CN209877171U - 一体式空调器 - Google Patents

一体式空调器 Download PDF

Info

Publication number
CN209877171U
CN209877171U CN201920079760.4U CN201920079760U CN209877171U CN 209877171 U CN209877171 U CN 209877171U CN 201920079760 U CN201920079760 U CN 201920079760U CN 209877171 U CN209877171 U CN 209877171U
Authority
CN
China
Prior art keywords
air
laminar flow
flow fan
air conditioner
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920079760.4U
Other languages
English (en)
Inventor
单翠云
王永涛
刘博�
张蕾
吕静静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Priority to CN201920079760.4U priority Critical patent/CN209877171U/zh
Application granted granted Critical
Publication of CN209877171U publication Critical patent/CN209877171U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本实用新型提供了一种一体式空调器,包括:壳体,其内部分隔成室内侧和室外侧,所述室内侧的所述壳体上开设有室内进风口和室内出风口;净化机构,设置于所述室内侧内,用于对流经的空气进行过滤;以及层流风机,设置于所述室内侧内,其形成有进风通道,室内空气经所述室内进风口进入所述室内侧,经所述净化机构过滤后到达所述进风通道,所述层流风机通过流体粘性效应扰动进入所述进风通道的所述室内空气形成层流风,所述层流风通过所述室内出风口流出所述壳体到达室内。本实用新型的一体式空调器的噪音小,用户体验好。

Description

一体式空调器
技术领域
本实用新型涉及空气调节技术领域,特别是涉及一种一体式空调器。
背景技术
传统的一体式空调器一般为贯流送风系统或者离心送风系统,出风方向为正前方。虽然有导风板左右导流和百叶上下导流,但受限于蜗壳结构,其左右送风角度<80°,上下送风角度<100°,并且只有一个出风口,因此其送风范围非常有限。同时由于使用的是长条形出风口,出风直吹人的现象比较严重。此外,当前贯流风扇送风系统和离心送风系统中,叶片周期性的冲击气流,会产生明显的旋转噪声。蜗壳配合风扇实现送风效果,在蜗舌处也会对气流造成冲击,产生强烈的湍流噪声。在性能指标的限制下,噪音值接近极限,现有技术下噪声品质很难再有明显提升。
实用新型内容
本实用新型的一个目的是要提供一种具有净化功能,且送风过程噪音小、风量高、风压大的一体式空调器。
本实用新型一个进一步的目的是要提供一种结构巧妙,易于设置的一体式空调器。
特别地,本实用新型提供了一种一体式空调器,包括:
壳体,其内部分隔成室内侧和室外侧,室内侧的壳体上开设有室内进风口和室内出风口;
净化机构,设置于室内侧内,用于对流经的空气进行过滤;以及
层流风机,设置于室内侧内,其形成有进风通道,室内空气经室内进风口进入室内侧,经净化机构过滤后到达进风通道,层流风机通过流体粘性效应扰动进入进风通道的室内空气形成层流风,层流风通过室内出风口流出壳体到达室内。
可选地,净化机构包括:
净化块,用于对室内空气进行过滤;和
净化支架,纵向设置于壳体内,用于固定净化块。
可选地,净化块为可压缩的松软材质的柔性净化块。
可选地,层流风机包括:
层流风扇,包括多个环形盘片,多个环形盘片彼此间隔地平行设置,具有相同的中心轴线且中心共同形成进风通道,室内空气进入进风通道到达多个环形盘片之间的间隙,净化机构相对于进风通道设置;以及
电机,配置成驱动多个环形盘片旋转,进而使得靠近多个环形盘片表面的空气边界层被旋转的多个环形盘片带动由内向外旋转移动形成层流风。
可选地,一体式空调器还包括:直板型蒸发器,是横截面为方形的蒸发器,纵向设置于净化机构的与层流风扇相反的一侧,用于与室内空气进行热交换;室内空气经直板型蒸发器换热再经净化机构过滤后进入进风通道。
可选地,室外侧的壳体上开设有室外进风口和室外出风口;
一体式空调器还包括:
压缩机,用于压缩制冷剂;
冷凝器,设置于室外侧,与通过室外进风口进入室外侧的室外空气进行热交换将来自压缩机的制冷剂冷凝,其与直板型蒸发器对应连接,直板型蒸发器使制冷剂返回到压缩机。
可选地,室外侧的壳体上开设有室外进风口和室外出风口;
一体式空调器还包括:
压缩机,用于压缩制冷剂;
冷凝器,设置于室外侧,与通过室外进风口进入室外侧的室外空气进行热交换将来自压缩机的制冷剂冷凝,其与直板型蒸发器对应连接,直板型蒸发器使制冷剂返回到压缩机。
可选地,一体式空调器还包括:V字型蒸发器,是横截面为V形的蒸发器,纵向设置于净化机构的与层流风扇相反的一侧,用于与室内空气进行热交换;室内空气经V字型蒸发器换热再经净化机构过滤后进入进风通道。
可选地,V字型蒸发器具有两个侧面和两个侧面相交形成的尖部,尖部到进风通道的距离大于两个侧面到进风通道的距离。
可选地,V字型蒸发器的两个侧面的角度为90-175度。
可选地,层流风扇还包括:
驱动圆盘,与多个环形盘片间隔地平行设置;以及
连接件,贯穿驱动圆盘和多个环形盘片,以将多个环形盘片连接至驱动圆盘;
电机配置成直接驱动驱动圆盘旋转,进而由驱动圆盘带动多个环形盘片旋转。
本实用新型的一体式空调器通过将壳体内部分隔成室内侧和室外侧,在室内侧的壳体上开设有室内进风口和室内出风口;在室内侧设置净化机构和层流风机,利用层流风机通过流体粘性效应对经室内进风口进入室内侧后经净化机构净化后的室内空气进行扰动实现层流送风,送风过程噪音小、风量高、风压大,有效提升一体式空调器用户的使用体验,同时层流风清洁,有利用户健康。
进一步地,本实用新型的一体式空调器结构巧妙,易于装配,方便后续维修保养。
进一步地,本实用新型的一体式空调器的净化机构采用柔性净化块和净化支架组成,通过将柔性净化块塞装到净化支架内即可完成装配,十分方便,且易于更换清洗。
根据下文结合附图对本实用新型具体实施例的详细描述,本领域技术人员将会更加明了本实用新型的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本实用新型的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本实用新型一个实施例的一体式空调器的示意性立体图。
图2是图1所示一体式空调器的另一角度的示意性立体图。
图3是图1所示一体式空调器的示意性爆炸图。
图4是图1所示一体式空调器的部分部件的示意性俯视图。
图5是根据本实用新型另一个实施例的一体式空调器的示意性立体图。
图6是根据本实用新型又一个实施例的一体式空调器的示意性立体图。
图7是图6所示一体式空调器的部分部件的示意性俯视图。
图8是根据本实用新型一个实施例的一体式空调器的蒸发器和接水盘的示意性立体图。
图9是根据本实用新型一个实施例的一体式空调器的底盖和接水盘的示意性立体图。
图10是根据本实用新型一个实施例的一体式空调器的挡风件的示意性立体图。
图11是根据本实用新型一个实施例的一体式空调器的固定板的示意性立体图。
图12是根据本实用新型一个实施例的空调器的层流风机的层流风扇的示意性立体图。
图13是图1所示空调器的层流风机的送风原理示意图。
图14是图1所示空调器的层流风机的速度分布和受力分布图。
图15是图12所示的层流风扇的示意性剖视图。
图16是图12所示的层流风扇的另一视角的示意性立体图。
图17是图12所示的层流风扇的又一视角的示意性立体图。
图18是根据本实用新型一个实施例的空调器的固定机构、电机和层流风扇配合的示意性剖视图。
图19是根据本实用新型一个实施例的空调器的电机和固定机构的示意性爆炸图。
图20是根据本实用新型一个实施例的空调器的层流风机的示意性主视图。
图21是图20所示的层流风机的另一视角的示意性立体图。
图22是图20所示的层流风机的空气循环示意图。
图23是图20所示的层流风机的横截面示意图。
图24是图20所示的层流风机的层流风扇的叶片的弦线长度与风量和风压的关系示意图。
图25是根据本实用新型一个实施例的空调器的层流风扇具有双圆弧叶片的层流风机的横截面示意图。
图26是双圆弧叶片的安装角度与风量和风压的关系示意图。
图27是根据本实用新型一个实施例的空调器的层流风扇具有航空叶片的层流风机的横截面示意图。
图28是航空叶片的安装角度与风量和风压的关系示意图。
图29是根据本实用新型一个实施例的空调器的层流风扇的环形盘片间距逐渐改变的层流风机的示意性主视图。
图30是图29所示的层流风机的示意性立体图。
图31是图29所示的层流风机的多个环形盘片间距渐变与风量和风压的关系示意图。
图32是根据本实用新型一个实施例的空调器的层流风机的环形盘片内径渐变的层流风扇的示意性剖视图。
图33是图32所示的层流风机的多个环形盘片内径渐变与风量和风压的关系示意图。
图34是根据本实用新型一个实施例的空调器的层流风机的环形盘片为弧形盘片的层流风扇的多个环形盘片在经过中心轴线的同一纵截面上的内外径连线的圆心角示意图。
图35是图34所示的层流风机的圆心角与风量和风压的关系示意图。
具体实施方式
图1是根据本实用新型一个实施例的一体式空调器100的示意性立体图。
图2是图1所示一体式空调器100的另一角度的示意性立体图。图3是图1所示一体式空调器100的示意性爆炸图。图4是图1所示一体式空调器100的部分部件的示意性俯视图。本实用新型实施例的一体式空调器100为窗式空调,一般性地可包括壳体200、净化机构800和层流风机110。壳体200内部分隔成室内侧210和室外侧220,室内侧210的壳体200上开设有室内进风口211和室内出风口212。净化机构800设置于室内侧210内,用于对流经的空气进行过滤。层流风机110设置于室内侧210内,其中心形成有进风通道302。室内空气经室内进风口211进入室内侧210,经净化机构800过滤后到达进风通道302,层流风机110通过流体粘性效应扰动进入进风通道302的室内空气形成层流风,层流风通过室内出风口212流出壳体200到达室内。本实用新型实施例的一体式空调器100通过将壳体200内部分隔成室内侧210和室外侧220,在室内侧210的壳体200上开设有室内进风口211和室内出风口212;在室内侧210设置净化机构800和层流风机110,利用层流风机110通过流体粘性效应对经室内进风口211进入室内侧210后经净化机构800净化后的室内空气进行扰动实现层流送风,送风过程噪音小、风量高、风压大,有效提升一体式空调器100用户的使用体验,同时层流风清洁,有利用户健康。
在一些实施例中,本实用新型实施例的净化机构800包括:净化块和净化支架802。净化块用于对室内空气进行过滤。净化支架802纵向设置于壳体200内,用于固定净化块。
在一些实施例中,本实用新型实施例的净化块为可压缩的松软材质的柔性净化块801。本实用新型实施例的一体式空调器100的净化机构800采用柔性净化块801和净化支架802组成,通过将柔性净化块801塞装到净化支架802内即可完成装配,十分方便,且易于更换清洗。
在一些实施例中,本实用新型实施例的层流风机110包括:层流风扇300和电机400。层流风扇300包括多个环形盘片301,多个环形盘片301彼此间隔地平行设置,具有相同的中心轴线且中心共同形成进风通道302,室内空气进入进风通道302到达多个环形盘片301之间的间隙。电机400配置成驱动多个环形盘片301旋转,进而使得靠近多个环形盘片301表面的空气边界层304被旋转的多个环形盘片301带动由内向外旋转移动形成层流风。
在一些实施例中,本实用新型实施例的一体式空调器100还包括:直板型蒸发器121,是横截面为方形的蒸发器,纵向设置于净化机构800的与层流风扇300相反的一侧,用于与室内空气进行热交换;室内空气经直板型蒸发器121换热再经净化机构800过滤后进入进风通道302。本实用新型实施例的一体式空调器100在净化机构800之前设置有直板型蒸发器121,能对经直板型蒸发器121换热后的空气充分净化,不会出现室内空气未净化而形成层流风的情形。
在一些实施例中,本实用新型实施例的室外侧220的壳体200上开设有室外进风口221和室外出风口222。本实用新型实施例的一体式空调器100还包括:压缩机140和冷凝器700。压缩机140用于压缩制冷剂。冷凝器700设置于室外侧220,与通过室外进风口221进入室外侧220的室外空气进行热交换将来自压缩机140的制冷剂冷凝,其与直板型蒸发器121对应连接,直板型蒸发器121使制冷剂返回到压缩机140。
图1是根据本实用新型一个实施例的一体式空调器100的示意性立体图。图5是根据本实用新型另一个实施例的一体式空调器100的示意性立体图。在一个实施例中,本实用新型实施例的一体式空调器100包括:壳体200、隔板160、蒸发器120、接水盘130、净化机构800、层流风机110、固定机构401、挡风件500、导风板213、压缩机140、电器箱体150、送风风机600(为双吸离心风机610)、蜗壳611和两个冷凝器700。
壳体200包括、左盖板203和右盖板204。壳体本体为分体式结构,包括上壳201和底壳202,具有前侧面、上侧面、后侧面和下侧面,在其左右两侧分别具有开口。左盖板203封闭位于左侧的开口,右盖板204封闭位于右侧的开口。隔板160纵向设置于壳体本体内,左盖板203、上壳201和底壳202的左侧部分、隔板160之间限定出室内侧210,隔板160、上壳201和底壳202的右侧部分、右盖板204之间限定出室外侧220。
在室内侧210,从左往右依次设置有蒸发器120、净化机构800、层流风机110和固定机构。
蒸发器120用来使低温低压状态的制冷剂蒸发而与室内空气进行热交换并生成冷凝水。配套蒸发器120设置有接水盘130。接水盘130设置于底壳202上,位于蒸发器120的底部,用于承接冷凝水。蒸发器120可以是直板型蒸发器121、V字型蒸发器122或其他类型的蒸发器。在一些实施例中,蒸发器120是横截面为方形的直板型蒸发器121;接水盘130具有与直板型蒸发器121的横截面匹配的方形槽。在另一些实施例中,蒸发器120是横截面为V形的V字型蒸发器122;V字型蒸发器122具有两个侧面和两个侧面相交形成的尖部,尖部到层流风机110的距离大于两个侧面到层流风机110的距离;接水盘130具有与V字型蒸发器122的横截面匹配的V形槽。图8是根据本实用新型一个实施例的一体式空调器100的蒸发器120和接水盘130的示意性立体图。图9是根据本实用新型一个实施例的一体式空调器100的底盖和接水盘130的示意性立体图。可以通过在底壳202上设置定位柱131,来将接水盘130固定在底壳202上。使用V字型蒸发器122可以在有限的空间内把换热面积做到最大,增大换热面积,提高整机效率,V字型角度可以为90-175度,例如为90-120度、120-150度,再例如为110度、140度、115度。
本实用新型实施例的一体式空调器100的室内进风口211可以包括:在左盖板203上开设的第一进风口231、以及在左盖板203和蒸发器120之间的上壳201和/或底壳202上开设的第二进风口232。并且,第一进风口231优选为微孔进风口,第二进风口232优选为长条形孔。第二进风口232处优选设置有若干导风板213。通过导风板213对出风的导向,可以避免风直吹用户。为了增大进风量,提高送风效率,优选在左盖板203以及左盖板203和蒸发器120之间的上壳201和底壳202上均开设室内进风口211。
净化机构800用于对流经的空气进行过滤,以便向室内输出清洁健康空气,包括柔性净化块801和净化支架802。柔性净化块801用于对室内空气进行过滤,为可压缩的松软材质。净化支架802纵向设置于壳体本体内,柔性净化块801填充固定在支架内。通过挤压的方式将柔性净化块801塞装在净化支架802内,十分方便。
层流风机110在其中心形成有进风通道302,配置成通过流体粘性效应扰动进入进风通道302的室内空气形成层流风。层流风机110包括层流风扇300和电机400。图12是层流风扇300的一个示意性立体图。层流风扇300包括多个环形盘片301,多个环形盘片301彼此间隔地平行设置,具有相同的中心轴线且中心共同形成进风通道302,室内空气进入进风通道302到达多个环形盘片301之间的间隙。电机400与层流风扇300连接,配置成驱动多个环形盘片301旋转,进而使得靠近多个环形盘片301表面的空气边界层304被旋转的多个环形盘片301带动由内向外旋转移动形成层流风。其中空气边界层304是靠近各盘片表面的很薄的空气层。
图13是层流风机110的送风原理示意图。电机400驱动多个环形盘片301高速旋转,各环形盘片301间隔内的空气接触并发生相互运动,则靠近各环形盘片301表面的空气边界层304因受粘性剪切力τ作用,被旋转的环形盘片301带动由内向外旋转移动形成层流风。图14是本实用新型实施例的一体式空调器100的层流风机110的速度分布和受力分布图,是空气边界层304受到的粘性剪切力分布τ(y)和速度分布u(y)的示意图。空气边界层304受到的粘性剪切力实际上是各盘片对空气边界层304产生的阻力。图14中的横坐标轴指的是空气边界层304的移动方向上的距离,纵坐标轴指的是空气边界层304在与移动方向垂直的方向上的高度。ve为空气边界层304内每一点的气流速度,δ为空气边界层304的厚度,τw为环形盘片301表面处的粘性剪切力。τ(y)和u(y)中的变量y指的是空气边界层304在与移动方向垂直的方向上截面的高度,L为环形盘片301内圆周的某一点与环形盘片301表面某一点之间的距离。则τ(y)是在该距离L处,空气边界层304截面的高度为y时受到的粘性剪切力分布;u(y)是在该距离L处,空气边界层304截面的高度为y时的速度分布。
本实用新型实施例的一体式空调器100的室内出风口212是开设在层流风扇300一周的上壳201的某一或某几个侧面和/或底壳202上。在一些实施例中,在壳体本体的四个侧面上均开设有室内出风口212,以形成360度出风。在一些实施例中,在层流风扇300和壳体本体之间设置了挡风件500。挡风件500上具有缺口501,层流风依次通过缺口501和室内出风口212流出壳体200到达室内。优选地,为了使尽量多的风从室内出风口212吹出,壳体本体仅在其对应于缺口501的位置处设置室内出风口212。挡风件500可以是通过使用一个和/或组合使用一个以上挡风板来限定出缺口501。图10是根据本实用新型一个实施例的一体式空调器100的挡风件500的示意性立体图,壳体本体具有前侧面、上侧面、后侧面和下侧面,在其前侧面上开设有室内出风口212;挡风件500具有上侧面、后侧面和下侧面,其前侧面缺失限定出缺口501。图6是根据本实用新型又一个实施例的一体式空调器100的示意性立体图。图7是图6所示一体式空调器100的部分部件的示意性俯视图。以V字型蒸发器122为例,壳体本体可以在其前侧面和后侧面上开设有室内出风口212,在其上侧面和下侧面与层流风扇300之间分别设置有挡风板。
层流风扇300还包括:驱动圆盘305和连接件306。驱动圆盘305与多个环形盘片301间隔地平行设置。连接件306贯穿驱动圆盘305和多个环形盘片301,以将多个环形盘片301连接至驱动圆盘305。电机400配置成直接驱动驱动圆盘305旋转,进而由驱动圆盘305带动多个环形盘片301旋转。
在一些实施例中,层流风扇300的驱动圆盘305在其中心朝向多个环形盘片301形成有凹陷部351,电机400固定设置于凹陷部351内。图12是层流风扇300的一个示意性立体图。图15是图12所示的层流风扇300的示意性剖视图。图16是图12所示的层流风扇300的另一视角的示意性立体图。图17是图12所示的层流风扇300的又一视角的示意性立体图。
固定机构401设置于壳体200内,用于固定电机400。图18是固定机构401、电机400和层流风扇300配合的示意性剖视图。图19是电机400和固定机构401的示意性爆炸图。固定机构401包括固定板411和固定架412,电机400设置于固定板411和固定架412之间。固定板411纵向设置于上壳201和底壳202之间。固定架412具有本体部421和自本体部421朝向固定板411延伸的卡爪部422。本体部421上设置有通孔423,电机400的输出轴自通孔423伸出固定架412后与层流风扇300连接。卡爪部422用于与固定板411固定,且与凹陷部351匹配设置。在凹陷部351中心处设置有连接孔352,电机400的输出轴伸入连接孔352中后与驱动圆盘305固定。固定板411上设置有板连接孔414,卡爪部422上设置有爪连接孔424,通过使用螺栓等来将卡爪部422与固定板411固定。此外,固定板411上还设置有加强筋415。图11是根据本实用新型一个实施例的一体式空调器100的固定板411的示意性立体图。
固定板411和隔板160之间形成有容纳腔。在容纳腔内设置压缩机140和电器箱体150。压缩机140用于压缩制冷剂。电器箱体150内设置主控板。
隔板160和右盖板204之间的壳体本体上开设有室外进风口221,且室外进风口221在壳体本体上形成相对的两个进风侧。右盖板204上开设有室外出风口222。
蜗壳611设置于相对的两个进风侧之间,其入口与室外进风口221相对,其出口朝向室外出风口222。双吸离心风机610设置于蜗壳611内,其带动室外空气经室外进风口221进入室外侧220在蜗壳611内转向后从室外出风口222排出。采用双吸离心风机610的双进风侧吸风,效率高。
在壳体本体和蜗壳611的两侧之间分别设置有第一平板式冷凝器710和第二平板式冷凝器720,用于使被压缩的制冷剂冷凝而与室外空气进行热交换。可以理解,本实用新型实施例的一体式空调器100还可以包括膨胀装置,例如毛细管,用于使在冷凝器700中被冷凝的制冷剂膨胀为低压状态的制冷剂。室内侧210的蒸发器120与室外侧220的冷凝器700对应地配备,从而使来自膨胀装置的低温低压状态的制冷剂返回到压缩机140。
本实用新型实施例的一体式空调器100结构巧妙,易于装配,方便后续维修保养。
在另一些实施例中,层流风扇300的驱动圆盘305具有平面,电机400固定设置于驱动圆盘305的平面。图20是驱动圆盘305具有平面的层流风机110的示意性主视图。图21是图20所示的层流风机110的另一视角的示意性立体图。在一个优选实施例中,在驱动圆盘305的靠近环形盘片301的一侧表面还具有倒圆锥的凸起353,倒圆锥的凸起353可以有效引导通过进风通道302进入层流风扇300的空气进入各盘片之间的间隙,进而提高形成层流风的效率。
图22是图20所示的层流风机110的空气循环示意图,多个环形盘片301的中心共同形成有进风通道302,以使层流风扇300外部的空气进入;多个环形盘片301彼此之间的间隙形成有多个排出口303,以供层流风吹出。
层流风扇300的连接件306可以是叶片361、连接杆362等等。
图23是图20所示的层流风机110的横截面示意图。在本实施例中,连接件306为叶片361,其横截面具有沿环形盘片301旋转的方向依次设置的两段曲线,两段曲线的弦线373的长度与层流风机110的风量为线性关系,这样通过增加弦线373的长度可以极大地提升层流风机110的风量,从而促进层流空气循环。需要说明的是,两段曲线可以是圆弧、非圆弧的弧线、直线等线条,直线可以作为一种特殊的曲线。在两段曲线的两端点之间的距离相同时,弦线373的长度可以是两段曲线的两端点之间的距离。在两段曲线的两端点之间的距离不同时,若两段曲线的两端均不相交,则弦线373的长度可以是叶片361的横截面除这两段曲线之外的曲线中点的连线长度;若两段曲线只有一端相交,则弦线373的长度可以是叶片361的横截面除这两段曲线之外的曲线中点与这两段曲线的相交的端点的连线长度。
在一种优选的实施例中,叶片361为多个,且均匀间隔地贯穿驱动圆盘305和多个环形盘片301。多个叶片361均匀间隔地贯穿驱动圆盘305和多个环形盘片301,可以保证驱动圆盘305和多个环形盘片301的连接关系稳固,进而保证在电机400驱动驱动圆盘305旋转时,驱动圆盘305可以稳定地带动多个环形盘片301旋转,提高层流风机110的工作可靠性。
图24示出的是图20所示的层流风机110在环形盘片301的外径、内径、层数、间距、厚度、叶片361的安装角度、电机400的转速均保持不变时,弦线373的长度与风量和风压的关系示意图,图中横坐标轴指的是叶片361的弦线373的长度,风压指的是排出口303与进风通道302进口处的压力差。需要说明的是,环形盘片301的外径是其外圆周的半径,内径是其内圆周的半径。空气边界层304由内向外旋转移动形成层流风的过程是离心运动,因而离开排出口303时的速度要大于进入进风通道302时的速度。排出口303与进风通道302进口处的压力差为风压,弦线373的长度与风压也为线性关系。通过增加弦线373的长度还可以极大地提升层流风机110的风压,有效保障层流风机110的综合性能。
考虑到一体式空调器100的内在空间有限,对层流风机110的整体占用体积需要有一定约束。具体地,考虑到层流风机110的厚度不要过大,可以对环形盘片301的数量、相邻两个环形盘片301之间的间距、环形盘片301的厚度进行相应的约束;考虑到层流风机110的横向占用体积不要过大,可以对环形盘片301的外径进行相应的约束。例如,可以设置每个环形盘片301的外径为170mm至180mm,配合每个环形盘片301的内径为110mm至120mm,可以有效增大风量,保证层流风机110的出风满足用户的使用需求。在环形盘片301的外径和内径一定的情况下,虽然弦线373越长,层流风机110的风量和风压越大,但是也要对弦线373的长度进行一定的约束,避免叶片361过度贯穿环形盘片301,导致层流风机110的稳定性下降。总而言之,可以将弦线373的长度设置为可达到的最大范围,使得层流风机110的风量和风压能够满足用户的使用需求。在一种优选实施例中,环形盘片301外径为175mm,内径为115mm,层数为8层,间距为13.75mm,厚度为2mm,叶片361的安装角度为25.5°,电机400的转速为1000rpm,可以发现增加弦线373的长度之后,风量和风压均有大幅度的提高,且基本呈线性。在保证层流风机110的稳定度的前提下,将弦线373的长度设置为可达到的最大范围为40mm至42mm。并且,在将弦线373的长度设置为42mm时,层流风机110的风量可以达到1741m3/h,风压可以达到118.9Pa,完全可以满足用户的使用需求。
在一些实施例中,叶片361可以为双圆弧叶片310,其横截面具有朝环形盘片301旋转的方向凸起的双圆弧,包括沿环形盘片301旋转的方向依次设置的内弧371和背弧372,且内弧371和背弧372具有相同的圆心且平行设置。图25是具有双圆弧叶片310的层流风机110的横截面示意图。在一个优选实施例中,每个环形盘片301的外径为170mm至180mm,每个环形盘片301的内径为110mm至120mm,环形盘片301的外径与内径之差为60mm左右,内弧371的两端点之间的距离和背弧372的两端点之间的距离相同,弦线373的长度是内弧371或背弧372的两端点之间的距离,且设置为40mm至42mm,使得内弧371和背弧372的两端与环形盘片301的内圆周和外圆周分别有10mm左右的距离,在保证层流风机110的稳定性的前提下,将弦线373的长度设置为可达到的最大范围,使得层流风机110的风量和风压能够满足用户的使用需求。
图26是在环形盘片301的外径、内径、层数、间距、厚度、双圆弧叶片310的弦长、电机400的转速均保持不变时,双圆弧叶片310的安装角度α与风量和风压的关系示意图,横坐标轴指的是双圆弧叶片310的安装角度,即在双圆弧叶片310和环形盘片301的同一横截面上,内弧371的两端点之间的弦线373与经过弦线373的中点和环形盘片301的中心轴的连接线374形成的夹角。在一种优选实施例中,环形盘片301外径为175mm,内径为115mm,层数为8层,间距为13.75mm,厚度为2mm,双圆弧叶片310的弦长为35mm,电机400的转速为1000rpm,此时综合风量和风压考虑,双圆弧叶片310的安装角度α可以设置为-5°至55°。需要说明的是,在沿环形盘片301旋转的方向上依次为弦线373、连接线374时,安装角度α为正数;在沿环形盘片301旋转的方向上依次为连接线374、弦线373时,安装角度α为负数。该安装角度兼顾层流风机110的风量和风压,有效保障层流风机110的综合性能,在风压大的同时使得层流风机110的出风也能够满足用户的使用需求,进一步提升用户的使用体验。
在另一些实施例中,叶片361可以为航空叶片320,其横截面具有朝环形盘片301旋转的方向凸起的双圆弧,包括沿环形盘片301旋转的方向依次设置的内弧371和背弧372,且内弧371和背弧372具有不同的圆心且两端均相交。图27是具有航空叶片320的层流风机110的横截面示意图。
图28是图27所示的层流风机110在环形盘片301的外径、内径、层数、间距、厚度、航空叶片320的弦长、电机400的转速均保持不变时,航空叶片320的安装角度α与风量和风压的关系示意图,横坐标轴指的是航空叶片320的安装角度,即在航空叶片320和环形盘片301的同一横截面上,内弧371或背弧372的两端点之间的弦线373与经过弦线373中点和环形盘片301的中心轴的连接线374形成的夹角。在一种优选的实施例中,环形盘片301外径为175mm,内径为115mm,层数为8层,间距为13.75mm,厚度为2mm,航空叶片320的弦长为35mm,电机400的转速为1000rpm,此时综合风量和风压考虑,航空叶片320的安装角度α可以设置为-50°至15°。该安装角度兼顾层流风机110的风量和风压,有效保障层流风机110的综合性能,在风压大的同时使得层流风机110的出风也能够满足用户的使用需求,进一步提升用户的使用体验。
层流风扇300的环形盘片301还可以依照下列结构中的一种或几种设置:相邻两个环形盘片301之间的间距沿着空气在进风通道302中流动的方向逐渐增大;多个环形盘片301的内径沿着气流在进风通道302中流动的方向逐渐缩小;每个环形盘片301均为由内侧至外侧逐渐靠近驱动圆盘305的弧形盘片。
在一些实施例中,层流风扇300的多个环形盘片301彼此间隔地平行设置,具有相同的中心轴线,且相邻两个环形盘片301之间的间距沿着空气在进风通道302中流动的方向逐渐增大。图29是环形盘片301间距逐渐改变的层流风机110的示意性主视图。发明人经过多次实验发现,随着相邻两个环形盘片301之间的间距沿着空气在进风通道302中流动的方向逐渐增大,会有效提升层流风机110的风量,使得层流风机110的出风满足用户的使用需求。
以设置在壳体200内上部的层流风机110为例,图31是图29所示的层流风机110在环形盘片301外径、内径、数量、厚度、电机400的转速均保持不变时,多个环形盘片301间距渐变与风量和风压的关系示意图,其中横坐标轴sh指的是沿着由下至上的方向相邻两个环形盘片301之间的间距的变化量。如图31所示,在上述提及的各参数均保持不变时,多个环形盘片301中每两个相邻的环形盘片301之间的间距由下至上逐渐变化对风量影响较大,对风压影响很小;当横坐标轴表示的沿着由下至上的方向相邻两个环形盘片301之间的间距的变化量为正数时,说明多个环形盘片301中每两个相邻的环形盘片301之间的间距由下至上逐渐增大;当横坐标轴表示的沿着由下至上的方向相邻两个环形盘片301之间的间距的变化量为负数时,说明多个环形盘片301中每两个相邻的环形盘片301之间的间距由下至上逐渐缩小。因此,由图31可知,多个环形盘片301中每两个相邻的环形盘片301之间的间距变化量为-1mm、1mm和2mm时,层流风机110的风量和风压均有很大的改善。
前文提及,本实用新型实施例中的层流风扇300的连接件306可以是连接杆362。图30是图29所示的层流风机110的示意性立体图。连接杆362可以为多根,且均匀间隔地贯穿于驱动圆盘305和多个环形盘片301的边缘部分。多根连接杆362均匀间隔地贯穿于驱动圆盘305和多个环形盘片301的边缘部分,可以保证驱动圆盘305和多个环形盘片301的连接关系稳固,进而保证在电机400驱动驱动圆盘305旋转时,驱动圆盘305可以稳定地带动多个环形盘片301旋转,提高层流风机110的工作可靠性。同时,当连接件306为连接杆362时,电机400的转速与层流风机110的风量大致呈线性关系,因而在一种优选实施例中,电机400还可以配置成:电机400的转速根据获取到的层流风机110的目标风量确定。也就是说,可以首先获取层流风机110的目标风量,再根据其与电机400的转速之间的线性关系确定电机400的转速。需要说明的是,该目标风量可以通过用户的输入操作获取。在一种优选的实施例中,环形盘片301的外径为175mm,内径为115mm,层数为8层,相邻两个环形盘片301之间的间距由下至上依次设置为:13.75mm、14.75mm、15.75mm、16.75mm、17.75mm、18.75mm、19.75mm,厚度为2mm时,电机400的转速与层流风机110的风量呈线性关系更加明显。
在一些实施例中,本实用新型实施例的层流风扇300的多个环形盘片301的内径沿着气流在进风通道302中流动的方向逐渐缩小。以设置在壳体200内上部的层流风扇300为例,图32是环形盘片301内径渐变的层流风扇300的示意性剖视图。图33是具有如图32所示的层流风扇300的层流风机110在环形盘片301的外径、间距、数量、厚度、电机400的转速均保持不变时,多个环形盘片301内径渐变与风量和风压的关系示意图,其中横坐标轴指的是每一个环形盘片301的内径与下方相邻的环形盘片301的内径的变化量。如图33所示,在上述提及的各参数均保持不变时,多个环形盘片301的内径由下至上逐渐变化对风量影响较大,对风压影响很小。当横坐标轴表示的每一个环形盘片301的内径与下方相邻的环形盘片301的内径的变化量为正数时,说明多个环形盘片301的内径由下至上逐渐增加;当横坐标轴表示的每一个环形盘片301的内径与下方相邻的环形盘片301的内径的变化量为负数时,说明多个环形盘片301的内径由下至上逐渐缩小。由图33可知,多个环形盘片301的内径由下至上逐渐缩小时,风量有所增加,风压稍有减小;多个环形盘片301的内径由下至上逐渐增加时,风压稍有增加,风量减小很多。在一种优选的实施例中,环形盘片301外径为175mm,环形盘片301的最大内径为115mm,间距为13.75mm,数量为8个,厚度为2mm,电机400的转速为1000rpm,此时综合风量与风压的全面考虑,可以设置每一个环形盘片301的内径与下方相邻的环形盘片301的内径的变化量为-5mm,也就是说8个环形盘片301的内径分别为:115mm、110mm、105mm、100mm、95mm、90mm、85mm、80mm。
在一些实施例中,层流风扇300的环形盘片301为由内侧至外侧逐渐靠近驱动圆盘305的弧形盘片。以设置在壳体200内上部的层流风扇300为例,每个环形盘片301均设置成由内至外逐渐升高且向上凸起的弧形盘片,使得外部空气进入层流风扇300的角度更加符合流体流动,从而更利于外部的空气进入层流风扇300,有效减少风量损失,保证层流风机110的出风满足用户的使用需求。图34是多个环形盘片301在经过中心轴线的同一纵截面上的内外径连线的圆心角θ示意图。图35是在环形盘片301外径、层数、间距、厚度、电机400的转速均保持不变时,圆心角θ与风量和风压的关系示意图。如图35所示,在上述提及的各参数均保持不变时,随着圆心角θ逐渐增大,风量先增大后减小,而风压有少许上升。在一种优选实施例中,环形盘片301外径为175mm,层数为10层,间距为13.75mm,厚度为2mm,电机400的转速为1000rpm,此时综合风量和风压考虑,圆心角θ可以设置为9°至30°。并且如图35所示,在圆心角θ设置为15°时,层流风机110的风量达到最大值。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本实用新型的多个示例性实施例,但是,在不脱离本实用新型精神和范围的情况下,仍可根据本实用新型公开的内容直接确定或推导出符合本实用新型原理的许多其他变型或修改。因此,本实用新型的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

1.一种一体式空调器,其特征在于,包括:
壳体,其内部分隔成室内侧和室外侧,所述室内侧的所述壳体上开设有室内进风口和室内出风口;
净化机构,设置于所述室内侧内,用于对流经的空气进行过滤;以及
层流风机,设置于所述室内侧内,其形成有进风通道,室内空气经所述室内进风口进入所述室内侧,经所述净化机构过滤后到达所述进风通道,所述层流风机通过流体粘性效应扰动进入所述进风通道的所述室内空气形成层流风,所述层流风通过所述室内出风口流出所述壳体到达室内。
2.根据权利要求1所述的一体式空调器,其特征在于,
所述净化机构包括:
净化块,用于对所述室内空气进行过滤;和
净化支架,纵向设置于所述壳体内,用于固定所述净化块。
3.根据权利要求2所述的一体式空调器,其特征在于,
所述净化块为可压缩的松软材质的柔性净化块。
4.根据权利要求2所述的一体式空调器,其特征在于,
所述层流风机包括:
层流风扇,包括多个环形盘片,所述多个环形盘片彼此间隔地平行设置,具有相同的中心轴线且中心共同形成所述进风通道,所述室内空气进入所述进风通道到达所述多个环形盘片之间的间隙,所述净化机构相对于所述进风通道设置;以及
电机,配置成驱动所述多个环形盘片旋转,进而使得靠近所述多个环形盘片表面的空气边界层被旋转的所述多个环形盘片带动由内向外旋转移动形成所述层流风。
5.根据权利要求4所述的一体式空调器,其特征在于,还包括:
直板型蒸发器,是横截面为方形的蒸发器,纵向设置于所述净化机构的与所述层流风扇相反的一侧,用于与所述室内空气进行热交换;
所述室内空气经所述直板型蒸发器换热再经所述净化机构过滤后进入所述进风通道。
6.根据权利要求5所述的一体式空调器,其特征在于,
所述室外侧的所述壳体上开设有室外进风口和室外出风口;
所述一体式空调器还包括:
压缩机,用于压缩制冷剂;
冷凝器,设置于所述室外侧,与通过所述室外进风口进入所述室外侧的室外空气进行热交换将来自所述压缩机的所述制冷剂冷凝,其与所述直板型蒸发器对应连接,所述直板型蒸发器使制冷剂返回到压缩机。
7.根据权利要求4所述的一体式空调器,其特征在于,还包括:
V字型蒸发器,是横截面为V形的蒸发器,纵向设置于所述净化机构的与所述层流风扇相反的一侧,用于与所述室内空气进行热交换;
所述室内空气经所述V字型蒸发器换热再经所述净化机构过滤后进入所述进风通道。
8.根据权利要求7所述的一体式空调器,其特征在于,
所述V字型蒸发器具有两个侧面和两个侧面相交形成的尖部,尖部到所述进风通道的距离大于两个侧面到所述进风通道的距离。
9.根据权利要求8所述的一体式空调器,其特征在于,
所述V字型蒸发器的两个侧面的角度为90-175度。
10.根据权利要求4所述的一体式空调器,其特征在于,
所述层流风扇还包括:
驱动圆盘,与所述多个环形盘片间隔地平行设置;以及
连接件,贯穿所述驱动圆盘和所述多个环形盘片,以将所述多个环形盘片连接至所述驱动圆盘;
所述电机配置成直接驱动所述驱动圆盘旋转,进而由所述驱动圆盘带动所述多个环形盘片旋转。
CN201920079760.4U 2019-01-17 2019-01-17 一体式空调器 Active CN209877171U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920079760.4U CN209877171U (zh) 2019-01-17 2019-01-17 一体式空调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920079760.4U CN209877171U (zh) 2019-01-17 2019-01-17 一体式空调器

Publications (1)

Publication Number Publication Date
CN209877171U true CN209877171U (zh) 2019-12-31

Family

ID=68950938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920079760.4U Active CN209877171U (zh) 2019-01-17 2019-01-17 一体式空调器

Country Status (1)

Country Link
CN (1) CN209877171U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147752A1 (zh) * 2019-01-17 2020-07-23 青岛海尔空调器有限总公司 一体式空调器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147752A1 (zh) * 2019-01-17 2020-07-23 青岛海尔空调器有限总公司 一体式空调器

Similar Documents

Publication Publication Date Title
US9587841B2 (en) Turbo fan and ceiling type air conditioner using the same
KR20180044165A (ko) 공기 조화기
CN209877171U (zh) 一体式空调器
CN210014459U (zh) 立式空调器室内机
CN209877169U (zh) 一体式空调器
CN209877172U (zh) 一体式空调器
CN209877170U (zh) 一体式空调器
CN111442414A (zh) 一体式空调器
CN111442391B (zh) 壁挂式空调器室内机
CN111442412A (zh) 一体式空调器
CN209865587U (zh) 空气净化器
CN111442415A (zh) 一体式空调器
CN209865586U (zh) 空气净化器
CN111442413A (zh) 一体式空调器
CN114440316A (zh) 风道组件和具有其的空气调节设备
CN111437669A (zh) 空气净化器
CN111437671B (zh) 空气净化器
CN209865585U (zh) 空气净化器
CN209865584U (zh) 空气净化器
CN111442390B (zh) 壁挂式空调器室内机
CN111442389B (zh) 壁挂式空调器室内机
CN209877150U (zh) 壁挂式空调器室内机
CN209877121U (zh) 壁挂式空调器室内机
CN111442351B (zh) 壁挂式空调器室内机
CN111442358B (zh) 壁挂式空调器室内机

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant