) -ΔI (K-1) )+K i *ΔI (K) +K d *(ΔI (K) -2*ΔI (K-1) +ΔI (K- 2) )+I′ to find the target current. Wherein I is the target current, ΔI (K) is the current deviation value, ΔI (K-1) is the previous current deviation value, ΔI (K-2) is the previous current deviation value, K P , K i , K d is the parameter of the PID controller, and I' is the last target current.
步骤104中根据PID算法计算所述输出频率,具体包括:In step 104, the output frequency is calculated according to the PID algorithm, which specifically includes:
根据求输出频率,其中,f为输出频率,为本次相位差偏差值、为上次相位差偏差值、为上上次相位差偏差值、KP、Ki、Kd为PID控制器的参数、f′为上次的输出频率。according to Find the output frequency, where f is the output frequency, is the current phase difference deviation value, is the last phase difference deviation value, is the last and last phase difference deviation value, K P , K i , K d are the parameters of the PID controller, and f' is the last output frequency.
步骤105:根据所述目标电流调整数字电位计4的电阻,目标电流越大,数字电位计4的设定工作电阻阻值越小,目标电流越小,数字电位计4的设定工作电阻阻值越大。Step 105: Adjust the resistance of the digital potentiometer 4 according to the target current. The larger the target current, the smaller the resistance value of the set working resistance of the digital potentiometer 4 and the smaller the target current. the larger the value.
步骤106:根据所述输出频率,调整直接数字式频率合成器3的输出波形,使所述直接数字式频率合成器3输出目标频率的波形。Step 106: Adjust the output waveform of the direct digital frequency synthesizer 3 according to the output frequency, so that the direct digital frequency synthesizer 3 outputs the waveform of the target frequency.
步骤107:所述直接数字式频率合成器3将目标频率的波形输入至阻值调整后的数字电位计4中,所述阻值调整后的数字电位计4根据所述目标频率的波形输出目标电压,并将所述目标电压输入至超声刀,以改变所述超声刀的工作功率和工作频率。Step 107: The direct digital frequency synthesizer 3 inputs the waveform of the target frequency into the digital potentiometer 4 after the resistance value adjustment, and the digital potentiometer 4 after the resistance value adjustment outputs the target frequency according to the waveform of the target frequency voltage, and input the target voltage to the ultrasonic blade to change the working power and frequency of the ultrasonic blade.
根据本实用新型提供的具体实施例,本实用新型公开了以下技术效果:通过设置控制器、直接数字式频率合成器和数字电位计,控制器通过调整直接数字式频率合成器的频率调整输出电流的频率,通过调整数字电位计的电阻控制输出电流的功率,对刀具输出频率与功率进行精确控制,提升微创手术的控制精度。According to the specific embodiment provided by the utility model, the utility model discloses the following technical effects: by setting the controller, the direct digital frequency synthesizer and the digital potentiometer, the controller adjusts the output current by adjusting the frequency of the direct digital frequency synthesizer By adjusting the resistance of the digital potentiometer to control the power of the output current, the output frequency and power of the tool can be precisely controlled, and the control accuracy of the minimally invasive surgery can be improved.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other.
本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想;同时,对于本领域的一般技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本实用新型的限制。The principles and implementations of the present utility model are described herein using specific examples. The descriptions of the above embodiments are only used to help understand the method and the core idea of the present utility model; meanwhile, for those skilled in the art, according to The idea of the present utility model will have changes in the specific implementation and application scope. In conclusion, the content of this specification should not be construed as a limitation on the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020005356.5U CN211243606U (en) | 2020-01-03 | 2020-01-03 | A dual-core MCU intelligent ultrasonic minimally invasive scalpel control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020005356.5U CN211243606U (en) | 2020-01-03 | 2020-01-03 | A dual-core MCU intelligent ultrasonic minimally invasive scalpel control device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211243606U true CN211243606U (en) | 2020-08-14 |
Family
ID=71963950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020005356.5U Active CN211243606U (en) | 2020-01-03 | 2020-01-03 | A dual-core MCU intelligent ultrasonic minimally invasive scalpel control device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211243606U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111096775A (en) * | 2020-01-03 | 2020-05-05 | 华南理工大学 | A dual-core MCU intelligent ultrasonic minimally invasive scalpel control system and control method |
CN114089652A (en) * | 2021-10-12 | 2022-02-25 | 华南理工大学 | Intelligent radio frequency knife control system and method |
CN118303956A (en) * | 2024-06-11 | 2024-07-09 | 新光维医疗科技(苏州)股份有限公司 | Cutting system and cutting system control method |
-
2020
- 2020-01-03 CN CN202020005356.5U patent/CN211243606U/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111096775A (en) * | 2020-01-03 | 2020-05-05 | 华南理工大学 | A dual-core MCU intelligent ultrasonic minimally invasive scalpel control system and control method |
CN111096775B (en) * | 2020-01-03 | 2024-10-01 | 华南理工大学 | Dual-core MCU intelligent ultrasonic minimally invasive scalpel control system and control method |
CN114089652A (en) * | 2021-10-12 | 2022-02-25 | 华南理工大学 | Intelligent radio frequency knife control system and method |
CN118303956A (en) * | 2024-06-11 | 2024-07-09 | 新光维医疗科技(苏州)股份有限公司 | Cutting system and cutting system control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111096775B (en) | Dual-core MCU intelligent ultrasonic minimally invasive scalpel control system and control method | |
CN110537958B (en) | Ultrasonic scalpel system based on frequency and power tracking and control method thereof | |
CN211243606U (en) | A dual-core MCU intelligent ultrasonic minimally invasive scalpel control device | |
JP7455748B2 (en) | Vascular sensing for adaptive advanced hemostasis | |
JP7438960B2 (en) | Model-based intra-jaw classifier | |
CN206097107U (en) | Ultrasonic knife frequency tracking device | |
CN105943126B (en) | Ultrasound knife exciting bank and motivational techniques | |
CN106443359B (en) | A short-distance cable fault location system and location method based on low-voltage pulse method | |
CN114089652B (en) | Intelligent radio frequency knife control system and method | |
CN201759666U (en) | Self-adjusting system for output power and mode of high frequency surgical instrument | |
CN110897684A (en) | Double-ring self-health-management multi-output minimally invasive surgery system | |
CN110897682B (en) | Multi-output minimally invasive surgery system based on ADRC frequency control | |
CN104135163A (en) | Rotary ultrasonic machining driver based on BUCK circuit | |
CN215503275U (en) | Medical portable ultrasonic scalpel and control system thereof | |
CN1957857B (en) | Control device for output waveform of high-frequency electrosurgical knife based on direct digital frequency synthesis technology | |
CN216083457U (en) | An intelligent radio frequency knife control device | |
EP2750807B1 (en) | Systems and methods for ultrasonic power measurement and control of phacoemulsification systems | |
CN115153761A (en) | Ultrasonic cutting hemostatic knife control system and frequency sweeping and automatic tracking control method thereof | |
CN211934284U (en) | Minimally invasive surgery generation device with ultrasonic and radio frequency functions are integrated | |
CN211243602U (en) | Frequency conversion wireless ultrasonic knife and system thereof | |
CN113288344A (en) | Medical portable ultrasonic scalpel, control system and use method | |
CN109771025A (en) | An impedance detection module for medical equipment cloud system | |
CN100534401C (en) | Power output control circuit of anus intestine comprehensive therapeutic instrument | |
CN212996653U (en) | Temperature self-adaptive ultrasonic surgical instrument | |
CN106344119A (en) | Direct excitation type ultrasonic power driving system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |