CN210629516U - 一种偏振与相位复合编码的量子密钥分发系统 - Google Patents

一种偏振与相位复合编码的量子密钥分发系统 Download PDF

Info

Publication number
CN210629516U
CN210629516U CN201921771712.8U CN201921771712U CN210629516U CN 210629516 U CN210629516 U CN 210629516U CN 201921771712 U CN201921771712 U CN 201921771712U CN 210629516 U CN210629516 U CN 210629516U
Authority
CN
China
Prior art keywords
polarization
ports
beam splitter
phase
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921771712.8U
Other languages
English (en)
Inventor
王东
宋萧天
赵义博
曹兆龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201921771712.8U priority Critical patent/CN210629516U/zh
Application granted granted Critical
Publication of CN210629516U publication Critical patent/CN210629516U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种偏振与相位复合编码的量子密钥分发系统,包括发送端与接收端,发送端包括依次连接的激光器、强度调制器、偏振编码模块、相位编码模块以及电可调衰减器,接收端包括依次连接的相位解码模块、偏振解码模块以及单光子探测器,发送端与接收端通过单模光纤连接。与现有技术相比,本实用新型通过对单光子比特进行相位和偏振复合编码,可以提高协议的效率,采用偏选基的方式可将效率提升至原始协议的4倍;偏振编码和解码结构简单,性能稳定,不仅减少系统的复杂度,而且提高了系统的安全性;相位编码以及解码模块具有偏振无关的特性,因此不会与偏振编码相互影响,而且不受信道扰动的影响,使得相位编解码过程非常稳定,增加整体系统的稳定性。

Description

一种偏振与相位复合编码的量子密钥分发系统
技术领域
本实用新型涉及量子偏振编码技术领域,特别涉及一种偏振与相位复合编码的量子密钥分发系统。
背景技术
量子密钥分发(Quantum key distribution,QKD)可以保证远距离的通信双方进行无条件安全的密钥分发,是由量子力学的基本原理来保障其信息理论安全性。经过30多年的研究与发展,量子密钥分发已逐步实现实用化。其中,BB84 QKD协议在当前技术最为成熟,应用最为广泛,典型的BB84协议仅仅将比特信息编码在单光子的一个维度上,比如相位、偏振或者频率等,通过对单光子进行扩展编码,即将比特信息编码在单光子的多个维度上,使单光子携带多比特信息,再对这些维度分别解码,即可以提高安全码率,从而提升系统的整体效率。然而目前QKD系统的密钥产生速率较低,无法满足现有传统光纤通信的加密需求,有一些解决方案中,是在发送端增加一个消偏器,在光子进入光纤信道之前进行偏振态随机化,这样可以消除光纤双折射效应以及环境扰动对偏振态的影响,在接收端增加一个偏振分束器进行起偏,可以获得稳定的干涉结果。但是这个方案会增加一倍的损耗,使系统的效率降低了一半。
实用新型内容
针对现有技术存在以上缺陷,本实用新型提供一种偏振与相位复合编码的量子密钥分发系统如下:
本实用新型的技术方案是这样实现的:
一种偏振与相位复合编码的量子密钥分发系统,包括发送端与接收端,所述发送端包括依次连接的激光器、强度调制器、偏振编码模块、相位编码模块以及电可调衰减器,所述接收端包括依次连接相位解码模块、偏振解码模块、纠偏模块以及单光子探测器,所述发送端与接收端通过单模光纤连接。
优选地,所述偏振编码模块包括依次连接的第一环形器、第一相位调制器以及第一法拉第旋转镜,所述相位编码模块包括第一光纤分束器、2X2偏振分束器、第二相位调制器以及法拉第旋转器,所述第一光纤分束器的三端口、四端口分别通过长短臂光纤连接2X2偏振分束器的一端口、二端口,所述2X2偏振分束器的三端口、四端口分别通过保偏光纤连接法拉第旋转器以及第二相位调制器,且第二相位调制器与法拉第旋转器之间通过保偏光纤相连,第一光纤分束器一端口连接第一环形器三端口,二端口连接电可调衰减器;所述相位解码模块的结构与相位编码模块一致,所述偏振解码模块包括第二环形器与第二光纤分束器,所述第二环形器一端口通过光纤连接发送端的电可控衰减器,二端口连接相位解码模块中第一光纤分束器一端口,三端口通过延时线连接第二光纤分束器的二端口,相位解码模块中第一光纤分束器二端口连接第二光纤分束器一端口、第二光纤分束器的三端口、四端口均连接一路1X2偏振分束器一端口,两路1X2偏振分束器均设置有纠偏模块,两路1X2偏振分束器的二端口、三端口均连接有单光子探测器,所述第一光纤分束器、第二光纤分束器均为2X2 单模光纤分束器。
优选地,所述偏振编码模块包括依次连接的第一环形器、第一相位调制器以及第一法拉第旋转镜,所述相位编码模块包括第一光纤分束器、2X2偏振分束器、第二相位调制器以及法拉第旋转器,所述第一光纤分束器的三端口、四端口分别通过长短臂光纤连接2X2偏振分束器的一端口、二端口,所述2X2偏振分束器的三端口、四端口分别通过保偏光纤连接法拉第旋转器以及第二相位调制器,且第二相位调制器与法拉第旋转器之间通过保偏光纤相连,第一光纤分束器一端口连接第一环形器三端口,二端口连接电可调衰减器;所述相位解码模块的结构与相位编码模块一致,所述偏振解码模块包括第二环形器、第三环形器以及第四环形器,所述第二环形器一端口通过光纤连接发送端的电可控衰减器,二端口连接相位解码模块中第一光纤分束器一端口,三端口通过延时线连接第三环形器的一端口,相位解码模块中第一光纤分束器二端口连接第四环形器一端口,第三环形器、第四环形器一端口前端均设置有纠偏模块,所述第三环形器二端口依次连接有第三相位调制器、第二法拉第旋转镜,所述第四环形器二端口依次连接有第四相位调制器、第三法拉第旋转镜,所述第三环形器三端口、第四环形器三端口均连接一路1X2偏振分束器一端口,两路1X2偏振分束器的二端口、三端口均连接有单光子探测器,所述第一光纤分束器为2X2 单模光纤分束器。
与现有技术相比,本实用新型有以下有益效果:
1、本实用新型的偏振与相位复合编码的量子密钥分发系统,通过对单光子比特进行相位和偏振复合编码,可以提高协议的效率,采用偏选基的方式可将效率提升至原始协议的4倍;
2、偏振编码和解码结构简单,性能稳定,与传统多激光器编码和被动选基解码相比没有侧信道量子态制备和测量信息泄露,不仅减少系统的复杂度,而且提高了系统的安全性;
3、相位编码以及解码模块具有偏振无关的特性,因此不会与偏振编码相互影响,而且不受信道扰动的影响,使得相位编解码过程非常稳定,增加整体系统的稳定性。
附图说明
图1为本实用新型一种偏振与相位复合编码的量子密钥分发系统的原理框图;
图2为本实用新型实施例一的原理框图;
图3为本实用新型实施例二的原理框图。
图中:发送端100,激光器110,强度调制器120,偏振编码模块130,第一环形器131,第一相位调制器132,第一法拉第旋转镜133,相位编码模块140,第一光纤分束器141,2X2偏振分束器142,第二相位调制器143,法拉第旋转器144,电可调衰减器150,接收端200,纠偏模块210,相位解码模块220,偏振解码模块230,第二环形器231,第二光纤分束器232,1X2偏振分束器233,第三环形器234三端口,第四环形器235,第三相位调制器236、第二法拉第旋转镜237,第四相位调制器238,第三法拉第旋转镜239,单光子探测器240。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型进行清楚、完整地描述。
如图1所示,一种偏振与相位复合编码的量子密钥分发系统,包括发送端 100与接收端200,所述发送端100包括依次连接的激光器110、强度调制器120、偏振编码模块130、相位编码模块140以及电可调衰减器150,所述接收端200 包括依次连接的相位解码模块220、偏振解码模块230、纠偏模块210以及单光子探测器240,所述发送端100与接收端200通过单模光纤连接。
如图2所示,实施例一,所述偏振编码模块130包括依次连接的第一环形器131、第一相位调制器132以及第一法拉第旋转镜133,所述相位编码模块140 包括第一光纤分束器141、2X2偏振分束器142、第二相位调制器143以及法拉第旋转器144,所述第一光纤分束器141的三端口、四端口分别通过长短臂光纤连接2X2偏振分束器142的一端口、二端口,所述2X2偏振分束器142的三端口、四端口分别通过保偏光纤连接法拉第旋转器144以及第二相位调制器143,且第二相位调制器143与法拉第旋转器144之间通过保偏光纤相连,第一光纤分束器141一端口连接第一环形器131三端口,二端口连接电可调衰减器150;所述相位解码模块220的结构与相位编码模块140一致,所述偏振解码模块230 包括第二环形器231与第二光纤分束器232,所述第二环形器231一端口通过光纤连接发送端100的电可控衰减器150,二端口连接相位解码模块220中第一光纤分束器141一端口,三端口通过延时线连接第二光纤分束器232的二端口,相位解码模块220中第一光纤分束器141二端口连接第二光纤分束器232一端口、第二光纤分束器232的三端口、四端口均连接一路1X2偏振分束器233一端口,两路1X2偏振分束器233均设置有纠偏模块210,两路1X2偏振分束器 233的二端口、三端口均连接有单光子探测器240,所述第一光纤分束器141、第二光纤分束器232均为2X2单模光纤分束器。
具体实施过程:
第一环形器131第二端口的光纤与第一相位调制器132的输入端间进行45°熔接。激光器110发出的光脉冲经强度调制器120调制强度之后进入第一环形器131第一端口,偏振态旋转45°,此时会分成两个相互垂直的偏振分量|H〉、|V〉进入第一相位调制器132,经第一法拉第旋转镜133反射后会再次经过第一相位调制器132,通过调制第一相位调制器132的电压可以改变|H〉、|V〉之间的相位差
Figure DEST_PATH_GDA0002424411810000061
从而产生的偏振态为
Figure DEST_PATH_GDA0002424411810000062
当相位差
Figure DEST_PATH_GDA0002424411810000063
时,所对应的4种偏振态如表1所示
表1:发送端产生的4种偏振态
Figure DEST_PATH_GDA0002424411810000064
光脉冲经过偏振编码之后进入相位编码模块140(MZSI),进行相位编码。相位编码模块140(MZSI)由一个2X2的单模光纤分束器BS、一个2X2的偏振分束器PBS、一个相位调制器PM和1个法拉第旋转器FR组成。可以看出,MZSI实质上是由一个不等臂Mach-Zehnder(MZ)干涉仪和一个Sagnac环组成。其中,不等臂MZ干涉仪的长臂(l)有一段延时线(DL),保证其与短臂(s)之间的臂长差为Δl。Sagnac环内的光纤为保偏光纤,其余为单模光纤,并且要求第二相位调制器143允许TM偏振光和TE偏振光两个分量通过(如商用钛扩散相位调制器),法拉第旋转器144引入法拉第效应,可将光偏振态旋转90°。经过偏振编码后的光脉冲进入2X2光纤分束器被分成两个光脉冲,其中脉冲P1经过不等臂MZ干涉仪的长臂,脉冲P2经过不等臂MZ干涉仪的短臂。长臂的脉冲 P1被偏振分束器PBS分解为两个相互正交的偏振态光脉冲P1x和P1y,这两个偏振态光脉冲分别沿顺时针和逆时针经过Sagnac环结构,最后同时返回偏振分束器并合成为一个脉冲P11,并且回到不等臂MZ干涉仪的长臂。由于脉冲P1x 和P1y从相反的方向在同一时刻到达相位调制器,因此被调制了相同的相位θl,且最后合成的光脉冲P11的偏振态与入射光脉冲P1的偏振态相互垂直。光脉冲 P11返回长臂后,再次经过光纤分束器BS分成两束光脉冲输出。类似地,经过不等臂MZ干涉仪短臂的光脉冲P2也会被偏振分束器PBS分解成两个相互正交的偏振态光脉冲P2x和P2y,二者经过Sagnac环同时到达相位调制器然后被调制相位θs,接着在偏振分束器PBS处合成为1个光脉冲P22,其偏振态与P2相互垂直,最后返回不等臂MZ干涉仪的短臂,并被光纤分束器BS分成两束光脉冲输出。最终,从相位编码器输出两个时间间隔为2Δl/v(其中v为光在光纤中的传播速度),相位差为
Figure DEST_PATH_GDA0002424411810000071
的前后两个光脉冲。通过调节相位调制器 PM随机控制相位差
Figure DEST_PATH_GDA0002424411810000072
为0,π/2,π,3π/2即可进行相位编码。最后光脉冲经过电可调衰减器衰减到单光子量级。
光脉冲经过信道进入接收端200后,首先需要经过第二环形器231进入相位解码模块220,经过解码之后出来的脉冲会分别进入分束器的两个输入端口,其中从环形器第3端口出射的光脉冲经过一段延时DL,相当于两路信号进行时分复用。分束器的两个输出端口分别于偏振控制器连接,通过偏振控制器结合偏振补偿算法恢复被信道扰乱的偏振态,最后分别经过一个偏振分束器进行偏振分析,最后进入单光子探测器进行探测。
此量子密钥分发系统工作流程归纳如下:
1.激光器触发:脉冲激光器通过触发信号以一定重复频率产生一系列的脉冲光;
2.诱骗态调制:光脉冲通过强度调制器被其进行随机强度调制,成为信号态、诱骗态或者真空态;
3.发送端编码:经过强度调制器调制过的光脉冲进入偏振编码模块进行编码,产生偏振态分别为|+>,|->,|R>,|L>,随后光脉冲经过相位编码模块 MZSI,由相位调制器进行随机相位调制,使得从MZSI输出的两个脉冲之间的相位差分别为0,π/2,π,3π/2;
4.电控可调衰减器(EVOA):EVOA将光脉冲衰减至单光子量级;
5.接收端解码:光信号通过光纤信道传输之后进入接收端依次进入相位解码单元和偏振解码单元完成解码过程,其中相位解码PM调制相位0,π/2,π, 3π/2,偏振解码PM调制相位0,π/2;
测量:用单光子探测器测量系统结果,用于后续处理产生安全密钥。
如图3所示,实施例二,所述偏振编码模块130包括依次连接的第一环形器131、第一相位调制器132以及第一法拉第旋转镜133,所述相位编码模块140 包括第一光纤分束器141、2X2偏振分束器142、第二相位调制器143以及法拉第旋转器144,所述第一光纤分束器141的三端口、四端口分别通过长短臂光纤连接2X2偏振分束器142的一端口、二端口,所述2X2偏振分束器142的三端口、四端口分别通过保偏光纤连接法拉第旋转器144以及第二相位调制器143,且第二相位调制器143与法拉第旋转器144之间通过保偏光纤相连,第一光纤分束器141一端口连接第一环形器131三端口,二端口连接电可调衰减器150;所述相位解码模块220的结构与相位编码模块140一致,所述偏振解码模块230 包括第二环形器231、第三环形器234以及第四环形器235,所述第二环形器231 一端口通过光纤连接发送端100的电可控衰减器150,二端口连接相位解码模块220中第一光纤分束器141一端口,三端口通过延时线连接第三环形器234的一端口,相位解码模块220中第一光纤分束器141二端口连接第四环形器235一端口,第三环形器234、第四环形器235一端口前端均设置有纠偏模块210,所述第三环形器234二端口依次连接有第三相位调制器236、第二法拉第旋转镜 237,所述第四环形器235二端口依次连接有第四相位调制器238、第三法拉第旋转镜239,所述第三环形器234三端口、第四环形器235三端口均连接一路 1X2偏振分束器233一端口,两路1X2偏振分束器233的二端口、三端口均连接有单光子探测器240,所述第一光纤分束器141为2X2单模光纤分束器。
实施例二采用主动选基的方式,避免了被动选基造成的安全性问题,
综合本实用新型的结构与原理可知,本实用新型的偏振与相位复合编码的量子密钥分发系统,通过对单光子比特进行相位和偏振复合编码,可以提高协议的效率,采用偏选基的方式可将效率提升至原始协议的4倍;偏振编码和解码结构简单,性能稳定,与传统多激光器编码和被动选基解码相比没有侧信道量子态制备和测量信息泄露,不仅减少系统的复杂度,而且提高了系统的安全性;相位编码以及解码模块具有偏振无关的特性,因此不会与偏振编码相互影响,而且不受信道扰动的影响,使得相位编解码过程非常稳定,增加整体系统的稳定性。

Claims (3)

1.一种偏振与相位复合编码的量子密钥分发系统,包括发送端与接收端,其特征在于,所述发送端包括依次连接的激光器、强度调制器、偏振编码模块、相位编码模块以及电可调衰减器,所述接收端包括依次连接的相位解码模块、纠偏模块、偏振解码模块以及单光子探测器,所述发送端与接收端通过单模光纤连接。
2.如权利要求1所述偏振与相位复合编码的量子密钥分发系统,其特征在于,所述偏振编码模块包括依次连接的第一环形器、第一相位调制器以及第一法拉第旋转镜,所述相位编码模块包括第一光纤分束器、2X2偏振分束器、第二相位调制器以及法拉第旋转器,所述第一光纤分束器的三端口、四端口分别通过长短臂光纤连接2X2偏振分束器的一端口、二端口,所述2X2偏振分束器的三端口、四端口分别通过保偏光纤连接法拉第旋转器以及第二相位调制器,且第二相位调制器与法拉第旋转器之间通过保偏光纤相连,第一光纤分束器一端口连接第一环形器三端口,二端口连接电可调衰减器;所述相位解码模块的结构与相位编码模块一致,所述偏振解码模块包括第二环形器与第二光纤分束器,所述第二环形器一端口通过光纤连接发送端的电可控衰减器,二端口连接相位解码模块中第一光纤分束器一端口,三端口通过延时线连接第二光纤分束器的二端口,相位解码模块中第一光纤分束器二端口连接第二光纤分束器一端口、第二光纤分束器的三端口、四端口均连接一路1X2偏振分束器一端口,两路1X2偏振分束器均设置有纠偏模块,两路1X2偏振分束器的二端口、三端口均连接有单光子探测器,所述第一光纤分束器、第二光纤分束器均为2X2单模光纤分束器。
3.如权利要求1所述偏振与相位复合编码的量子密钥分发系统,其特征在于,所述偏振编码模块包括依次连接的第一环形器、第一相位调制器以及第一法拉第旋转镜,所述相位编码模块包括第一光纤分束器、2X2偏振分束器、第二相位调制器以及法拉第旋转器,所述第一光纤分束器的三端口、四端口分别通过长短臂光纤连接2X2偏振分束器的一端口、二端口,所述2X2偏振分束器的三端口、四端口分别通过保偏光纤连接法拉第旋转器以及第二相位调制器,且第二相位调制器与法拉第旋转器之间通过保偏光纤相连,第一光纤分束器一端口连接第一环形器三端口,二端口连接电可调衰减器;所述相位解码模块的结构与相位编码模块一致,所述偏振解码模块包括第二环形器、第三环形器以及第四环形器,所述第二环形器一端口通过光纤连接发送端的电可控衰减器,二端口连接相位解码模块中第一光纤分束器一端口,三端口通过延时线连接第三环形器的一端口,相位解码模块中第一光纤分束器二端口连接第四环形器一端口,第三环形器、第四环形器一端口前端均设置有纠偏模块,所述第三环形器二端口依次连接有第三相位调制器、第二法拉第旋转镜,所述第四环形器二端口依次连接有第四相位调制器、第三法拉第旋转镜,所述第三环形器三端口、第四环形器三端口均连接一路1X2偏振分束器一端口,两路1X2偏振分束器的二端口、三端口均连接有单光子探测器,所述第一光纤分束器为2X2单模光纤分束器。
CN201921771712.8U 2019-10-22 2019-10-22 一种偏振与相位复合编码的量子密钥分发系统 Active CN210629516U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921771712.8U CN210629516U (zh) 2019-10-22 2019-10-22 一种偏振与相位复合编码的量子密钥分发系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921771712.8U CN210629516U (zh) 2019-10-22 2019-10-22 一种偏振与相位复合编码的量子密钥分发系统

Publications (1)

Publication Number Publication Date
CN210629516U true CN210629516U (zh) 2020-05-26

Family

ID=70759764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921771712.8U Active CN210629516U (zh) 2019-10-22 2019-10-22 一种偏振与相位复合编码的量子密钥分发系统

Country Status (1)

Country Link
CN (1) CN210629516U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422653A (zh) * 2021-06-18 2021-09-21 广西大学 一种无需偏振反馈的量子通信系统及量子安全直接通信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422653A (zh) * 2021-06-18 2021-09-21 广西大学 一种无需偏振反馈的量子通信系统及量子安全直接通信方法
CN113422653B (zh) * 2021-06-18 2022-08-09 广西大学 一种无需偏振反馈的量子通信系统及量子安全直接通信方法

Similar Documents

Publication Publication Date Title
CN110620652B (zh) 一种量子密钥分发系统及其通信方法
CN110601839A (zh) 一种偏振与相位复合编码的量子密钥分发系统
CN106161011B (zh) 一种基于时间-相位编码的即插即用量子密钥分发系统和方法以及发送端和接收端
CN110620663A (zh) 一种偏振与相位复合编码的量子密钥分发系统
JP6729852B2 (ja) 符号化装置、ならびにそれに基づく量子鍵配送デバイスおよびシステム
CN114900245B (zh) 一种偏振无关相位解码集成芯片及量子密钥分发系统
CN113708931B (zh) 用于量子密钥分发的偏振编码装置及量子密钥分发系统
CN113676323B (zh) 一种偏振编码测量设备无关量子密钥分发系统
CN110324145A (zh) 一种偏振无关的相位编码量子密钥分发系统及方法
CN113708932B (zh) 用于量子密钥分发的相位编码装置及量子密钥分发系统
CN114726451B (zh) 一种偏振不敏感的高效量子密钥分发解码装置
CN210112021U (zh) 一种偏振编码量子密钥分发系统
CN101150371A (zh) 一种相位编码偏振检测的量子密钥分配系统
CN112039671A (zh) 一种高效的量子密钥分发系统及方法
CN103475425A (zh) 基于法拉第-萨格奈克环的单光子源及其实现方法
CN114374441B (zh) 一种免疫信道扰动的量子密钥分发相位解码装置
CN114553421B (zh) 一种免疫信道扰动的量子密钥分发解码装置
CN210041849U (zh) 一种偏振无关的相位编码量子密钥分发系统
CN208707647U (zh) 一种量子通信系统及其发射端
CN110620619B (zh) 一种量子通信系统及其发射端以及量子通信方法
CN114629563A (zh) 偏振复用量子密钥分发装置与全时全通量子密钥分发网络
CN210629516U (zh) 一种偏振与相位复合编码的量子密钥分发系统
CN110380853A (zh) 一种偏振编码量子密钥分发系统
CN211509058U (zh) 一种高效的相位编码量子密钥分发系统
CN110620664A (zh) 一种相位与偏振复合编码的量子密钥分发系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Assignee: ZHEJIANG QUANTUM TECHNOLOGIES Co.,Ltd.

Assignor: Zhao Yibo|Song Xiaotian

Contract record no.: X2022330000342

Denomination of utility model: A Quantum Key Distribution System with Polarization and Phase Composite Encoding

Granted publication date: 20200526

License type: Common License

Record date: 20220727