CN111442391B - 壁挂式空调器室内机 - Google Patents

壁挂式空调器室内机 Download PDF

Info

Publication number
CN111442391B
CN111442391B CN201910045797.XA CN201910045797A CN111442391B CN 111442391 B CN111442391 B CN 111442391B CN 201910045797 A CN201910045797 A CN 201910045797A CN 111442391 B CN111442391 B CN 111442391B
Authority
CN
China
Prior art keywords
laminar flow
air
wall
annular
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910045797.XA
Other languages
English (en)
Other versions
CN111442391A (zh
Inventor
关婷婷
王永涛
闫宝升
戴现伟
尹晓英
魏学帅
吕静静
王鹏臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Haier Smart Home Co Ltd
Chongqing Haier Air Conditioner Co Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Haier Smart Home Co Ltd
Chongqing Haier Air Conditioner Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd, Haier Smart Home Co Ltd, Chongqing Haier Air Conditioner Co Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Priority to CN201910045797.XA priority Critical patent/CN111442391B/zh
Publication of CN111442391A publication Critical patent/CN111442391A/zh
Application granted granted Critical
Publication of CN111442391B publication Critical patent/CN111442391B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/247Active noise-suppression

Abstract

本发明提供了一种壁挂式空调器室内机。其中壁挂式空调器室内机包括:壳体,其内部限定有空腔,壳体包括前面板和后壳,后壳开设有进风口,前面板限定有两个出风口;蒸发器,设置于对应进风口的空腔内部,配置成对通过进风口进入空腔内的空气进行换热,蒸发器具有周壁和底壁,底壁与前面板平行且周壁位于靠近前面板的一侧;两个层流风机,设置于蒸发器的前侧,配置成利用粘性效应使经过蒸发器换热的空气形成层流风,并使层流风从出风口吹出。本发明的壁挂式空调器室内机通过粘性效应实现层流送风,噪音小、风量高;两个层流风机可以分别独立控制送风;罩扣式的蒸发器极大地增加了换热面积,有效提升壁挂式空调器室内机的整体工作效率。

Description

壁挂式空调器室内机
技术领域
本发明涉及家用电器技术领域,特别是涉及一种壁挂式空调器室内机。
背景技术
随着社会发展以及人们的生活水平不断提高,各种空气调节装置已经成为人们日常生活中不可或缺的电气设备之一。各种空气调节装置可以在环境温度过高或过低时,帮助人们达到一个能够适应的温度。
目前的空调调节装置主要包括各种类型的空调器以及风扇,由于壁挂式空调器室内机一般挂设于房间的墙壁上,无需占用房间底部的空间,因而应用越来越广泛。但是目前的壁挂式空调器室内机主要采用贯流风扇送风,而贯流风扇往往存在以下问题:出风方向为正前方,虽然有摆叶左右导流,导风板上下导流,但受限于蜗壳结构,其左右送风角度小于80°,上下送风角度小于100°,因此其送风范围非常有限;由于长条形出风口形式,风量集中导致风速较高,所以出风很难避开人,导致出风直吹人现象比较严重;当前贯流风扇主要为前向叶片,叶片周期性的冲击经过的气流,产生明显的旋转噪声,蜗壳配合贯流风扇实现送风效果,在前后蜗舌处也会对气流造成冲击,产生强烈的湍流噪音,在性能指标的限制下,噪音值接近极限。
发明内容
本发明的一个目的是提供噪音小、风量高、风压大的壁挂式空调器室内机。
本发明一个进一步的目的是使壁挂式空调器室内机的出风均匀柔和,满足用户的舒适性需求。
特别地,本发明提供了一种壁挂式空调器室内机,包括:壳体,其内部限定有空腔,壳体包括前面板和后壳,后壳开设有进风口,前面板限定有两个出风口;蒸发器,设置于对应进风口的空腔内部,配置成对通过进风口进入空腔内的空气进行换热,其中蒸发器具有周壁和底壁,底壁与前面板平行且周壁位于靠近前面板的一侧;以及两个层流风机,设置于蒸发器的前侧,配置成利用粘性效应使经过蒸发器换热的空气形成层流风,并使层流风从出风口吹出。
可选地,壳体还包括顶板和底板,后壳包括:后面板和两个侧面板,且进风口设置于顶板、底板、后面板和两个侧面板,以实现五面进风。
可选地,蒸发器上下设置有两个,且壁挂式空调器室内机还包括:隔板,设置于两个蒸发器之间,配置成阻止两个蒸发器互相影响。
可选地,每个层流风机均包括层流风扇和层流电机,其中两个层流风扇分别设置于对应两个出风口的空腔内部,层流风扇包括:多个环形盘片,彼此间隔地平行设置且具有相同的中心轴线,多个环形盘片的中心共同形成有进风通道,空腔内的空气通过进风通道进入多个环形盘片之间的间隙;以及两个层流电机,分别与两个层流风扇连接,且层流电机配置成驱动多个环形盘片旋转,以使靠近多个环形盘片表面的空气边界层由内向外旋转移动,从而形成层流风由出风口吹出。
可选地,壁挂式空调器室内机还包括:两个蜗壳,其内部分别容纳有层流风扇,且蜗壳后部具有与进风通道对应设置的入口,以使空腔内的空气通过入口进入进风通道;层流风扇的周向与蜗壳前部的内壁形成有空隙,以使层流风通过空隙流向出风口。
可选地,壁挂式空调器室内机还包括:两个固定板和两个固定架,其中,固定板一侧设置有多条加强筋,另一侧设置有多个卡槽;固定架朝向固定板的一侧设置有与多个卡槽对应的多个卡爪,以在多个卡爪分别螺接于多个卡槽之后将层流电机固定于固定架和固定板之间。
可选地,壁挂式空调器室内机还包括:两个遮挡件,分别罩设于两个固定板的前侧,且前面板具有空缺,遮挡件与前面板共同限定出出风口。
可选地,层流风扇还包括:驱动圆盘,间隔地平行设置于多个环形盘片的一侧;以及连接件,贯穿驱动圆盘和多个环形盘片,以将多个环形盘片连接至驱动圆盘,层流电机还配置成:直接驱动驱动圆盘旋转,进而由驱动圆盘带动多个环形盘片旋转。
可选地,驱动圆盘的中心朝向多个环形盘片形成有凹槽,层流电机固定设置于凹槽中;或者驱动圆盘朝向层流电机的表面为平面,朝向多个环形盘片的表面具有圆锥状的凸起部,以引导进入层流风扇的空气流动并协助形成层流风。
可选地,连接件为连接片,连接片的横截面具有沿环形盘片旋转的方向依次设置的两段曲线,两段曲线的弦线长度与层流风扇产生的风量为线性关系。
可选地,连接片的横截面具有沿环形盘片旋转的方向依次设置的双圆弧:内弧和背弧,且内弧和背弧均朝环形盘片旋转的方向凸起,内弧和背弧具有相同的圆心且平行设置或具有不同的圆心且两端均相交。
可选地,多个环形盘片按照以下结构中的一种或几种设置:多个环形盘片的内径由远离驱动圆盘的一侧至另一侧逐渐缩小;多个环形盘片中相邻两个环形盘片之间的间距由远离驱动圆盘的一侧至另一侧逐渐增大;每个环形盘片均为由中心至边缘逐渐靠近驱动圆盘且向驱动圆盘一侧凸起的弧形盘片。
本发明的壁挂式空调器室内机,包括:壳体,其内部限定有空腔,壳体包括前面板和后壳,后壳开设有进风口,前面板限定有两个出风口;蒸发器,设置于对应进风口的空腔内部,配置成对通过进风口进入空腔内的空气进行换热,其中蒸发器具有周壁和底壁,底壁与前面板平行且周壁位于靠近前面板的一侧;以及两个层流风机,设置于蒸发器的前侧,配置成利用粘性效应使经过蒸发器换热的空气形成层流风,并使层流风从出风口吹出。壁挂式空调器室内机设置有两个层流风机,通过粘性效应实现层流送风,送风过程噪音小、风量高,有效提升用户的使用体验。两个层流风机可以分别独立控制送风,互相没有影响,可以根据用户的实际需求进行调节。罩扣式的蒸发器具有周壁和底壁,极大地增加了换热面积,有效提升壁挂式空调器室内机的整体工作效率。
进一步地,本发明的壁挂式空调器室内机,层流风机包括层流风扇和层流电机,层流风扇设置于对应出风口的空腔内部,层流电机固定于固定架和固定板之间,层流电机与层流风扇的驱动圆盘固定,可以有效增强层流风扇和层流电机的连接牢固度,提升整体工作可靠性。壳体还包括顶板和底板,后壳包括:后面板和两个侧面板,且进风口设置于顶板、底板、后面板和两个侧面板,以实现五面进风。罩扣式的蒸发器与进风口匹配设置,使得通过进风口进入空腔内的空气均能够通过蒸发器换热。换热器面积增大,进风相对均匀;同样的制冷制热量,由于换热面积大,换热量大,送风风量可减小,从而可降低层流电机的转速,进一步降低噪音。蒸发器可以上下设置有两个,且壁挂式空调器室内机还包括:隔板,设置于两个蒸发器之间,配置成阻止两个蒸发器互相影响,每个蒸发器和对应的层流风机可以实现独立控制。
更进一步地,本发明的壁挂式空调器室内机,层流风扇的多个环形盘片可以按照以下结构中的一种或几种设置:多个环形盘片的内径由远离驱动圆盘的一侧至另一侧逐渐缩小;多个环形盘片中相邻两个环形盘片之间的间距由远离驱动圆盘的一侧至另一侧逐渐增大;每个环形盘片均为由中心至边缘逐渐靠近驱动圆盘且向驱动圆盘一侧凸起的弧形盘片。上述设置多个环形盘片的形式均可以有效提升层流风扇的风量,使得层流风扇的出风满足用户的使用需求。此外,连接件可以为连接片,连接片的横截面具有沿环形盘片旋转的方向依次设置的两段曲线,两段曲线的弦线长度与层流风扇产生的风量为线性关系。连接片的设置,可以有效提升层流风扇的风压,使得在层流风通过多个环形盘片之间的间隙吹出后,由于受到压差作用,层流风扇外部的空气通过进风通道被压入环形盘片,如此循环往复,从而形成层流空气循环。而壁挂式空调器室内机的层流风扇的周向与容纳层流风扇的蜗壳前部的内壁形成有空隙,以使层流风通过空隙流向出风口,使得壁挂式空调器室内机的出风均匀柔和,满足用户的舒适性需求。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的壁挂式空调器室内机的整体结构示意图;
图2是图1中壁挂式空调器室内机的局部结构示意图;
图3是图1中壁挂式空调器室内机的部件爆炸示意图;
图4是根据本发明另一个实施例的壁挂式空调器室内机的整体结构示意图;
图5是图4中壁挂式空调器室内机的局部结构示意图;
图6是图4中壁挂式空调器室内机的部件爆炸示意图;
图7是根据本发明一个实施例的壁挂式空调器室内机中层流风扇的空气循环示意图;
图8是根据本发明一个实施例的壁挂式空调器室内机中层流风扇的送风原理示意图;
图9是根据本发明一个实施例的壁挂式空调器室内机中层流风扇的速度分布和受力分布图;
图10是驱动圆盘具有凹槽的层流风扇的结构示意图;
图11是图10中层流风扇的另一视角的结构示意图;
图12是图10中层流风扇的又一视角的结构示意图;
图13是图10中层流风扇的剖视图;
图14是驱动圆盘具有圆锥状凸起部的层流风扇与层流电机的连接示意图;
图15是图14中层流风扇的另一视角的结构示意图;
图16是图14中层流风扇的横截面示意图;
图17是图16中连接片的弦线长度与风量和风压的关系示意图;
图18是图16中连接片的安装角度与风量和风压的关系示意图;
图19是具有航空叶片的层流风扇的横截面示意图;
图20是图19中层流风扇的航空叶片的安装角度与风量和风压的关系示意图;
图21是多个环形盘片间距渐变的层流风扇与层流电机的连接示意图;
图22是图21中层流风扇与层流电机的另一视角的连接示意图;
图23是图21中层流风扇的多个环形盘片间距渐变与风量和风压的关系示意图;
图24是多个环形盘片内径渐变的层流风扇的局部剖视图;
图25是图24中层流风扇的多个环形盘片内径渐变与风量和风压的关系示意图;
图26是环形盘片为弧形盘片的层流风扇的多个环形盘片在经过中心轴线的同一纵截面上的内外径连线的圆心角示意图;以及
图27是图26中的圆心角与风量和风压的关系示意图。
具体实施方式
本实施例提供了一种壁挂式空调器室内机,设置有层流风扇,通过粘性效应实现层流送风,送风过程噪音小、风量高、风压大,有效提升用户的使用体验。图1是根据本发明一个实施例的壁挂式空调器室内机300的整体结构示意图;图2是图1中壁挂式空调器室内机300的局部结构示意图;图3是图1中壁挂式空调器室内机300的部件爆炸示意图;图4是根据本发明另一个实施例的壁挂式空调器室内机300的整体结构示意图;图5是图4中壁挂式空调器室内机300的局部结构示意图;图6是图4中壁挂式空调器室内机300的部件爆炸示意图;图7是根据本发明一个实施例的壁挂式空调器室内机300中层流风扇100的空气循环示意图,图8是根据本发明一个实施例的壁挂式空调器室内机300中层流风扇100的送风原理示意图,图9是根据本发明一个实施例的壁挂式空调器室内机300中层流风扇100的速度分布和受力分布图。图10是驱动圆盘30具有凹槽32的层流风扇100的结构示意图,图11是图10中层流风扇100的另一视角的结构示意图,图12是图10中层流风扇100的又一视角的结构示意图,图13是图10中层流风扇100的剖视图。如图1至图7所示,壁挂式空调器室内机300一般性地可以包括:壳体310、蒸发器385和两个层流风机110。
其中,壳体310的内部限定有空腔,壳体310包括:前面板311和后壳312,后壳312开设有进风口330,前面板311限定有两个出风口320。在一种具体的实施例中,如图1至图6所示,两个出风口320可以上下设置。壳体310还可以包括:顶板313和底板314,且后壳312可以包括后面板315和两个侧面板316。进风口330可以设置于顶板313、底板314、后壳312的后面板315和两个侧面板316,以实现五面进风。进风口330处可以设置为进风栅的形式,能够将室内空气通过不同方向吸入空腔内部并对空气进行过滤。需要说明的是,如图1至图6所示,后面板315的后部还可以设置有多个凸柱740,以在后面板315为平面时也能与墙壁产生一定的间隙,使得后面板315上开设有进风口330时能够实现进风。
蒸发器385可以设置于对应进风口330的空腔内部,配置成对通过进风口330进入空腔内的空气进行换热。其中本实施例的蒸发器385具有周壁386和底壁387,底壁387与前面板311平行且周壁386位于靠近前面板311的一侧,即蒸发器385为罩扣式。如图1至图3所示,蒸发器385可以设置有单个;如图4至图6所示,蒸发器385还可以上下设置有两个,且壁挂式空调器室内机300还可以包括:隔板383,设置于两个蒸发器385之间,配置成阻止两个蒸发器385互相影响。此外,蒸发器385下方可以设置有接水盘(图中未示出),以承接蒸发器385产生的冷凝水。
两个层流风机110设置于蒸发器385的前侧,配置成利用粘性效应使经过蒸发器385换热的空气形成层流风,并使层流风从出风口320吹出。本实施例的层流风机110实际上位于蒸发器385的底壁387前侧。每个层流风机110均包括层流风扇100和层流电机20。其中两个层流风扇100分别设置于对应两个出风口320的空腔内部,层流风扇100包括:多个环形盘片10,彼此间隔地平行设置且具有相同的中心轴线,多个环形盘片10的中心共同形成有进风通道11,空腔内的空气通过进风通道11进入多个环形盘片10之间的间隙。两个层流电机20,分别与两个层流风扇100连接,且层流电机20配置成驱动多个环形盘片旋转,以使靠近多个环形盘片表面的空气边界层13由内向外旋转移动,从而形成层流风由出风口320吹出。需要说明的是,在前面板311或后面板315为平面时,如图1至图6所示,层流风扇100的多个环形盘片10均与前面板311或后面板315平行设置,即进风通道11垂直于前面板311或后面板315。
具体地,层流电机20驱动多个环形盘片旋转,以使多个环形盘片与彼此之间的空气接触并相互运动,进而使靠近多个环形盘片表面的空气边界层13因粘性效应被旋转的多个环形盘片带动由内向外旋转移动形成层流风。多个环形盘片之间的间隙形成有多个排风口12,每个排风口12均能够实现360°送风,从排风口12排出的层流风通过出风口320吹出至壁挂式空调器室内机300外部的环境中。
在一种优选的实施例中,壁挂式空调器室内机300还可以包括:两个蜗壳520,其内部分别容纳有层流风扇100,且蜗壳520后部具有与进风通道11对应设置的入口522,以使空腔内的空气通过入口522进入进风通道11;层流风扇100的周向与蜗壳520前部的内壁形成有空隙710,以使层流风通过空隙710流向出风口320。需要说明的是,蜗壳520与蒸发器385之间具有间隙,尤其是蜗壳520的后部与蒸发器385具有间隙,以使经过蒸发器385换热的空气可以通过蜗壳520后部的入口522进入进风通道11。
如图7所示,层流风扇100还可以包括:驱动圆盘30和连接件。其中驱动圆盘30间隔地平行设置于多个环形盘片10的一侧。连接件,贯穿驱动圆盘30和多个环形盘片10,以将多个环形盘片10连接至驱动圆盘30。如图10所示,连接件可以是连接片40。层流电机20还可以配置成:直接驱使驱动圆盘30旋转,进而由驱动圆盘30带动多个环形盘片10旋转。也就是说,上文中提到的层流电机20配置成驱动多个环形盘片10旋转是依赖于层流电机20先带动驱动圆盘30旋转,再由驱动圆盘30带动多个环形盘片10旋转。在一种具体的实施例中,驱动圆盘30的半径和多个环形盘片10的外径相同,可以均设置在一定的范围,例如170㎜至180㎜,从而对层流风扇100横向的占用体积进行约束,配合限定环形盘片10的数量和相邻两个环形盘片10之间的间距,对层流风扇100纵向的厚度进行约束,可以有效约束层流风扇100的整体占用体积。需要说明的是,环形盘片10的内径指的是其内圆周的半径;外径指的是其外圆周的半径。上述环形盘片10外径的具体数值仅为例举,而并非对本发明的限定。
以下对两个壁挂式空调器室内机300的具体实施例进行介绍:
如图1至图3所示,本实施例的壁挂式空调器室内机300设置有单个蒸发器385,蒸发器385具有周壁386和底壁387,底壁387与后面板315平行且周壁386位于靠近前面板311的一侧。进风口330设置于顶板313、底板314、后壳312的后面板315和两个侧面板316,即五面进风。也就是说,蒸发器385与进风口330对应设置,从进风口330进入空腔的空气均能够经过蒸发器385换热。经过换热的空气通过蜗壳520后部的入口522进入进风通道11,进而进入层流风扇100多个环形盘片之间。最后,层流风扇100产生的层流风通过空隙710流向出风口320。
如图4至图6所示,本实施例的壁挂式空调器室内机300设置有两个上下放置的蒸发器385,蒸发器385具有周壁386和底壁387,底壁387与后面板315平行且周壁386位于靠近前面板311的一侧。两个蒸发器385之间设置有隔板383,以阻止两个蒸发器385互相影响,本实施例的隔板383为平板状。进风口330设置于顶板313、底板314、后壳312的后面板315和两个侧面板316,即五面进风。也就是说,两个蒸发器385与进风口330对应设置,从进风口330进入空腔的空气均能够经过两个蒸发器385换热。经过换热的空气通过蜗壳520后部的入口522进入进风通道11,进而进入层流风扇100多个环形盘片之间。最后,层流风扇100产生的层流风通过空隙710流向出风口320。
如图1至图6所示,两个层流风扇100可以上下设置,对应地,两个出风口320也上下设置。此外,前面板311和后壳312和蒸发器385对应设置,如图1至图3所示,蒸发器385为一体式,设置有单个,前面板311和后壳312也为一体式,即设置有单个前面板311和单个后壳312;如图4至图6所示,蒸发器385为分体式,设置有两个,前面板311和后壳312也可以为分体式,即设置有两个前面板311和两个后壳312。
如图7所示,多个环形盘片10的中心共同形成有进风通道11,以使层流风扇100外部的空气进入。多个环形盘片10彼此之间的间隙形成有多个排风口12,以供层流风吹出。空气边界层13由内向外旋转移动形成层流风的过程是离心运动,因而离开排风口12时的速度要大于进入进风通道11时的速度。层流风扇100的排风口12与进风通道11进口处的压力差为风压。多个环形盘片10彼此之间的间隙形成的多个排风口12可以使得层流风扇100实现360°出风,进而通过层流风扇100的周向与蜗壳520前部的内壁形成的空隙710流向出风口320,出风均匀柔和,满足用户的舒适性需求。
层流风扇100的送风原理主要来源于尼古拉·特斯拉发现的“特斯拉涡轮机”。特斯拉涡轮机主要利用流体的“层流边界层效应”或者“粘性效应”实现对“涡轮盘片”做功的目的。本实施例的层流风扇100通过层流电机20驱使驱动圆盘30,驱动圆盘30带动多个环形盘片10高速旋转,各环形盘片10间隔内的空气接触并发生相互运动,则靠近各环形盘片10表面的空气边界层13因受粘性剪切力τ作用,被旋转的环形盘片10带动由内向外旋转移动形成层流风。
图9示出的就是空气边界层13受到的粘性剪切力分布τ(y)和速度分布u(y)的示意图。空气边界层13受到的粘性剪切力实际上是各环形盘片10对空气边界层13产生的阻力。图9中的横坐标轴指的是空气边界层13的的移动方向上的距离,纵坐标轴指的是空气边界层13在与移动方向垂直的方向上的高度。ve为空气边界层13内每一点的气流速度,δ为空气边界层13的厚度,τw为环形盘片10表面处的粘性剪切力。τ(y)和u(y)中的变量y指的是空气边界层13在与移动方向垂直的方向上截面的高度,L为环形盘片10内圆周的某一点与环形盘片10表面某一点之间的距离。则τ(y)是在该距离L处,空气边界层13截面的高度为y时受到的粘性剪切力分布;u(y)是在该距离L处,空气边界层13截面的高度为y时的速度分布。
壁挂式空调器室内机300还可以包括:两个固定板340和两个固定架350,其中固定板340的一侧设置有多条加强筋341,另一侧设置有多个卡槽(图中未示出)。其中加强筋341可以有效提高固定板340的牢固程度。固定架350,朝向固定板340的一侧设置有与多个卡槽对应的多个卡爪351,以在多个卡爪351分别螺接于多个卡槽之后将层流电机20固定于固定架350和固定板340之间。对于图10至图13所示的层流风扇100,由于驱动圆盘30的中心朝向多个环形盘片10形成有凹槽32,层流电机20固定设置于驱动圆盘30的凹槽32中。
壁挂式空调器室内机300还可以包括:两个遮挡件720,分别罩设于两个固定板340的前侧。如图1至图6所示,前面板311具有空缺750,遮挡件720与前面板311共同限定出出风口320。本实施例的层流风扇100设置有两个,前面板311对应两个层流风扇100的部分均具有空缺750。并且在一种具体的实施例中,前面板311对应两个层流风扇100的部分均可以具有圆形的空缺750,两个遮挡件720可以与前面板311共同限定出两个环形的出风口320。需要说明的是,圆形的空缺750的直径大于环形盘片10的外径,优选地,与蜗壳520的前部孔径相同。
图14是驱动圆盘30具有圆锥状凸起部31的层流风扇100与层流电机20的连接示意图,图15是图14中层流风扇100的另一视角的结构示意图,图16是图14中层流风扇100的横截面示意图。图14至图16中的层流风扇100的驱动圆盘30朝向层流电机20的表面为平面,朝向多个环形盘片10的表面具有圆锥状的凸起部31,以引导进入层流风扇100的空气流动并协助形成层流风。
驱动圆盘30的主要作用在于固定承接层流电机20,并与多个环形盘片10通过连接件实现连接,以在层流电机20驱使驱动圆盘30旋转时带动多个环形盘片10旋转。对于图14至图16所示的层流风扇,由于驱动圆盘30朝向层流电机20的表面为平面,层流电机20固定设置于驱动圆盘30的平面一侧。而图14至图16所示的层流风扇100的驱动圆盘30朝向多个环形盘片10的表面具有圆锥状的凸起部31,可以有效引导通过进风通道11进入层流风扇100的空气进入各环形盘片10之间的间隙,进而提高形成层流风的效率。
在一种优选的实施例中,连接件为连接片40,连接片40的横截面具有沿环形盘片10旋转的方向依次设置的两段曲线,两段曲线的弦线长度与层流风扇100产生的风量为线性关系。连接片40可以设置为多个,且均匀间隔地贯穿驱动圆盘30和多个环形盘片10。多个连接片40均匀间隔地贯穿驱动圆盘30和多个环形盘片10,可以保证驱动圆盘30和多个环形盘片10的连接关系稳固,进而保证在层流电机20驱使驱动圆盘30旋转时,驱动圆盘30可以稳定地带动多个环形盘片10旋转,提高层流风扇100的工作可靠性。
需要说明的是,两段曲线41、42可以是圆弧、非圆弧的弧线、直线等线条,直线可以作为一种特殊的曲线。在曲线41两端点之间的距离与曲线42两端点之间的距离相同时,弦线51长度可以是曲线41或曲线42两端点之间的距离。在曲线41两端点之间的距离与曲线42两端点之间的距离不同时,若曲线41和曲线42两端均不相交,则弦线51长度可以是连接片40的横截面除曲线41、42之外的曲线中点的连线长度;若曲线41和曲线42只有一端相交,则弦线51长度可以是连接片40的横截面除曲线41、42之外的曲线中点与相交的端点的连线长度。
如图16所示,连接片40可以为双圆弧叶片401,其横截面具有沿环形盘片10旋转的方向依次设置的双圆弧:内弧41和背弧42,且内弧41和背弧42均朝环形盘片10旋转的方向凸起,具有相同的圆心且平行设置。图16实际上示出的是俯视层流风扇100时的横截面示意图,层流电机20驱动环形盘片10顺时针旋转,背弧42和内弧41凸起的方向与环形盘片10旋转的方向一致。在其他一些实施例中,层流电机20还可以驱动环形盘片10逆时针旋转,此时的背弧42和内弧41的凸起方向可以与图16中示出的相反。
图17是图16中连接片40的弦线51长度与风量和风压的关系示意图。由于图16中层流风扇100的连接片40为双圆弧叶片401,内弧41两端点之间的距离和背弧42两端点之间的距离相同,弦线51长度可以是内弧41或背弧42两端点之间的距离。图17中横坐标轴Bladechord指的是层流风扇100的连接片40的弦线51长度,左纵坐标轴Mass flow rate指的是风量,右纵坐标轴Pressure rise指的是风压。具体地,图17示出的是在层流风扇100的环形盘片10外径、内径、层数、间距、厚度、连接片40的安装角度、层流电机20的转速均保持不变时,弦线51长度与风量和风压的关系示意图。本实施例的连接片40的安装角度可以是:在连接片40和环形盘片10的同一横截面上,内弧41两端点之间的弦线51与经过弦线51中点的环形盘片10的外径52形成的夹角。
在上述提及的各参数均保持不变时,例如在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10内径为115㎜,环形盘片10的层数为8层,环形盘片10的间距为13.75㎜,环形盘片10的厚度为2㎜,连接片40的安装角度为25.5°,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),可以发现增加弦线51长度之后,风量和风压均有大幅度的提高,且基本呈线性。考虑到壁挂式空调器室内机300的内在空间有限,对层流风扇100的整体占用体积需要有一定约束。在环形盘片10的外径和内径一定的情况下,虽然弦线51越长,层流风扇100的风量和风压越大,但是也要对弦线51长度进行一定的约束,避免连接片10过度贯穿环形盘片10,导致层流风扇100稳定度下降。总而言之,可以将弦线51长度设置为可达到的最大范围,使得层流风扇100的风量和风压能够满足用户的使用需求。
因此,在上述优选的实施例中,在保证层流风扇100的稳定度的前提下,将弦线51长度设置为可达到的最大范围为:40㎜至42㎜。并且,在将弦线51长度设置为42㎜时,层流风扇100的风量可以达到1741m3/h,风压可以达到118.9Pa,完全可以满足用户的使用需求。此时环形盘片10外径与内径之差为60㎜,弦线51长度设置为42㎜可以使得内弧41和背弧42的两端与环形盘片10的内圆周和外圆周分别有9㎜左右的距离,在保证层流风扇100的稳定度的前提下,将弦线51长度设置为可达到的最大范围,使得层流风扇100的风量和风压能够满足用户的使用需求。
图18是图16中连接片40的安装角度α与风量和风压的关系示意图。由于图16中层流风扇100的连接片40可以为双圆弧叶片401,连接片40的安装角度α实际上指的是:在双圆弧叶片401和环形盘片10的同一横截面上,内弧41两端点之间的弦线51与经过弦线51中点的环形盘片10的外径52形成的夹角。图18中横坐标轴Metal angle(α)指的是层流风扇100的双圆弧叶片401的安装角度,即在双圆弧叶片401和环形盘片10的同一横截面上,内弧41两端点之间的弦线51与经过弦线51中点的环形盘片10的外径52形成的夹角。左纵坐标轴Mass flow rate指的是风量,右纵坐标轴Pressure rise指的是风压。具体地,图18示出的是在层流风扇100的环形盘片10外径、内径、层数、间距、厚度、双圆弧叶片401的弦长、层流电机20的转速均保持不变时,安装角度α与风量和风压的关系示意图。本实施例的双圆弧叶片401的弦长可以是内弧41或背弧42的两端点之间的直线距离。
在上述提及的各参数均保持不变时,例如在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10内径为115㎜,环形盘片10的层数为8层,环形盘片10的间距为13.75㎜,环形盘片10的厚度为2㎜,双圆弧叶片401的弦长为35㎜,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),此时综合风量和风压考虑,双圆弧叶片401的安装角度α可以设置为-5°至55°。需要说明的是,在沿环形盘片10旋转的方向上依次为内弧41两端点之间的弦线51、经过弦线51中点的环形盘片10的外径52时,安装角度α为正数;在沿环形盘片10旋转的方向上依次为经过弦线51中点的环形盘片10的外径52、内弧41两端点之间的弦线51时,安装角度α为负数。
图19是具有航空叶片402的层流风扇100的横截面示意图,图20是图19中层流风扇100的航空叶片402的安装角度α与风量和风压的关系示意图。在一种具体的实施例中,连接片40还可以是航空叶片402。航空叶片402的横截面具有朝环形盘片10旋转的方向凸起的双圆弧,且双圆弧包括沿环形盘片10旋转的方向依次设置的内弧41和背弧42,内弧41和背弧42具有不同的圆心且两端均相交。图19实际上示出的是俯视层流风扇100时的横截面示意图,层流电机20驱动环形盘片10顺时针旋转,背弧42和内弧41凸起的方向与环形盘片10旋转的方向一致。在其他一些实施例中,层流电机20还可以驱动环形盘片10逆时针旋转,此时的背弧42和内弧41的凸起方向可以与图19中示出的相反。
图20中的航空叶片402的安装角度α实际上指的是:在航空叶片402和环形盘片10的同一横截面上,内弧41或背弧42两端点之间的弦线51与经过弦线51中点的环形盘片10的外径52形成的夹角。图20中横坐标轴Metal angle(α)指的是层流风扇100的航空叶片402的安装角度,即在航空叶片402和环形盘片10的同一横截面上,内弧41或背弧42两端点之间的弦线51与经过弦线51中点的环形盘片10的外径52形成的夹角。左纵坐标轴Mass flow rate指的是风量,右纵坐标轴Pressure rise指的是风压。具体地,图20示出的是在层流风扇100的环形盘片10外径、内径、层数、间距、厚度、航空叶片402的弦长、层流电机20的转速均保持不变时,安装角度α与风量和风压的关系示意图。本实施例的航空叶片402的弦长可以是内弧41或背弧42的两端点之间的直线距离,即弦线51的长度。
在上述提及的各参数均保持不变时,例如在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10内径为115㎜,环形盘片10的层数为8层,环形盘片10的间距为13.75㎜,环形盘片10的厚度为2㎜,航空叶片402的弦长为35㎜,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),此时综合风量和风压考虑,航空叶片402的安装角度α可以设置为-50°至15°。
图21是多个环形盘片10间距渐变的层流风扇100与层流电机20的连接示意图,图22是图21中层流风扇100与层流电机20的另一视角的连接示意图,
图23是图21中层流风扇100的多个环形盘片10间距渐变与风量和风压的关系示意图。
如图21和图22所示,层流风扇100的连接件还可以为连接杆60。连接杆60也可以设置为多个,且均匀间隔地贯穿驱动圆盘30和多个环形盘片10,以保证驱动圆盘30和多个环形盘片10的连接关系稳固,进而保证在层流电机20驱使驱动圆盘30旋转时,驱动圆盘30可以稳定地带动多个环形盘片10旋转,提高层流风扇100的工作可靠性。随着相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐增大,会有效提升层流风扇100的风量,使得层流风扇100的出风满足用户的使用需求。在一种优选的实施例中,相邻两个环形盘片10之间的间距变化量相同,也就是说,相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧增大的数值相同。
图23中横坐标轴shrinking uniform expanding Plate distance increase指的是沿着由远离驱动圆盘30的一侧至另一侧的方向相邻两个环形盘片10之间的间距的变化量,左纵坐标轴Mass flow rate指的是风量,右纵坐标轴Pressure rise指的是风压。并且,相邻两个环形盘片10之间的间距变化量相同,也就是说,相邻两个环形盘片10之间的间距增大或缩小的数值相同。
具体地,图23示出的是在层流风扇100的环形盘片10外径、内径、数量、厚度、层流电机20的转速均保持不变时,多个环形盘片10间距渐变与风量和风压的关系示意图。如图23所示,在上述提及的各参数均保持不变时,多个环形盘片10中每两个相邻的环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐变化对风量影响较大,对风压影响很小。当横坐标轴表示的沿着由远离驱动圆盘30的一侧至另一侧的方向相邻两个环形盘片10之间的间距的变化量为正数时,说明多个环形盘片10中每两个相邻的环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐增大;当横坐标轴表示的沿着由远离驱动圆盘30的一侧至另一侧的方向相邻两个环形盘片10之间的间距的变化量为负数时,说明多个环形盘片10中每两个相邻的环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐缩小。
由图23可知,多个环形盘片10中每两个相邻的环形盘片10之间的间距变化量为-1㎜、1㎜和2㎜时,层流风扇100的风量和风压均有很大的改善。综合考虑层流风扇100的风量和风压,将多个环形盘片10中每两个相邻的环形盘片10之间的间距设置为由远离驱动圆盘30的一侧至另一侧逐渐增大。在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10内径为115㎜,环形盘片10的数量为8个,环形盘片10的厚度为2㎜,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),此时综合层流风扇100的风量与风压的全面考虑,可以设置8个环形盘片10中相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧可以依次设置为:13.75㎜、14.75㎜、15.75㎜、16.75㎜、17.75㎜、18.75㎜、19.75㎜,即相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧依次增大1㎜。需要说明的是,多个环形盘片10中相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐增大,实际上是指沿着气流在进风通道11中流动的方向,相邻两个环形盘片10之间的间距逐渐增大。
图24是多个环形盘片10内径渐变的层流风扇100的局部剖视图,图25是图24中层流风扇100的多个环形盘片10内径渐变与风量和风压的关系示意图。随着多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小,会有效提升层流风扇100的风量,使得层流风扇100的出风满足用户的使用需求。在一种优选的实施例中,相邻两个环形盘片10的内径变化量相同,也就是说,多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧缩小的数值相同。
图25中横坐标轴shrinking uniform expanding Inner radius increase指的是每一个环形盘片10的内径与下方相邻的环形盘片10的内径的变化量,左纵坐标轴Massflow rate指的是风量,右纵坐标轴Pressure rise指的是风压。具体地,图25示出的是在层流风扇100的环形盘片10外径、间距、数量、厚度、层流电机20的转速均保持不变时,多个环形盘片10内径渐变与风量和风压的关系示意图。如图25所示,在上述提及的各参数均保持不变时,多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐变化对风量影响较大,对风压影响很小。当横坐标轴表示的每一个环形盘片10的内径与下方相邻的环形盘片10的内径的变化量为正数时,说明多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐增加;当横坐标轴表示的每一个环形盘片10的内径与下方相邻的环形盘片10的内径的变化量为负数时,说明多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小。
由图25可知,多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小时,层流风扇100的风量有所增加,风压稍有减小;多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐增加时,层流风扇100的风压稍有增加,风量减小很多。因而综合考虑层流风扇100的风量和风压,将多个环形盘片10的内径设置为由远离驱动圆盘30的一侧至另一侧逐渐缩小。
在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10的间距为13.75㎜,环形盘片10的数量为8个,环形盘片10的厚度为2㎜,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),此时综合层流风扇100的风量与风压的全面考虑,可以设置每一个环形盘片10的内径与下方相邻的环形盘片10的内径的变化量为-5mm。即8个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧可以依次设置为:115㎜、110㎜、105㎜、100㎜、95㎜、90㎜、85㎜、80㎜,每一个环形盘片10的内径都比下方相邻的环形盘片10的内径缩小5㎜。需要说明的是,上文中环形盘片10的间距具体指的是相邻两个环形盘片10之间的间距。而且需要强调的是,多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小,实际上是指沿着气流在进风通道11中流动的方向,多个环形盘片10的内径逐渐缩小。
图26是环形盘片10为弧形盘片的层流风扇100的多个环形盘片10在经过中心轴线的同一纵截面上的内外径连线的圆心角示意图,图27是图26中的圆心角与风量和风压的关系示意图。图26中的层流风扇100的每个环形盘片10均为由中心至边缘逐渐靠近驱动圆盘30且向驱动圆盘30一侧凸起的弧形盘片。弧形盘片相较平面盘片可以使得外部空气进入层流风扇100的角度更加符合流体流动,从而更利于外部的空气进入层流风扇100,有效减少风量损失。此外,多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小,且多个环形盘片10在经过中心轴线的同一纵截面上的内外径连线形成有圆心角θ。
图27中横坐标轴θ指的是多个环形盘片10在经过中心轴线的同一纵截面上的内外径连线的圆心角,左纵坐标轴Mass flow rate指的是风量,右纵坐标轴Pressure rise指的是风压。具体地,图27示出的是在层流风扇100的环形盘片10外径、层数、间距、厚度、层流电机20的转速均保持不变时,圆心角θ与风量和风压的关系示意图。如图27所示,在上述提及的各参数均保持不变时,随着圆心角θ逐渐增大,层流风扇100的风量先增大后减小,而风压有少许上升。在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10的层数为10层,环形盘片10的间距为13.75㎜,环形盘片10的厚度为2㎜,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),此时综合风量和风压考虑,多个环形盘片10在经过中心轴线的同一纵截面上的内外径连线的圆心角θ可以设置为9°至30°。并且如图27所示,在圆心角θ设置为15°时,层流风扇100的风量达到最大值。
本实施例的壁挂式空调器室内机300,包括:壳体310,其内部限定有空腔,壳体310包括前面板311和后壳312,后壳312开设有进风口330,前面板311限定有两个出风口320;蒸发器,设置于对应进风口330的空腔内部,配置成对通过进风口330进入空腔内的空气进行换热,其中蒸发器385具有周壁386和底壁387,底壁387与前面板311平行且周壁386位于靠近前面板311的一侧;以及两个层流风机110,设置于蒸发器385的前侧,配置成利用粘性效应使经过蒸发器385换热的空气形成层流风,并使层流风从出风口320吹出。壁挂式空调器室内机300设置有两个层流风机110,通过粘性效应实现层流送风,送风过程噪音小、风量高,有效提升用户的使用体验。两个层流风机110可以分别独立控制送风,互相没有影响,可以根据用户的实际需求进行调节。罩扣式的蒸发器385具有周壁386和底壁387,极大地增加了换热面积,有效提升壁挂式空调器室内机300的整体工作效率。
进一步地,本实施例的壁挂式空调器室内机300,层流风机110包括层流风扇100和层流电机20,层流风扇100设置于对应出风口320的空腔内部,层流电机20固定于固定架350和固定板340之间,层流电机20与层流风扇100的驱动圆盘30固定,可以有效增强层流风扇100和层流电机20的连接牢固度,提升整体工作可靠性。壳体310还包括:顶板313和底板314,且后壳312包括后面板315和两个侧面板316。进风口330设置于顶板313、底板314、后壳312的后面板315和两个侧面板316,以实现五面进风。罩扣式的蒸发器385与进风口330匹配设置,使得通过进风口330进入空腔内的空气均能够通过蒸发器385换热。换热器面积增大,进风相对均匀;同样的制冷制热量,由于换热面积大,换热量大,送风风量可减小,从而可降低层流电机20的转速,进一步降低噪音。蒸发器385可以上下设置有两个,且壁挂式空调器室内机300还包括:隔板383,设置于两个蒸发器385之间,配置成阻止两个蒸发器385互相影响,每个蒸发器385和对应的层流风机110可以实现独立控制。
更进一步地,本实施例的壁挂式空调器室内机300,层流风扇100的多个环形盘片10可以按照以下结构中的一种或几种设置:多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小;多个环形盘片10中相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐增大;每个环形盘片10均为由中心至边缘逐渐靠近驱动圆盘30且向驱动圆盘30一侧凸起的弧形盘片。上述设置多个环形盘片10的形式均可以有效提升层流风扇100的风量,使得层流风扇100的出风满足用户的使用需求。此外,连接件可以为连接片40,连接片40的横截面具有沿环形盘片10旋转的方向依次设置的两段曲线,两段曲线的弦线长度与层流风扇100产生的风量为线性关系。连接片40的设置,可以有效提升层流风扇100的风压,使得在层流风通过多个环形盘片10之间的间隙吹出后,由于受到压差作用,层流风扇100外部的空气通过进风通道11被压入环形盘片10,如此循环往复,从而形成层流空气循环。而壁挂式空调器室内机300的层流风扇100的周向与容纳层流风扇100的蜗壳520前部的内壁形成有空隙710,以使层流风通过空隙710流向出风口320,使得壁挂式空调器室内机300的出风均匀柔和,满足用户的舒适性需求。
本领域技术人员应理解,在没有特别说明的情况下,本发明实施例中所称的“上”、“下”、“左”、“右”、“前”、“后”等用于表示方位或位置关系的用语是以壁挂式空调器室内机300的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或部件必须具有特定的方位,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (11)

1.一种壁挂式空调器室内机,包括:
壳体,其内部限定有空腔,所述壳体包括前面板和后壳,所述后壳开设有进风口,所述前面板限定有两个出风口;
蒸发器,设置于对应所述进风口的空腔内部,配置成对通过所述进风口进入所述空腔内的空气进行换热,其中所述蒸发器具有周壁和底壁,所述底壁与所述前面板平行且所述周壁位于靠近所述前面板的一侧;以及
两个层流风机,设置于所述蒸发器的前侧,配置成利用粘性效应使经过所述蒸发器换热的空气形成层流风,并使所述层流风从所述出风口吹出,
每个所述层流风机均包括层流风扇和层流电机,所述层流风扇包括:多个环形盘片,彼此间隔地平行设置且具有相同的中心轴线;驱动圆盘,间隔地平行设置于所述多个环形盘片的一侧;以及连接件,贯穿所述驱动圆盘和所述多个环形盘片,以将所述多个环形盘片连接至所述驱动圆盘,
所述连接件为连接片,所述连接片的横截面具有沿所述环形盘片旋转的方向依次设置的两段曲线,所述两段曲线的弦线长度与所述层流风扇产生的风量为线性关系。
2.根据权利要求1所述的壁挂式空调器室内机,其中,
所述壳体还包括顶板和底板,
所述后壳包括:后面板和两个侧面板,且
所述进风口设置于所述顶板、所述底板、所述后面板和两个所述侧面板,以实现五面进风。
3.根据权利要求1所述的壁挂式空调器室内机,其中,
所述蒸发器上下设置有两个,且
所述壁挂式空调器室内机还包括:隔板,设置于两个所述蒸发器之间,配置成阻止两个所述蒸发器互相影响。
4.根据权利要求1所述的壁挂式空调器室内机,其中,
两个所述层流风扇分别设置于对应两个所述出风口的所述空腔内部,多个所述环形盘片的中心共同形成有进风通道,所述空腔内的空气通过所述进风通道进入所述多个环形盘片之间的间隙;以及
两个层流电机,分别与两个所述层流风扇连接,且所述层流电机配置成驱动所述多个环形盘片旋转,以使靠近所述多个环形盘片表面的空气边界层由内向外旋转移动,从而形成层流风由所述出风口吹出。
5.根据权利要求4所述的壁挂式空调器室内机,还包括:
两个蜗壳,其内部分别容纳有所述层流风扇,且
所述蜗壳后部具有与所述进风通道对应设置的入口,以使所述空腔内的空气通过所述入口进入所述进风通道;
所述层流风扇的周向与所述蜗壳前部的内壁形成有空隙,以使所述层流风通过所述空隙流向所述出风口。
6.根据权利要求4所述的壁挂式空调器室内机,还包括:
两个固定板和两个固定架,
其中,所述固定板一侧设置有多条加强筋,另一侧设置有多个卡槽;
所述固定架朝向所述固定板的一侧设置有与所述多个卡槽对应的多个卡爪,以在所述多个卡爪分别螺接于所述多个卡槽之后将所述层流电机固定于所述固定架和所述固定板之间。
7.根据权利要求6所述的壁挂式空调器室内机,还包括:
两个遮挡件,分别罩设于两个所述固定板的前侧,且
所述前面板具有空缺,所述遮挡件与所述前面板共同限定出所述出风口。
8.根据权利要求4所述的壁挂式空调器室内机,其中,
所述层流电机还配置成:直接驱动所述驱动圆盘旋转,进而由所述驱动圆盘带动所述多个环形盘片旋转。
9.根据权利要求8所述的壁挂式空调器室内机,其中,
所述驱动圆盘的中心朝向所述多个环形盘片形成有凹槽,所述层流电机固定设置于所述凹槽中;或者
所述驱动圆盘朝向所述层流电机的表面为平面,朝向所述多个环形盘片的表面具有圆锥状的凸起部,以引导进入所述层流风扇的空气流动并协助形成所述层流风。
10.根据权利要求8所述的壁挂式空调器室内机,其中,
所述连接片的横截面具有沿所述环形盘片旋转的方向依次设置的双圆弧:内弧和背弧,且所述内弧和所述背弧均朝所述环形盘片旋转的方向凸起,所述内弧和所述背弧具有相同的圆心且平行设置或具有不同的圆心且两端均相交。
11.根据权利要求8所述的壁挂式空调器室内机,其中,所述多个环形盘片按照以下结构中的一种或几种设置:
所述多个环形盘片的内径由远离所述驱动圆盘的一侧至另一侧逐渐缩小;
所述多个环形盘片中相邻两个所述环形盘片之间的间距由远离所述驱动圆盘的一侧至另一侧逐渐增大;
每个所述环形盘片均为由中心至边缘逐渐靠近所述驱动圆盘且向所述驱动圆盘一侧凸起的弧形盘片。
CN201910045797.XA 2019-01-17 2019-01-17 壁挂式空调器室内机 Active CN111442391B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910045797.XA CN111442391B (zh) 2019-01-17 2019-01-17 壁挂式空调器室内机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910045797.XA CN111442391B (zh) 2019-01-17 2019-01-17 壁挂式空调器室内机

Publications (2)

Publication Number Publication Date
CN111442391A CN111442391A (zh) 2020-07-24
CN111442391B true CN111442391B (zh) 2021-07-23

Family

ID=71648809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910045797.XA Active CN111442391B (zh) 2019-01-17 2019-01-17 壁挂式空调器室内机

Country Status (1)

Country Link
CN (1) CN111442391B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539465A (zh) * 2020-09-28 2021-03-23 Tcl空调器(中山)有限公司 空调室内机和空调器
CN112594788A (zh) * 2020-11-17 2021-04-02 珠海格力电器股份有限公司 一种厨房空调结构及厨房空调器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302045A (ja) * 1988-05-30 1989-12-06 Daikin Ind Ltd 空気調和機
US10352325B2 (en) * 2012-10-29 2019-07-16 Exhale Fans LLC Laminar flow radial ceiling fan
CN105588190B (zh) * 2015-03-11 2019-04-30 海信(广东)空调有限公司 一种挂壁式空调室内机及空调器
CN205641191U (zh) * 2016-04-06 2016-10-12 广东美的制冷设备有限公司 竖款挂壁式空调器室内机和具有其的空调器
CN106855267A (zh) * 2017-01-22 2017-06-16 青岛海尔空调器有限总公司 立式空调室内机
CN108344040A (zh) * 2017-01-22 2018-07-31 青岛海尔空调器有限总公司 空调室内机
CN108758827A (zh) * 2018-07-27 2018-11-06 青岛海尔空调器有限总公司 壁挂式空调室内机

Also Published As

Publication number Publication date
CN111442391A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
CN111442391B (zh) 壁挂式空调器室内机
CN111442394B (zh) 立式空调器室内机
CN111442401B (zh) 立式空调器室内机
CN111442397B (zh) 立式空调器室内机
CN111442400B (zh) 立式空调器室内机
CN111520820B (zh) 壁挂式空调器室内机
CN209877122U (zh) 立式空调器室内机
CN111442386B (zh) 壁挂式空调器室内机
CN111442389B (zh) 壁挂式空调器室内机
CN111442390B (zh) 壁挂式空调器室内机
CN209877150U (zh) 壁挂式空调器室内机
CN111442358B (zh) 壁挂式空调器室内机
CN111442351B (zh) 壁挂式空调器室内机
CN209877121U (zh) 壁挂式空调器室内机
CN111442388B (zh) 壁挂式空调器室内机
CN111442387B (zh) 壁挂式空调器室内机
CN111442403B (zh) 立式空调器室内机
CN111442402B (zh) 立式空调器室内机
CN111442399B (zh) 立式空调器室内机
CN111442405B (zh) 立式空调器室内机
CN111442407B (zh) 立式空调器室内机
CN111442395B (zh) 立式空调器室内机
CN111442404B (zh) 立式空调器室内机
CN111442398B (zh) 立式空调器室内机
CN209840265U (zh) 壁挂式空调器室内机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210622

Address after: No.1 Gangcheng South Road, Jiangbei District, Chongqing, 400026

Applicant after: CHONGQING HAIER AIR-CONDITIONER Co.,Ltd.

Applicant after: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd.

Applicant after: Haier Zhijia Co.,Ltd.

Address before: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao

Applicant before: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd.

GR01 Patent grant
GR01 Patent grant