CN210405092U - 开关电源电路的控制电路及开关电源电路 - Google Patents

开关电源电路的控制电路及开关电源电路 Download PDF

Info

Publication number
CN210405092U
CN210405092U CN201921364636.9U CN201921364636U CN210405092U CN 210405092 U CN210405092 U CN 210405092U CN 201921364636 U CN201921364636 U CN 201921364636U CN 210405092 U CN210405092 U CN 210405092U
Authority
CN
China
Prior art keywords
circuit
tube
synchronous rectifier
voltage
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921364636.9U
Other languages
English (en)
Inventor
窦训金
徐爱民
周逊伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joulwatt Technology Co Ltd
Original Assignee
Joulwatt Technology Hangzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joulwatt Technology Hangzhou Co Ltd filed Critical Joulwatt Technology Hangzhou Co Ltd
Priority to CN201921364636.9U priority Critical patent/CN210405092U/zh
Application granted granted Critical
Publication of CN210405092U publication Critical patent/CN210405092U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

本实用新型公开了一种开关电源电路的控制电路及开关电源电路,开关电源电路包括主开关管、同步整流管和感性元件,当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,利用电阻电容延时效应,将同步整流管的栅极电压下拉到低于所述同步整流管阈值电压,高于零电压,并开始计时,当检测到主开关管栅极电压上升到第一电压或者计时达到第一时间,则将同步整流管的栅极电压下拉到零电压。本实用新型可以减少同步整流管关断到主开关管管开启时同步整流管体二极管的导通,降低开关损耗,提高转换效率。

Description

开关电源电路的控制电路及开关电源电路
技术领域
本实用新型涉及电力电子技术领域,具体涉及开关电源电路的控制电路及开关电源电路。
背景技术
在开关电源中,为了提高系统效率,用同步整流管替代续流二极管。但是当同步整流管关断,主开关管导通时,为了防止直通,需要加入死区时间。在死区时间内,主开关管还没有导通,而同步整流管已经关断,电流经过同步整流管的体二极管。当主开关管导通时,存在同步整流管的体二极管导通引起的反向恢复电流。该反向恢复电流引起较大的开关损耗。因此,如何改善和优化同步整流管关断,主开关管导通的开关过程,是开关电源中亟待解决的问题。
实用新型内容
有鉴于此,本实用新型的目的在于提供开关电源电路的控制电路及开关电源电路,用以解决现有技术中同步整流管关断到主开关管管开启时同步整流管体二极管的导通,从而降低系统效率的问题。
本实用新型的技术解决方案是,提供一种开关电源电路的控制方法,所述开关电源电路包括主开关管、同步整流管和感性元件,当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,利用电阻电容延时效应,将同步整流管的栅极电压下拉到低于所述同步整流管阈值电压,高于零电压,并开始计时,当检测到主开关管栅极电压上升到第一电压或者计时达到第一时间,则将同步整流管的栅极电压下拉到零电压。
作为可选,当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,将同步整流管的栅极电压下拉到接近且低于所述同步整流管阈值电压。
作为可选,同步整流管的栅极通过第一开关管和第二开关管串联形成的电路连接到参考地,所述同步整流管的栅极通过第一电阻连接到第一开关管的控制端。
作为可选,第一电容和所述第一电阻并联,或者第一二极管的阳极连接到所述第一开关管的控制端,阴极连接到所述同步整流管的栅极。
本实用新型的又一技术解决方案是,提供一种开关电源电路的控制电路,所述开关电源电路包括主开关管、同步整流管和感性元件,当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,利用电阻电容延时效应,将同步整流管的栅极电压下拉到低于同步整流管阈值电压,高于零电压,并且开始计时,当检测到主开关管栅极电压上升到第一电压或者计时达到第一时间,则将同步整流管的栅极电压下拉到零电压。
作为可选,包括同步整流管驱动电路,所述同步整流管驱动电路包括第一开关管、第二开关管、第一电阻和驱动放大电路,所述同步整流管的栅极通过所述第一开关管和所述第二开关管串联形成的电路连接到参考地,所述同步整流管的栅极通过所述第一电阻连接到所述第一开关管的控制端。
作为可选,所述同步整流管驱动电路还包括第一电容或第一二极管,所述第一电容和所述第一电阻并联,或者所述第一二极管的阳极连接到所述第一开关管的控制端,阴极连接到所述同步整流管的栅极。
作为可选,所述同步整流驱动电路还包括延时电路和下拉电路,所述延时电路接收开关信号,所述下拉电路接收所述延时电路的输出电压,并根据所述下拉电路的输出电压对所述同步整流管的栅极下拉;当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,所述延时电路延时所述第一时间,所述下拉电路对所述同步整流管的栅极下拉。
作为可选,所述同步整流驱动电路还包括比较电路和下拉电路,所述比较电路接收主开关管驱动信号,所述下拉电路接收所述比较电路的输出电压,并且根据所述比较电路的输出电压对所述同步整流管的栅极下拉;当所述比较电路检测到所述主开关管驱动电压高于第一驱动电压,所述下拉电路对所述同步整流管的栅极下拉。
本实用新型的另一技术解决方案是,提供一种开关电源电路。
采用本实用新型的电路结构和方法,与现有技术相比,具有以下优点:减少同步整流管关断到主开关管管开启时同步整流管体二极管的导通,降低开关损耗,提高转换效率。
附图说明
图1为带同步整流管的BUCK降压电路的电路原理图;
图2为本实用新型开关信号PWM、主开关管栅极电压TG和同步整流管栅极电压BG的波形示意图;
图3为同步整流管为NMOS的BOOST升压电路的电路原理图;
图4为同步整流管为PMOS的BOOST升压电路的电路原理图;
图5为本实用新型一个实施例中,带二极管和电阻的同步整流管驱动电路的电路示意图;
图6为本实用新型一个实施例中,同步整流管驱动电路的电路示意图;
图7为本实用新型另一个实施例中,带二极管和电阻的同步整流管驱动电路的电路示意图;
图8为本实用新型一个实施例中,带电容和电阻的同步整流管驱动电路的电路示意图;
图9为本实用新型一个实施例中,BOOST电路中,同步整流管为PMOS的同步整流管驱动电路的电路示意图;
图10为本实用新型另一个实施例中,BOOST电路中,同步整流管为PMOS的同步整流管驱动电路的电路示意图。
具体实施方式
以下结合附图对本实用新型的优选实施例进行详细描述,但本实用新型并不仅仅限于这些实施例。本实用新型涵盖任何在本实用新型的精神和范围上做的替代、修改、等效方法以及方案。
为了使公众对本实用新型有彻底的了解,在以下本实用新型优选实施例中详细说明了具体的细节,而对本领域技术人员来说没有这些细节的描述也可以完全理解本实用新型。
在下列段落中参照附图以举例方式更具体地描述本实用新型。需说明的是,附图均采用较为简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本实用新型实施例的目的。
本实用新型提供一种开关电源电路的控制电路,所述开关电源电路包括主开关管、同步整流管和感性元件,当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,利用电阻电容延时效应,将同步整流管的栅极电压下拉到低于同步整流管阈值电压,高于零电压,并且开始计时,当检测到主开关管栅极电压上升到第一电压或者计时达到第一时间,则将同步整流管的栅极电压下拉到零电压。以BUCK降压电路为例,请参考图1所示,为带同步整流的BUCK电路,驱动电路接收控制电路产生的PWM信号,并产生主开关管驱动极电压TG和同步整流管驱动极电压BG。请参考图2所示,为BUCK电路中,开关信号PWM、主开关管驱动极电压TG和同步整流管驱动极电压BG的波形,在t01时刻,同步整流管的驱动极电压BG被下拉到V01,也就是低于同步整流管阈值电压,高于零电压,当检测到主开关管驱动极电压TG上升到第一电压,在t02时刻则将同步整流管的驱动极电压下拉到零电压。另一种实施方式是,在t01时刻,同步整流管的驱动极电压下拉到V01,并且开始计时,在t02时刻,当计时达到第一时间,则将同步整流管的驱动极电压下拉到零电压。
本实用新型不限于BUCK降压电路,可以用于任何带同步整流的开关电源电路,例如,也可以用于BOOST电路,参考图3所示,为同步整流管M03为NMOS的BOOST电路;请参考图4所示,为同步整流管M03为PMOS的BOOST电路。
请参考图5所示,以BUCK降压电路为例,在一个实施例中,栅极控制电路包括同步整流管驱动电路,所述同步整流管驱动电路包括第一开关管、第二开关管、第一电阻和驱动放大电路,所述同步整流管的栅极通过所述第一开关管和所述第二开关管串联形成的电路连接到参考地,所述同步整流管的栅极通过所述第一电阻连接到所述第一开关管的控制端。
以BUCK降压电路为例,当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,同步整流管驱动极电压BG为高,通过电阻R110使M120栅极也为高,M130栅极由低变高,此时由于M120栅极为高,M120和M130会下拉同步整流管驱动极电压BG,当M120栅极电压下降到低于阈值电压时,就不再下拉同步整流管驱动极电压BG,由于R110和M120栅电容(也就是图6中的C130)的RC延时效应,同步整流管驱动极电压BG的下降速度会比M120栅压快,当M120栅压下降到阈值电压时,同步整流管驱动极电压BG会低于该阈值电压,所以最后同步整流管驱动极电压BG会停留在比M120阈值电压略低的地方;通过调节M120和R110的尺寸,可以控制同步整流管驱动极电压BG下降速度和最终停留的平台区电压。
在一个实施例中,请参考图6所示,包括电容C130,电容C130可以是第一开关管M120的栅极寄生电容也可以是外加电容。所以,是电阻R110和电容C130的阻容延时效应。其他实施例中也都包含电容C130,为了简化电路,都会使用寄生电容来等效电容C130,因此在后面的说明书附图中,将电容C130省略。
在一个实施例中,请参考图5所示,所述同步整流驱动电路还包括不重叠逻辑电路140和上拉电路,在图5中,上拉电路用PMOS M110实现。开关信号PWM通过不重叠逻辑电路140分别产生不重叠的M110和M130的驱动信号,使得M110和M130不会同时导通,防止直通。上拉电路M110通过上拉BG使得同步整流管导通,当同步整流管关断时,M110关断。
在一个实施例中,请参考图5所示,所述同步整流管驱动电路还包括第一二极管D110,所述第一二极管的阳极连接到所述第一开关管的控制端,阴极连接到所述同步整流管的栅极。在同步整流管驱动极电压BG下降的同时通过第一二极管D110下拉M120栅极,当M120栅压下降接近阈值电压时,对同步整流管驱动极电压BG的下拉会变弱,同步整流管驱动极电压BG下降趋于平缓,此时第一二极管D110不再导通。其中,第一二极管D110的作用是加快一开始M120栅极的下降,否则仅靠R110下拉,M120栅极下降会太慢,导致同步整流管驱动极电压BG放电太快,最后停留的平台电压过低。
同步整流管的栅极通过所述第一开关管和所述第二开关管串联形成的电路连接到参考地,第一开关管和第二开关管的位置可以互换,可以是第一开关管连接到参考地,如图7所示,也可以是第二开关管连接到参考地,如图5所示。
在一个实施例中,请参考图8所示,所述同步整流管驱动电路还包括第一电容,所述第一电容和所述第一电阻并联。也就是说,图6和图7中的第一二极管D110可以用第一电容C110替代。
在一个实施例中,请参考图5所示,所述同步整流驱动电路还包括延时电路120和下拉电路130,所述延时电路120接收开关信号,所述下拉电路130接收所述延时电路120的输出电压,并根据所述下拉电路120的输出电压对所述同步整流管的栅极下拉;当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,所述延时电路120延时所述第一时间,所述下拉电路130对所述同步整流管的栅极下拉,同步整流管关断。
在另一个实施例中,请参考图7所示,所述同步整流驱动电路还包括比较电路160和下拉电路130,所述比较电路160接收主开关管驱动信号TG,所述下拉电路130接收所述比较电路160的输出电压,并且根据所述比较电路160的输出电压对所述同步整流管的栅极下拉;当所述比较电路160检测到所述主开关管驱动电压高于第一驱动电压,所述下拉电路对所述同步整流管的栅极下拉,同步整流管关断。
用于图3的BOOST升压电路的同步整流管驱动电路和图5-图8的不同之处在于,同步整流驱动电路的供电在BST电压和SW电压之间,而不是在供电端VD和参考地之间。BST和SW是通过电容维持相对稳定的电压,然后在下管开启时通过VD给该电容补电,使得BST电压到SW电压之间为相对稳定的供电电压。
请参考图9所示,为图4的同步整流管为PMOS的BOOST升压电路的同步整流管驱动电路200的一种实施方式。驱动电路包括同步整流管驱动电路200,同步整流管驱动电路200包括开关管M220、开关管M210和驱动放大电路210,同步整流管的栅极BG通过开关管M210和开关管M220串联形成的电路连接到供电端VD,同步整流管的栅极BG通过电阻R210连接到开关管M210的控制端,开关信号PWM通过驱动放大电路210连接到M220的驱动极,当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,通过电阻R210和M220栅极到电源电容的阻容延时效应,将所述同步整流管的驱动极电压上拉到到高于所述同步整流管阈值电压。由于M210为PMOS,通过将阈值电压上拉到高于同步整流管的阈值电压,使得同步整流管不导通。开关管M220和开关管M210可以互换位置,在图9中,M220接电源端VD,M210的漏极连接到同步整流管的栅极BG;在图10中,M210接电源端VD,M220的漏极连接到同步整流管的栅极BG。
在一个实施例中,请继续参考图9所示,所述同步整流驱动电路还包括不重叠逻辑电路240和下拉电路,在图9中,下拉电路用NMOS M230实现。开关信号PWM通过不重叠逻辑电路240分别产生不重叠的M220和M230的驱动信号,使得M220和M230不会同时导通,防止直通。下拉电路M230通过下拉BG使得同步整流管导通,当同步整流管关断时,M230关断。
本实用新型的技术解决方案是,提供一种开关电源电路的控制方法,所述开关电源电路包括主开关管、同步整流管和感性元件,当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,利用电阻电容延时效应,将同步整流管的栅极电压下拉到低于所述同步整流管阈值电压,高于零电压,并开始计时,当检测到主开关管栅极电压上升到第一电压或者计时达到第一时间,则将同步整流管的栅极电压下拉到零电压。
作为可选,当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,将同步整流管的栅极电压下拉到接近且低于所述同步整流管阈值电压。
作为可选,同步整流管的栅极通过第一开关管和第二开关管串联形成的电路连接到参考地,所述同步整流管的栅极通过第一电阻连接到第一开关管的控制端。
作为可选,第一电容和所述第一电阻并联,或者第一二极管的阳极连接到所述第一开关管的控制端,阴极连接到所述同步整流管的栅极。
虽然以上将实施例分开说明和阐述,但涉及部分共通之技术,在本领域普通技术人员看来,可以在实施例之间进行替换和整合,涉及其中一个实施例未明确记载的内容,则可参考有记载的另一个实施例。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (6)

1.一种开关电源电路的控制电路,所述开关电源电路包括主开关管、同步整流管和感性元件,当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,利用电阻电容延时效应,将同步整流管的栅极电压下拉到低于同步整流管阈值电压,高于零电压,并且开始计时,当检测到主开关管栅极电压上升到第一电压或者计时达到第一时间,则将同步整流管的栅极电压下拉到零电压。
2.根据权利要求1所述的开关电源电路的控制电路,其特征在于:包括同步整流管驱动电路,所述同步整流管驱动电路包括第一开关管、第二开关管、第一电阻和驱动放大电路,所述同步整流管的栅极通过所述第一开关管和所述第二开关管串联形成的电路连接到参考地,所述同步整流管的栅极通过所述第一电阻连接到所述第一开关管的控制端。
3.根据权利要求2所述的开关电源电路的控制电路,其特征在于:所述同步整流管驱动电路还包括第一电容或第一二极管,所述第一电容和所述第一电阻并联,或者所述第一二极管的阳极连接到所述第一开关管的控制端,阴极连接到所述同步整流管的栅极。
4.根据权利要求2所述的开关电源电路的控制电路,其特征在于:所述同步整流管驱动电路还包括延时电路和下拉电路,所述延时电路接收开关信号,所述下拉电路接收所述延时电路的输出电压,并根据所述下拉电路的输出电压对所述同步整流管的栅极下拉;当开关信号表征同步整流管从导通到关断,主开关管从关断到导通时,所述延时电路延时所述第一时间,所述下拉电路对所述同步整流管的栅极下拉。
5.根据权利要求2所述的开关电源电路的控制电路,其特征在于:所述同步整流管驱动电路还包括比较电路和下拉电路,所述比较电路接收主开关管驱动信号,所述下拉电路接收所述比较电路的输出电压,并且根据所述比较电路的输出电压对所述同步整流管的栅极下拉;当所述比较电路检测到所述主开关管驱动电压高于第一驱动电压,所述下拉电路对所述同步整流管的栅极下拉。
6.一种开关电源电路,其特征在于:包括如权利要求1~5任意一项所述的控制电路。
CN201921364636.9U 2019-08-21 2019-08-21 开关电源电路的控制电路及开关电源电路 Active CN210405092U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921364636.9U CN210405092U (zh) 2019-08-21 2019-08-21 开关电源电路的控制电路及开关电源电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921364636.9U CN210405092U (zh) 2019-08-21 2019-08-21 开关电源电路的控制电路及开关电源电路

Publications (1)

Publication Number Publication Date
CN210405092U true CN210405092U (zh) 2020-04-24

Family

ID=70339506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921364636.9U Active CN210405092U (zh) 2019-08-21 2019-08-21 开关电源电路的控制电路及开关电源电路

Country Status (1)

Country Link
CN (1) CN210405092U (zh)

Similar Documents

Publication Publication Date Title
CN110149042B (zh) 一种具有分段驱动功能的功率管栅极驱动电路
US9698768B2 (en) System and method for operating a switching transistor
US20210328511A1 (en) Circuits and techniques for power regulation
US9356516B2 (en) Driving apparatus and electric power converter
KR101423390B1 (ko) 스위칭 전원 장치와, 그것을 이용한 인버터, 컨버터, 에어 컨디셔너, 솔라 파워 컨트롤러 및 자동차
CN110165872B (zh) 一种开关控制电路及其控制方法
CN104170254A (zh) 用于保护氮化镓场效应晶体管的栅极的驱动器电路的系统和设备
CN111585425A (zh) 用于开关电路的功率器件驱动方法、驱动电路及开关电路
CN111564971A (zh) 开关电源电路的控制方法、控制电路及开关电源电路
CN106230258B (zh) 功率开关管的驱动方法及电路及电源系统
CN109842279B (zh) 一种SiC MOSFET开环主动驱动电路
CN102684462A (zh) 新型低端mosfet/igbt负压箝位驱动电路及其控制方法
CN109478844B (zh) 一种内置供电电容的功率开关驱动电路
CN107508468B (zh) 隔离式开关电源的控制电路和方法及隔离式开关电源
CN110855134A (zh) 功率管驱动方法、驱动电路及开关电路
CN210405092U (zh) 开关电源电路的控制电路及开关电源电路
CN112510984A (zh) 软开关ac-dc维也纳变换器拓扑结构及控制方法
CN116054610B (zh) Ac-dc转换器、控制器、驱动系统及驱动方法
CN111758210B (zh) 整流电路以及电源装置
CN116827095A (zh) 一种SiC MOSFET驱动电路及驱动方法
CN114362501B (zh) 用于无线充电同步整流桥的动态防倒灌电路及其工作方法
CN210405076U (zh) 用于开关电路的功率器件驱动电路及开关电路
CN114583923A (zh) 控制电路及其方法、芯片、开关电源、电子装置
CN112234810A (zh) 一种应用于半桥电路的新型SiC MOSFET振荡抑制电路
CN219576854U (zh) D型氮化镓开关驱动电路以及开关电源电路

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Room 901-23, 9 / F, west 4 building, Xigang development center, 298 Zhenhua Road, Sandun Town, Xihu District, Hangzhou City, Zhejiang Province, 310030

Patentee after: Jiehuate Microelectronics Co.,Ltd.

Address before: Room 901-23, 9 / F, west 4 building, Xigang development center, 298 Zhenhua Road, Sandun Town, Xihu District, Hangzhou City, Zhejiang Province, 310030

Patentee before: JOULWATT TECHNOLOGY (HANGZHOU) Co.,Ltd.