CN111442394B - 立式空调器室内机 - Google Patents
立式空调器室内机 Download PDFInfo
- Publication number
- CN111442394B CN111442394B CN201910045345.1A CN201910045345A CN111442394B CN 111442394 B CN111442394 B CN 111442394B CN 201910045345 A CN201910045345 A CN 201910045345A CN 111442394 B CN111442394 B CN 111442394B
- Authority
- CN
- China
- Prior art keywords
- air
- laminar flow
- flow fan
- annular
- indoor unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000694 effects Effects 0.000 claims abstract description 13
- 238000005192 partition Methods 0.000 claims description 10
- 230000003014 reinforcing effect Effects 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 27
- 239000011295 pitch Substances 0.000 description 17
- 238000009434 installation Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 9
- 238000007664 blowing Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000000418 atomic force spectrum Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0018—Indoor units, e.g. fan coil units characterised by fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/20—Casings or covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/24—Means for preventing or suppressing noise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/24—Means for preventing or suppressing noise
- F24F2013/247—Active noise-suppression
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
本发明提供了一种立式空调器室内机。立式空调器室内机包括:壳体,其内部限定有空腔,且壳体上部开设有出风口,中下部设置有进风口,壳体包括前面板、后壳、顶板和底板;蒸发器,设置于对应进风口的空腔内部,配置成对通过进风口进入空腔内的空气进行换热,蒸发器设置有两个且均为平板状,两个蒸发器在空腔内由上至下逐渐远离壳体;层流风机,设置于蒸发器上方,配置成利用粘性效应使经过蒸发器换热的空气形成层流风,并使层流风从出风口吹出。本发明的立式空调器室内机设置有层流风机,通过粘性效应实现层流送风,送风过程噪音小、风量高;两个蒸发器与进风口匹配设置,在提升进风量的同时保证进入空腔内部的空气有效换热。
Description
技术领域
本发明涉及家用电器技术领域,特别是涉及一种立式空调器室内机。
背景技术
随着社会发展以及人们的生活水平不断提高,各种空气调节装置已经成为人们日常生活中不可或缺的电气设备之一。各种空气调节装置可以在环境温度过高或过低时,帮助人们达到一个能够适应的温度。
目前的空调调节装置主要包括各种类型的空调器以及风扇,但是大部分用户认为目前的空调器产生的热气或者冷气在房间或密闭的空间内不均匀分布,具有一定的分布局限性。此外,空调器的室内机使用的风扇主要是离心风扇和贯流风扇。但是离心风扇和贯流风扇存在以下问题:由于离心风扇需要由几十个大体积叶片来提高风压和风量,导致离心风扇噪音很大,并且将离心风扇用于立式空调器室内机时,空气从进入离心风扇到送出空调器需进行两个90°的方向转折,每次方向转折都会有风量损失;贯流风扇虽然噪音较低,但是风压太小,送风距离短。并且贯流风扇整体体积大,而实际的有效体积小,造成空间浪费。
发明内容
本发明的一个目的是提供噪音小、风量高、风压大的立式空调器室内机。
本发明一个进一步的目的是使立式空调器室内机实现360°送风,避免出风直吹用户,提升用户的使用体验。
特别地,本发明提供了一种立式空调器室内机,包括:壳体,其内部限定有空腔,且壳体上部开设有出风口,中下部设置有进风口,壳体包括前面板、后壳、顶板和底板;蒸发器,设置于对应进风口的空腔内部,配置成对通过进风口进入空腔内的空气进行换热,其中蒸发器设置有两个且均为平板状,两个蒸发器在空腔内由上至下逐渐远离壳体;以及层流风机,设置于蒸发器上方,配置成利用粘性效应使经过蒸发器换热的空气形成层流风,并使层流风从出风口吹出。
可选地,后壳包括:后面板和两个侧面板,且进风口设置于两个侧面板,以实现两面进风。
可选地,立式空调器室内机还包括:两个隔板,分别设置于两个蒸发器的前方和后方,以阻止通过蒸发器换热的空气流向空腔的前部和后部。
可选地,层流风机包括层流风扇和层流电机,其中层流风扇设置于对应出风口的空腔内部,其包括:多个环形盘片,彼此间隔地平行设置且具有相同的中心轴线,多个环形盘片的中心共同形成有进风通道,空腔内的空气通过进风通道进入多个环形盘片之间的间隙;层流电机配置成驱动多个环形盘片旋转,以使靠近多个环形盘片表面的空气边界层由内向外旋转移动,从而形成层流风由出风口吹出。
可选地,层流风扇还包括:驱动圆盘,间隔地平行设置于多个环形盘片的一侧;以及连接件,贯穿驱动圆盘和多个环形盘片,以将多个环形盘片连接至驱动圆盘,层流电机还配置成:直接驱动驱动圆盘旋转,进而由驱动圆盘带动多个环形盘片旋转。
可选地,立式空调器室内机还包括:固定板,其一侧设置有多条加强筋,另一侧设置有多个卡槽;以及固定架,朝向固定板的一侧设置有与多个卡槽对应的多个卡爪,以在多个卡爪分别螺接于多个卡槽之后将层流电机固定于固定架和固定板之间,其中固定架中心开设有穿孔,层流电机的输出轴穿过穿孔后与驱动圆盘固定。
可选地,立式空调器室内机还包括:引风圈,设置于蒸发器和层流风扇之间,配置成引导通过蒸发器换热的空气进入层流风扇的进风通道。
可选地,壳体在其上部环绕层流风扇一周设置出风口;或者立式空调器室内机还包括:挡风件,设置于层流风扇的外部且具有缺口,壳体在其上部对应于缺口的位置设置出风口。
可选地,驱动圆盘的中心朝向多个环形盘片形成有凹槽,层流电机固定设置于凹槽中;或者驱动圆盘朝向层流电机的表面为平面,朝向多个环形盘片的表面具有圆锥状的凸起部,以引导进入层流风扇的空气流动并协助形成层流风。
可选地,连接件为连接片,连接片的横截面具有沿环形盘片旋转的方向依次设置的两段曲线,两段曲线的弦线长度与层流风扇产生的风量为线性关系。
可选地,连接片的横截面具有沿环形盘片旋转的方向依次设置的双圆弧:内弧和背弧,且内弧和背弧均朝环形盘片旋转的方向凸起,内弧和背弧具有相同的圆心且平行设置或具有不同的圆心且两端均相交。
可选地,多个环形盘片按照以下结构中的一种或几种设置:多个环形盘片的内径由远离驱动圆盘的一侧至另一侧逐渐缩小;多个环形盘片中相邻两个环形盘片之间的间距由远离驱动圆盘的一侧至另一侧逐渐增大;每个环形盘片均为由中心至边缘逐渐靠近驱动圆盘且向驱动圆盘一侧凸起的弧形盘片。
本发明的立式空调器室内机,包括:壳体,其内部限定有空腔,且壳体上部开设有出风口,中下部设置有进风口,壳体包括前面板、后壳、顶板和底板;蒸发器,设置于对应进风口的空腔内部,配置成对通过进风口进入空腔内的空气进行换热,其中蒸发器设置有两个且均为平板状,两个蒸发器在空腔内由上至下逐渐远离壳体;以及层流风机,设置于蒸发器上方,配置成利用粘性效应使经过蒸发器换热的空气形成层流风,并使层流风从出风口吹出。立式空调器室内机设置有层流风机,通过粘性效应实现层流送风,送风过程噪音小、风量高,有效提升用户的使用体验。
进一步地,本发明的立式空调器室内机,后壳包括:后面板和两个侧面板,且进风口设置于两个侧面板,以实现两面进风,有效提升进风量。立式空调器室内机还可以包括:两个隔板,分别设置于两个蒸发器的前方和后方,以阻止通过蒸发器换热的空气流向空腔的前部和后部。两个蒸发器与两个进风口匹配设置,使得通过进风口进入空腔内的空气均能够通过蒸发器换热。层流风机包括层流风扇和层流电机,层流风扇设置于对应出风口的空腔内部,可以实现上部出风。层流电机固定于固定架和固定板之间,其中固定架中心开设有穿孔,层流电机的输出轴穿过穿孔后与层流风扇的驱动圆盘固定,可以有效增强层流风扇和层流电机的连接牢固度,提升整体工作可靠性。
更进一步地,本发明的立式空调器室内机,层流风扇的多个环形盘片可以按照以下结构中的一种或几种设置:多个环形盘片的内径由远离驱动圆盘的一侧至另一侧逐渐缩小;多个环形盘片中相邻两个环形盘片之间的间距由远离驱动圆盘的一侧至另一侧逐渐增大;每个环形盘片均为由中心至边缘逐渐靠近驱动圆盘且向驱动圆盘一侧凸起的弧形盘片。上述设置多个环形盘片的形式均可以有效提升层流风扇的风量,使得层流风扇的出风满足用户的使用需求。此外,连接件可以为连接片,连接片的横截面具有沿环形盘片旋转的方向依次设置的两段曲线,两段曲线的弦线长度与层流风扇产生的风量为线性关系。连接片的设置,可以有效提升层流风扇的风压,使得在层流风通过多个环形盘片之间的间隙吹出后,由于受到压差作用,层流风扇外部的空气通过进风通道被压入环形盘片,如此循环往复,从而形成层流空气循环。多个环形盘片彼此之间的间隙形成的多个排风口可以使得层流风扇实现360°送风,避免用户因空调器直吹送风而产生的多种不适症状,进一步提升用户的使用体验。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是现有技术中立式空调器室内机采用离心风扇的送风示意图;
图2是根据本发明实施例一的立式空调器室内机的整体结构示意图;
图3是图2中立式空调器室内机的局部结构示意图;
图4是图2中立式空调器室内机的部件爆炸示意图;
图5是根据本发明实施例二的立式空调器室内机的整体结构示意图;
图6是图5中立式空调器室内机的局部结构示意图;
图7是图5中立式空调器室内机的部件爆炸示意图;
图8是根据本发明一个实施例的立式空调器室内机中层流风扇的空气循环示意图;
图9是根据本发明一个实施例的立式空调器室内机中层流风扇的送风原理示意图;
图10是根据本发明一个实施例的立式空调器室内机中层流风扇的速度分布和受力分布图;
图11是驱动圆盘具有凹槽的层流风扇的结构示意图;
图12是图11中层流风扇的另一视角的结构示意图;
图13是图11中层流风扇的又一视角的结构示意图;
图14是图11中层流风扇的剖视图;
图15是图11中层流风扇与层流电机的连接示意图;
图16是层流电机、固定板与固定架的部件爆炸示意图;
图17是驱动圆盘具有圆锥状凸起部的层流风扇与层流电机的连接示意图;
图18是图17中层流风扇的另一视角的结构示意图;
图19是图17中层流风扇的横截面示意图;
图20是图19中连接片的弦线长度与风量和风压的关系示意图;
图21是图19中连接片的安装角度与风量和风压的关系示意图;
图22是具有航空叶片的层流风扇的横截面示意图;
图23是图22中层流风扇的航空叶片的安装角度与风量和风压的关系示意图;
图24是多个环形盘片间距渐变的层流风扇与层流电机的连接示意图;
图25是图24中层流风扇与层流电机的另一视角的连接示意图;
图26是图24中层流风扇的多个环形盘片间距渐变与风量和风压的关系示意图;
图27是多个环形盘片内径渐变的层流风扇的局部剖视图;
图28是图27中层流风扇的多个环形盘片内径渐变与风量和风压的关系示意图;
图29是环形盘片为弧形盘片的层流风扇的多个环形盘片在经过中心轴线的同一纵截面上的内外径连线的圆心角示意图;以及
图30是图29中的圆心角与风量和风压的关系示意图。
具体实施方式
图1是现有技术中立式空调器室内机采用离心风扇的送风示意图。图1中的两个箭头示出了离心风扇200在应用于立式空调器室内机时送风过程中空气流动的方向,现有技术中的离心风扇200在应用于立式空调器室内机时由进风到出风的整个过程需要进行两次90°的转折,每次转折都会伴随着较多的风量损失。此外,离心风扇200一般需要由几十个大体积叶片来提高风压和风量,在离心风扇200工作时,叶片旋转与空气产生摩擦或发生冲击。离心风扇200的叶片较宽,且厚度大,因此在离心风扇200的电机高速运转时会产生非常大的噪音。此外,现有技术中还常用贯流风扇,但是贯流风扇虽然噪音较低,但是风压太小,送风距离短;并且贯流风扇整体体积大,而实际的有效体积小,造成空间浪费。本实施例提供了一种立式空调器室内机,设置有层流风扇,通过粘性效应实现层流送风,送风过程噪音小、风量高、风压大,有效提升用户的使用体验。
图2是根据本发明实施例一的立式空调器室内机300的整体结构示意图,图3是图2中立式空调器室内机300的局部结构示意图,图4是图2中立式空调器室内机300的部件爆炸示意图。图5是根据本发明实施例二的立式空调器室内机300的整体结构示意图,图6是图5中立式空调器室内机300的局部结构示意图,图7是图5中立式空调器室内机300的部件爆炸示意图。图8是根据本发明一个实施例的立式空调器室内机300中层流风扇100的空气循环示意图,图9是根据本发明一个实施例的立式空调器室内机300中层流风扇100的送风原理示意图,图10是根据本发明一个实施例的立式空调器室内机300中层流风扇100的速度分布和受力分布图。图11是驱动圆盘30具有凹槽32的层流风扇100的结构示意图,图12是图11中层流风扇100的另一视角的结构示意图,图13是图11中层流风扇100的又一视角的结构示意图,图14是图11中层流风扇100的剖视图。如图2至图10所示,立式空调器室内机300一般性地可以包括:壳体310、蒸发器382和层流风机110。
其中,壳体310的内部限定有空腔,且壳体310上部开设有出风口320,中下部设置有进风口330。壳体310可以包括:前面板311、后壳312、顶板313和底板314。在一种具体的实施例中,后壳312包括后面板315和两个侧面板316。进风口330可以设置于两个侧面板316,以实现两面进风。壳体310的进风口330处可以设置为进风栅的形式,能够将室内空气通过不同方向吸入空腔内部并对空气进行过滤。壳体310的出风口320处可以设置有导风板321,以调节立式空调器室内机300的出风方向。
蒸发器382可以设置于对应进风口330的空腔内部,配置成对通过进风口330进入空腔内的空气进行换热。其中蒸发器382设置有两个且均为平板状,两个蒸发器382在空腔内由上至下逐渐远离壳体310。具体地,靠近左边侧面板316的蒸发器382由上至下逐渐远离左边侧面板316;靠近右边侧面板316的蒸发器382由上至下逐渐远离右边侧面板316,两个蒸发器382的整体纵截面大致呈V型。立式空调器室内机300还可以包括:两个隔板383,分别设置于两个蒸发器382的前方和后方,以阻止通过蒸发器382换热的空气流向空腔的前部和后部。本实施例的隔板383可以为平板状。蒸发器382的下方还可以设置有接水盘390,以承接蒸发器382产生的冷凝水。
层流风机110可以设置于两个蒸发器382上方,配置成利用粘性效应使经过蒸发器382换热的空气形成层流风,并使层流风从出风口320吹出。层流风机110可以包括层流风扇100和层流电机20。其中层流风扇100设置于对应出风口320的空腔内部,其包括:多个环形盘片10,彼此间隔地平行设置且具有相同的中心轴线,多个环形盘片10的中心共同形成有进风通道11,空腔内的空气通过进风通道11进入多个环形盘片10之间的间隙。层流电机20配置成驱动多个环形盘片旋转,以使靠近多个环形盘片表面的空气边界层13由内向外旋转移动,从而形成层流风由出风口320吹出。
具体地,层流电机20驱动多个环形盘片旋转,以使多个环形盘片与彼此之间的空气接触并相互运动,进而使靠近多个环形盘片表面的空气边界层13因粘性效应被旋转的多个环形盘片带动由内向外旋转移动形成层流风。多个环形盘片之间的间隙形成有多个排风口12,每个排风口12均能够实现360°送风,从排风口12排出的层流风通过出风口320吹出至立式空调器室内机300外部的环境中。层流风扇可以实现360°送风,但是出风口320可以根据实际情况进行设置,分别可以实现四面送风、三面送风、两面送风或单面送风。例如,壳体310可以在其上部环绕层流风扇100一周设置出风口320。或者,立式空调器室内机300还可以包括:挡风件371,设置于层流风扇100的外部且具有缺口373,壳体310在其上部对应于缺口373的位置设置出风口320。需要说明的是,缺口373位于层流风扇100的周部外侧,以使层流风扇100形成的层流风吹出。
立式空调器室内机300还可以包括引风圈360,设置于两个蒸发器382和层流风扇100之间,配置成引导通过蒸发器382换热的空气进入层流风扇100的进风通道11。具体地,通过进风口330进入空腔内的空气首先通过蒸发器换热,换热后的空气通过引风圈360引导进入层流风扇100的进风通道11。
如图8所示,层流风扇100还可以包括:驱动圆盘30和连接件。其中驱动圆盘30间隔地平行设置于多个环形盘片10的一侧。连接件,贯穿驱动圆盘30和多个环形盘片10,以将多个环形盘片10连接至驱动圆盘30。如图11所示,连接件可以是连接片40。层流电机20还可以配置成:直接驱使驱动圆盘30旋转,进而由驱动圆盘30带动多个环形盘片10旋转。也就是说,上文中提到的层流电机20配置成驱动多个环形盘片10旋转是依赖于层流电机20先带动驱动圆盘30旋转,再由驱动圆盘30带动多个环形盘片10旋转。在一种具体的实施例中,驱动圆盘30的半径和多个环形盘片10的外径相同,可以均设置在一定的范围,例如170㎜至180㎜,从而对层流风扇100横向的占用体积进行约束,配合限定环形盘片10的数量和相邻两个环形盘片10之间的间距,对层流风扇100纵向的厚度进行约束,可以有效约束层流风扇100的整体占用体积。需要说明的是,环形盘片10的内径指的是其内圆周的半径;外径指的是其外圆周的半径。上述环形盘片10外径的具体数值仅为例举,而并非对本发明的限定。
以下对两个立式空调器室内机300的具体实施例进行介绍:
实施例一:如图2至图4所示,本实施例的立式空调器室内机300的两个蒸发器382在空腔内由上至下逐渐远离壳体310,且两个蒸发器382的整体纵截面大致呈V型。进风口330设置于后壳312的两个侧面板316,即两面进风。也就是说,蒸发器382与进风口330对应设置,从进风口330进入空腔的空气均能够经过蒸发器382换热。两个蒸发器382的前方和后方还设置有隔板383,可以避免换热后的空气流向空腔的前部和后部,本实施例的隔板383为平板状。经过换热的空气通过引风圈360的引导作用进入层流风扇100的进风通道11,进而进入层流风扇100多个环形盘片之间。本实施例的立式空调器室内机300的壳体310在其上部环绕层流风扇100一周设置出风口320。具体地,本实施例的立式空调器室内机300的前面板311、后壳312的后面板315和两个侧面板316均设置有出风口320,层流风扇100形成的层流风从出风口320吹出,可以实现360°送风。
实施例二:如图5至图7所示,本实施例的立式空调器室内机300设置的两个蒸发器382在空腔内由上至下逐渐远离壳体310,且两个蒸发器382的整体纵截面大致呈V型。进风口330设置于后壳312的两个侧面板316,即两面进风。也就是说,蒸发器382与进风口330对应设置,从进风口330进入空腔的空气均能够经过蒸发器382换热。两个蒸发器382的前方和后方还设置有隔板383,可以避免换热后的空气流向空腔的前部和后部,本实施例的隔板383为平板状。经过换热的空气通过引风圈360的引导作用进入层流风扇100的进风通道11,进而进入层流风扇100多个环形盘片之间。本实施例的挡风件371可以为平板状,层流风扇100不被挡风件371遮挡的周部外侧为缺口373。对应于缺口373,本实施例的立式空调器室内机300的前面板311、后壳312的两个侧面板316设置有出风口320,层流风扇100形成的层流风从出风口320吹出,可以实现三面送风。
在其他一些实施例中,挡风件371还可以为壳状,包裹设置于层流风扇100的外部,仅在层流风扇100周部的前侧设置有缺口373,则立式空调器室内机300可以只在前面板311设置有出风口320,实现单面送风。但是不管挡风件371设置为什么形状,缺口373均与出风口320对应设置。例如挡风件371可以使层流风扇100形成的层流风三面排出,则出风口320对应设置有三个;挡风件371可以使层流风扇100形成的层流风单面排出,则出风口320对应设置有一个。挡风件371可以保证层流风扇100形成的层流风除了通过出风口320吹出外,不会吹向空腔内的其他地方,避免影响空腔内其他部件的正常工作。
如图8所示,多个环形盘片10的中心共同形成有进风通道11,以使层流风扇100外部的空气进入。多个环形盘片10彼此之间的间隙形成有多个排风口12,以供层流风吹出。空气边界层13由内向外旋转移动形成层流风的过程是离心运动,因而离开排风口12时的速度要大于进入进风通道11时的速度。层流风扇100的排风口12与进风通道11进口处的压力差为风压。多个环形盘片10彼此之间的间隙形成的多个排风口12可以使得层流风扇100实现360°均匀送风,避免用户因立式空调器室内机300直吹送风而产生的多种不适症状,进一步提升用户的使用体验。
层流风扇100的送风原理主要来源于尼古拉·特斯拉发现的“特斯拉涡轮机”。特斯拉涡轮机主要利用流体的“层流边界层效应”或者“粘性效应”实现对“涡轮盘片”做功的目的。本实施例的层流风扇100通过层流电机20驱使驱动圆盘30,驱动圆盘30带动多个环形盘片10高速旋转,各环形盘片10间隔内的空气接触并发生相互运动,则靠近各环形盘片10表面的空气边界层13因受粘性剪切力τ作用,被旋转的环形盘片10带动由内向外旋转移动形成层流风。
图10示出的就是空气边界层13受到的粘性剪切力分布τ(y)和速度分布u(y)的示意图。空气边界层13受到的粘性剪切力实际上是各环形盘片10对空气边界层13产生的阻力。图10中的横坐标轴指的是空气边界层13的的移动方向上的距离,纵坐标轴指的是空气边界层13在与移动方向垂直的方向上的高度。ve为空气边界层13内每一点的气流速度,δ为空气边界层13的厚度,τw为环形盘片10表面处的粘性剪切力。τ(y)和u(y)中的变量y指的是空气边界层13在与移动方向垂直的方向上截面的高度,L为环形盘片10内圆周的某一点与环形盘片10表面某一点之间的距离。则τ(y)是在该距离L处,空气边界层13截面的高度为y时受到的粘性剪切力分布;u(y)是在该距离L处,空气边界层13截面的高度为y时的速度分布。
图11至图14所示的层流风扇100的驱动圆盘30的中心朝向多个环形盘片10形成有凹槽32,层流电机20固定设置于凹槽32中。图15是图11中层流风扇100与层流电机20的连接示意图,图16是层流电机20、固定板340与固定架350的部件爆炸示意图。如图15和图16所示,立式空调器室内机300还可以包括:固定板340和固定架350。其中固定板340的一侧设置有多条加强筋341,另一侧设置有多个卡槽342。其中加强筋341可以有效提高固定板340的牢固程度。固定架350,朝向固定板340的一侧设置有与多个卡槽342对应的多个卡爪351,以在多个卡爪351分别螺接于多个卡槽342之后将层流电机20固定于固定架350和固定板340之间,其中固定架350中心开设有穿孔352,层流电机20的输出轴21穿过穿孔352后与驱动圆盘30固定。对于图11至图14所示的层流风扇100,由于驱动圆盘30的中心朝向多个环形盘片10形成有凹槽32,层流电机20的输出轴21在穿过穿孔352后固定设置于驱动圆盘30的凹槽32中。
图17是驱动圆盘30具有圆锥状凸起部31的层流风扇100与层流电机20的连接示意图,图18是图17中层流风扇100的另一视角的结构示意图,图19是图17中层流风扇100的横截面示意图。图17至图19中的层流风扇100的驱动圆盘30朝向层流电机20的表面为平面,朝向多个环形盘片10的表面具有圆锥状的凸起部31,以引导进入层流风扇100的空气流动并协助形成层流风。
驱动圆盘30的主要作用在于固定承接层流电机20,并与多个环形盘片10通过连接件实现连接,以在层流电机20驱使驱动圆盘30旋转时带动多个环形盘片10旋转。对于图17至图19所示的层流风扇,由于驱动圆盘30朝向层流电机20的表面为平面,层流电机20的输出轴21在穿过穿孔352后固定设置于驱动圆盘30的平面一侧。而图17至图19所示的层流风扇100的驱动圆盘30朝向多个环形盘片10的表面具有圆锥状的凸起部31,可以有效引导通过进风通道11进入层流风扇100的空气进入各环形盘片10之间的间隙,进而提高形成层流风的效率。
在一种优选的实施例中,连接件为连接片40,连接片40的横截面具有沿环形盘片10旋转的方向依次设置的两段曲线,两段曲线的弦线长度与层流风扇100产生的风量为线性关系。连接片40可以设置为多个,且均匀间隔地贯穿驱动圆盘30和多个环形盘片10。多个连接片40均匀间隔地贯穿驱动圆盘30和多个环形盘片10,可以保证驱动圆盘30和多个环形盘片10的连接关系稳固,进而保证在层流电机20驱使驱动圆盘30旋转时,驱动圆盘30可以稳定地带动多个环形盘片10旋转,提高层流风扇100的工作可靠性。
需要说明的是,两段曲线41、42可以是圆弧、非圆弧的弧线、直线等线条,直线可以作为一种特殊的曲线。在曲线41两端点之间的距离与曲线42两端点之间的距离相同时,弦线51长度可以是曲线41或曲线42两端点之间的距离。在曲线41两端点之间的距离与曲线42两端点之间的距离不同时,若曲线41和曲线42两端均不相交,则弦线51长度可以是连接片40的横截面除曲线41、42之外的曲线中点的连线长度;若曲线41和曲线42只有一端相交,则弦线51长度可以是连接片40的横截面除曲线41、42之外的曲线中点与相交的端点的连线长度。
如图19所示,连接片40可以为双圆弧叶片401,其横截面具有沿环形盘片10旋转的方向依次设置的双圆弧:内弧41和背弧42,且内弧41和背弧42均朝环形盘片10旋转的方向凸起,具有相同的圆心且平行设置。图19实际上示出的是俯视层流风扇100时的横截面示意图,层流电机20驱动环形盘片10顺时针旋转,背弧42和内弧41凸起的方向与环形盘片10旋转的方向一致。在其他一些实施例中,层流电机20还可以驱动环形盘片10逆时针旋转,此时的背弧42和内弧41的凸起方向可以与图19中示出的相反。
图20是图19中连接片40的弦线51长度与风量和风压的关系示意图。由于图19中层流风扇100的连接片40为双圆弧叶片401,内弧41两端点之间的距离和背弧42两端点之间的距离相同,弦线51长度可以是内弧41或背弧42两端点之间的距离。图20中横坐标轴Bladechord指的是层流风扇100的连接片40的弦线51长度,左纵坐标轴Mass flow rate指的是风量,右纵坐标轴Pressure rise指的是风压。具体地,图20示出的是在层流风扇100的环形盘片10外径、内径、层数、间距、厚度、连接片40的安装角度、层流电机20的转速均保持不变时,弦线51长度与风量和风压的关系示意图。本实施例的连接片40的安装角度可以是:在连接片40和环形盘片10的同一横截面上,内弧41两端点之间的弦线51与经过弦线51中点的环形盘片10的外径52形成的夹角。
在上述提及的各参数均保持不变时,例如在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10内径为115㎜,环形盘片10的层数为8层,环形盘片10的间距为13.75㎜,环形盘片10的厚度为2㎜,连接片40的安装角度为25.5°,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),可以发现增加弦线51长度之后,风量和风压均有大幅度的提高,且基本呈线性。考虑到立式空调器室内机300的内在空间有限,对层流风扇100的整体占用体积需要有一定约束。在环形盘片10的外径和内径一定的情况下,虽然弦线51越长,层流风扇100的风量和风压越大,但是也要对弦线51长度进行一定的约束,避免连接片10过度贯穿环形盘片10,导致层流风扇100稳定度下降。总而言之,可以将弦线51长度设置为可达到的最大范围,使得层流风扇100的风量和风压能够满足用户的使用需求。
因此,在上述优选的实施例中,在保证层流风扇100的稳定度的前提下,将弦线51长度设置为可达到的最大范围为:40㎜至42㎜。并且,在将弦线51长度设置为42㎜时,层流风扇100的风量可以达到1741m3/h,风压可以达到118.9Pa,完全可以满足用户的使用需求。此时环形盘片10外径与内径之差为60㎜,弦线51长度设置为42㎜可以使得内弧41和背弧42的两端与环形盘片10的内圆周和外圆周分别有9㎜左右的距离,在保证层流风扇100的稳定度的前提下,将弦线51长度设置为可达到的最大范围,使得层流风扇100的风量和风压能够满足用户的使用需求。
图21是图19中连接片40的安装角度与风量和风压的关系示意图。由于图19中层流风扇100的连接片40可以为双圆弧叶片401,连接片40的安装角度α实际上指的是:在双圆弧叶片401和环形盘片10的同一横截面上,内弧41两端点之间的弦线51与经过弦线51中点的环形盘片10的外径52形成的夹角。图21中横坐标轴Metal angle(α)指的是层流风扇100的双圆弧叶片401的安装角度,即在双圆弧叶片401和环形盘片10的同一横截面上,内弧41两端点之间的弦线51与经过弦线51中点的环形盘片10的外径52形成的夹角。左纵坐标轴Massflow rate指的是风量,右纵坐标轴Pressure rise指的是风压。具体地,图21示出的是在层流风扇100的环形盘片10外径、内径、层数、间距、厚度、双圆弧叶片401的弦长、层流电机20的转速均保持不变时,安装角度α与风量和风压的关系示意图。本实施例的双圆弧叶片401的弦长可以是内弧41或背弧42的两端点之间的直线距离。
在上述提及的各参数均保持不变时,例如在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10内径为115㎜,环形盘片10的层数为8层,环形盘片10的间距为13.75㎜,环形盘片10的厚度为2㎜,双圆弧叶片401的弦长为35㎜,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),此时综合风量和风压考虑,双圆弧叶片401的安装角度α可以设置为-5°至55°。需要说明的是,在沿环形盘片10旋转的方向上依次为内弧41两端点之间的弦线51、经过弦线51中点的环形盘片10的外径52时,安装角度α为正数;在沿环形盘片10旋转的方向上依次为经过弦线51中点的环形盘片10的外径52、内弧41两端点之间的弦线51时,安装角度α为负数。
图22是具有航空叶片402的层流风扇100的横截面示意图,图23是图22中层流风扇100的航空叶片402的安装角度α与风量和风压的关系示意图。在一种具体的实施例中,连接片40还可以是航空叶片402。航空叶片402的横截面具有朝环形盘片10旋转的方向凸起的双圆弧,且双圆弧包括沿环形盘片10旋转的方向依次设置的内弧41和背弧42,内弧41和背弧42具有不同的圆心且两端均相交。图22实际上示出的是俯视层流风扇100时的横截面示意图,层流电机20驱动环形盘片10顺时针旋转,背弧42和内弧41凸起的方向与环形盘片10旋转的方向一致。在其他一些实施例中,层流电机20还可以驱动环形盘片10逆时针旋转,此时的背弧42和内弧41的凸起方向可以与图22中示出的相反。
图23中的航空叶片402的安装角度α实际上指的是:在航空叶片402和环形盘片10的同一横截面上,内弧41或背弧42两端点之间的弦线51与经过弦线51中点的环形盘片10的外径52形成的夹角。图23中横坐标轴Metal angle(α)指的是层流风扇100的航空叶片402的安装角度,即在航空叶片402和环形盘片10的同一横截面上,内弧41或背弧42两端点之间的弦线51与经过弦线51中点的环形盘片10的外径52形成的夹角。左纵坐标轴Mass flow rate指的是风量,右纵坐标轴Pressure rise指的是风压。具体地,图23示出的是在层流风扇100的环形盘片10外径、内径、层数、间距、厚度、航空叶片402的弦长、层流电机20的转速均保持不变时,安装角度α与风量和风压的关系示意图。本实施例的航空叶片402的弦长可以是内弧41或背弧42的两端点之间的直线距离,即弦线51的长度。
在上述提及的各参数均保持不变时,例如在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10内径为115㎜,环形盘片10的层数为8层,环形盘片10的间距为13.75㎜,环形盘片10的厚度为2㎜,航空叶片402的弦长为35㎜,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),此时综合风量和风压考虑,航空叶片402的安装角度α可以设置为-50°至15°。
图24是多个环形盘片10间距渐变的层流风扇100与层流电机20的连接示意图,图25是图24中层流风扇100与层流电机20的另一视角的连接示意图,图26是图24中层流风扇100的多个环形盘片10间距渐变与风量和风压的关系示意图。
如图24和图25所示,层流风扇100的连接件还可以为连接杆60。连接杆60也可以设置为多个,且均匀间隔地贯穿驱动圆盘30和多个环形盘片10,以保证驱动圆盘30和多个环形盘片10的连接关系稳固,进而保证在层流电机20驱使驱动圆盘30旋转时,驱动圆盘30可以稳定地带动多个环形盘片10旋转,提高层流风扇100的工作可靠性。随着相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐增大,会有效提升层流风扇100的风量,使得层流风扇100的出风满足用户的使用需求。在一种优选的实施例中,相邻两个环形盘片10之间的间距变化量相同,也就是说,相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧增大的数值相同。
图26中横坐标轴shrinking uniform expanding Plate distance increase指的是沿着由远离驱动圆盘30的一侧至另一侧的方向相邻两个环形盘片10之间的间距的变化量,左纵坐标轴Mass flow rate指的是风量,右纵坐标轴Pressure rise指的是风压。并且,相邻两个环形盘片10之间的间距变化量相同,也就是说,相邻两个环形盘片10之间的间距增大或缩小的数值相同。
具体地,图26示出的是在层流风扇100的环形盘片10外径、内径、数量、厚度、层流电机20的转速均保持不变时,多个环形盘片10间距渐变与风量和风压的关系示意图。如图26所示,在上述提及的各参数均保持不变时,多个环形盘片10中每两个相邻的环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐变化对风量影响较大,对风压影响很小。当横坐标轴表示的沿着由远离驱动圆盘30的一侧至另一侧的方向相邻两个环形盘片10之间的间距的变化量为正数时,说明多个环形盘片10中每两个相邻的环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐增大;当横坐标轴表示的沿着由远离驱动圆盘30的一侧至另一侧的方向相邻两个环形盘片10之间的间距的变化量为负数时,说明多个环形盘片10中每两个相邻的环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐缩小。
由图26可知,多个环形盘片10中每两个相邻的环形盘片10之间的间距变化量为-1㎜、1㎜和2㎜时,层流风扇100的风量和风压均有很大的改善。综合考虑层流风扇100的风量和风压,将多个环形盘片10中每两个相邻的环形盘片10之间的间距设置为由远离驱动圆盘30的一侧至另一侧逐渐增大。在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10内径为115㎜,环形盘片10的数量为8个,环形盘片10的厚度为2㎜,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),此时综合层流风扇100的风量与风压的全面考虑,可以设置8个环形盘片10中相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧可以依次设置为:13.75㎜、14.75㎜、15.75㎜、16.75㎜、17.75㎜、18.75㎜、19.75㎜,即相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧依次增大1㎜。需要说明的是,多个环形盘片10中相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐增大,实际上是指沿着气流在进风通道11中流动的方向,相邻两个环形盘片10之间的间距逐渐增大。
图27是多个环形盘片10内径渐变的层流风扇100的局部剖视图,图28是图27中层流风扇100的多个环形盘片10内径渐变与风量和风压的关系示意图。随着多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小,会有效提升层流风扇100的风量,使得层流风扇100的出风满足用户的使用需求。在一种优选的实施例中,相邻两个环形盘片10的内径变化量相同,也就是说,多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧缩小的数值相同。
图28中横坐标轴shrinking uniform expanding Inner radius increase指的是每一个环形盘片10的内径与下方相邻的环形盘片10的内径的变化量,左纵坐标轴Massflow rate指的是风量,右纵坐标轴Pressure rise指的是风压。具体地,图28示出的是在层流风扇100的环形盘片10外径、间距、数量、厚度、层流电机20的转速均保持不变时,多个环形盘片10内径渐变与风量和风压的关系示意图。如图28所示,在上述提及的各参数均保持不变时,多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐变化对风量影响较大,对风压影响很小。当横坐标轴表示的每一个环形盘片10的内径与下方相邻的环形盘片10的内径的变化量为正数时,说明多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐增加;当横坐标轴表示的每一个环形盘片10的内径与下方相邻的环形盘片10的内径的变化量为负数时,说明多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小。
由图28可知,多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小时,层流风扇100的风量有所增加,风压稍有减小;多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐增加时,层流风扇100的风压稍有增加,风量减小很多。因而综合考虑层流风扇100的风量和风压,将多个环形盘片10的内径设置为由远离驱动圆盘30的一侧至另一侧逐渐缩小。
在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10的间距为13.75㎜,环形盘片10的数量为8个,环形盘片10的厚度为2㎜,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),此时综合层流风扇100的风量与风压的全面考虑,可以设置每一个环形盘片10的内径与下方相邻的环形盘片10的内径的变化量为-5mm。即8个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧可以依次设置为:115㎜、110㎜、105㎜、100㎜、95㎜、90㎜、85㎜、80㎜,每一个环形盘片10的内径都比下方相邻的环形盘片10的内径缩小5㎜。需要说明的是,上文中环形盘片10的间距具体指的是相邻两个环形盘片10之间的间距。而且需要强调的是,多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小,实际上是指沿着气流在进风通道11中流动的方向,多个环形盘片10的内径逐渐缩小。
图29是环形盘片10为弧形盘片的层流风扇100的多个环形盘片10在经过中心轴线的同一纵截面上的内外径连线的圆心角示意图,图30是图29中的圆心角与风量和风压的关系示意图。图29中的层流风扇100的每个环形盘片10均为由中心至边缘逐渐靠近驱动圆盘30且向驱动圆盘30一侧凸起的弧形盘片。弧形盘片相较平面盘片可以使得外部空气进入层流风扇100的角度更加符合流体流动,从而更利于外部的空气进入层流风扇100,有效减少风量损失。此外,多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小,且多个环形盘片10在经过中心轴线的同一纵截面上的内外径连线形成有圆心角θ。
图30中横坐标轴θ指的是多个环形盘片10在经过中心轴线的同一纵截面上的内外径连线的圆心角,左纵坐标轴Mass flow rate指的是风量,右纵坐标轴Pressure rise指的是风压。具体地,图30示出的是在层流风扇100的环形盘片10外径、层数、间距、厚度、层流电机20的转速均保持不变时,圆心角θ与风量和风压的关系示意图。如图30所示,在上述提及的各参数均保持不变时,随着圆心角θ逐渐增大,层流风扇100的风量先增大后减小,而风压有少许上升。在一种优选的实施例中,层流风扇100的环形盘片10外径为175㎜,环形盘片10的层数为10层,环形盘片10的间距为13.75㎜,环形盘片10的厚度为2㎜,层流电机20的转速为1000rpm(revolutions per minute,转/分钟),此时综合风量和风压考虑,多个环形盘片10在经过中心轴线的同一纵截面上的内外径连线的圆心角θ可以设置为9°至30°。并且如图30所示,在圆心角θ设置为15°时,层流风扇100的风量达到最大值。
本实施例的立式空调器室内机300,包括:壳体310,其内部限定有空腔,且壳体310上部开设有出风口320,中下部设置有进风口330,壳体310包括前面板311、后壳312、顶板313和底板314;蒸发器382,设置于对应进风口330的空腔内部,配置成对通过进风口330进入空腔内的空气进行换热,其中蒸发器382设置有两个且均为平板状,两个蒸发器382在空腔内由上至下逐渐远离壳体310;以及层流风机110,设置于蒸发器382上方,配置成利用粘性效应使经过蒸发器382换热的空气形成层流风,并使层流风从出风口320吹出。立式空调器室内机300设置有层流风机110,通过粘性效应实现层流送风,送风过程噪音小、风量高,有效提升用户的使用体验。
进一步地,本实施例的立式空调器室内机300,后壳312包括后面板315和两个侧面板316,且进风口330设置于两个侧面板316,以实现两面进风,有效提升风量。立式空调器室内机300还可以包括:两个隔板383,分别设置于两个蒸发器382的前方和后方,以阻止通过蒸发器382换热的空气流向空腔的前部和后部。两个蒸发器382与两个进风口330匹配设置,使得通过进风口330进入空腔的空气均能够经过蒸发器382换热。层流风机110包括层流风扇100和层流电机20,层流风扇100设置于对应出风口320的空腔内部,可以实现上部出风。层流电机20固定于固定架350和固定板340之间,其中固定架350中心开设有穿孔352,层流电机20的输出轴21穿过穿孔352后与层流风扇100的驱动圆盘30固定,可以有效增强层流风扇100和层流电机20的连接牢固度,提升整体工作可靠性。
更进一步地,本实施例的立式空调器室内机300,层流风扇100的多个环形盘片10可以按照以下结构中的一种或几种设置:多个环形盘片10的内径由远离驱动圆盘30的一侧至另一侧逐渐缩小;多个环形盘片10中相邻两个环形盘片10之间的间距由远离驱动圆盘30的一侧至另一侧逐渐增大;每个环形盘片10均为由中心至边缘逐渐靠近驱动圆盘30且向驱动圆盘30一侧凸起的弧形盘片。上述设置多个环形盘片10的形式均可以有效提升层流风扇100的风量,使得层流风扇100的出风满足用户的使用需求。此外,连接件可以为连接片40,连接片40的横截面具有沿环形盘片10旋转的方向依次设置的两段曲线,两段曲线的弦线长度与层流风扇100产生的风量为线性关系。连接片40的设置,可以有效提升层流风扇100的风压,使得在层流风通过多个环形盘片10之间的间隙吹出后,由于受到压差作用,层流风扇100外部的空气通过进风通道11被压入环形盘片10,如此循环往复,从而形成层流空气循环。多个环形盘片10彼此之间的间隙形成的多个排风口12可以使得层流风扇100实现360°送风,避免用户因空调器直吹送风而产生的多种不适症状,进一步提升用户的使用体验。
本领域技术人员应理解,在没有特别说明的情况下,本发明实施例中所称的“上”、“下”、“左”、“右”、“前”、“后”等用于表示方位或位置关系的用语是以立式空调器室内机300的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或部件必须具有特定的方位,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Claims (11)
1.一种立式空调器室内机,包括:
壳体,其内部限定有空腔,且所述壳体上部开设有出风口,中下部设置有进风口,所述壳体包括前面板、后壳、顶板和底板;
蒸发器,设置于对应所述进风口的空腔内部,配置成对通过所述进风口进入所述空腔内的空气进行换热,其中所述蒸发器设置有两个且均为平板状,两个所述蒸发器在所述空腔内由上至下逐渐远离所述壳体;以及
层流风机,设置于所述蒸发器上方,配置成利用粘性效应使经过所述蒸发器换热的空气形成层流风,并使所述层流风从所述出风口吹出,
所述层流风机包括层流风扇和层流电机,所述层流风扇设置于对应所述出风口的所述空腔内部,其包括:多个环形盘片,彼此间隔地平行设置且具有相同的中心轴线;驱动圆盘,间隔地平行设置于所述多个环形盘片的一侧;以及连接件,贯穿所述驱动圆盘和所述多个环形盘片,以将所述多个环形盘片连接至所述驱动圆盘,
所述连接件为连接片,所述连接片的横截面具有沿所述环形盘片旋转的方向依次设置的两段曲线,所述两段曲线的弦线长度与所述层流风扇产生的风量为线性关系。
2.根据权利要求1所述的立式空调器室内机,其中,
所述后壳包括:后面板和两个侧面板,且
所述进风口设置于两个所述侧面板,以实现两面进风。
3.根据权利要求1所述的立式空调器室内机,还包括:
两个隔板,分别设置于两个所述蒸发器的前方和后方,以阻止通过所述蒸发器换热的空气流向所述空腔的前部和后部。
4.根据权利要求1所述的立式空调器室内机,其中,
多个所述环形盘片的中心共同形成有进风通道,所述空腔内的空气通过所述进风通道进入所述多个环形盘片之间的间隙;
所述层流电机配置成驱动所述多个环形盘片旋转,以使靠近所述多个环形盘片表面的空气边界层由内向外旋转移动,从而形成层流风由所述出风口吹出。
5.根据权利要求4所述的立式空调器室内机,其中,
所述层流电机还配置成:直接驱动所述驱动圆盘旋转,进而由所述驱动圆盘带动所述多个环形盘片旋转。
6.根据权利要求5所述的立式空调器室内机,还包括:
固定板,其一侧设置有多条加强筋,另一侧设置有多个卡槽;以及
固定架,朝向所述固定板的一侧设置有与所述多个卡槽对应的多个卡爪,以在所述多个卡爪分别螺接于所述多个卡槽之后将所述层流电机固定于所述固定架和所述固定板之间,其中所述固定架中心开设有穿孔,所述层流电机的输出轴穿过所述穿孔后与所述驱动圆盘固定。
7.根据权利要求5所述的立式空调器室内机,还包括:
引风圈,设置于所述蒸发器和所述层流风扇之间,配置成引导通过所述蒸发器换热的空气进入所述层流风扇的所述进风通道。
8.根据权利要求4所述的立式空调器室内机,其中,
所述壳体在其上部环绕所述层流风扇一周设置所述出风口;或者
所述立式空调器室内机还包括:挡风件,设置于所述层流风扇的外部且具有缺口,所述壳体在其上部对应于所述缺口的位置设置所述出风口。
9.根据权利要求5所述的立式空调器室内机,其中,
所述驱动圆盘的中心朝向所述多个环形盘片形成有凹槽,所述层流电机固定设置于所述凹槽中;或者
所述驱动圆盘朝向所述层流电机的表面为平面,朝向所述多个环形盘片的表面具有圆锥状的凸起部,以引导进入所述层流风扇的空气流动并协助形成所述层流风。
10.根据权利要求5所述的立式空调器室内机,其中,
所述连接片的横截面具有沿所述环形盘片旋转的方向依次设置的双圆弧:内弧和背弧,且所述内弧和所述背弧均朝所述环形盘片旋转的方向凸起,所述内弧和所述背弧具有相同的圆心且平行设置或具有不同的圆心且两端均相交。
11.根据权利要求5所述的立式空调器室内机,其中,所述多个环形盘片按照以下结构中的一种或几种设置:
所述多个环形盘片的内径由远离所述驱动圆盘的一侧至另一侧逐渐缩小;
所述多个环形盘片中相邻两个所述环形盘片之间的间距由远离所述驱动圆盘的一侧至另一侧逐渐增大;
每个所述环形盘片均为由中心至边缘逐渐靠近所述驱动圆盘且向所述驱动圆盘一侧凸起的弧形盘片。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910045345.1A CN111442394B (zh) | 2019-01-17 | 2019-01-17 | 立式空调器室内机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910045345.1A CN111442394B (zh) | 2019-01-17 | 2019-01-17 | 立式空调器室内机 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111442394A CN111442394A (zh) | 2020-07-24 |
CN111442394B true CN111442394B (zh) | 2021-08-24 |
Family
ID=71626648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910045345.1A Active CN111442394B (zh) | 2019-01-17 | 2019-01-17 | 立式空调器室内机 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111442394B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112432050B (zh) * | 2020-12-04 | 2022-01-25 | 重庆凯瑞动力科技有限公司 | 一种利用lng冷能的高效节能换热系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000042344A (ko) * | 1998-12-24 | 2000-07-15 | 전주범 | 공기조화기의 실내기 |
KR20060087771A (ko) * | 2005-01-31 | 2006-08-03 | 엘지전자 주식회사 | 공기조화기 |
CN104895617A (zh) * | 2015-05-19 | 2015-09-09 | 集美大学 | 无扇叶涡轮发动机 |
CN105371374A (zh) * | 2015-12-03 | 2016-03-02 | 珠海格力电器股份有限公司 | 空调器 |
CN108253523A (zh) * | 2017-12-11 | 2018-07-06 | 珠海格力电器股份有限公司 | 空调器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06502464A (ja) * | 1989-10-16 | 1994-03-17 | ゼム インコーポレイテッド | ファン |
EP0474929A1 (en) * | 1990-09-11 | 1992-03-18 | International Business Machines Corporation | Laminar flow fans |
GB2270117A (en) * | 1992-08-20 | 1994-03-02 | Ibm | Laminar flow fan and apparatus incorporating such a fan. |
-
2019
- 2019-01-17 CN CN201910045345.1A patent/CN111442394B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000042344A (ko) * | 1998-12-24 | 2000-07-15 | 전주범 | 공기조화기의 실내기 |
KR20060087771A (ko) * | 2005-01-31 | 2006-08-03 | 엘지전자 주식회사 | 공기조화기 |
CN104895617A (zh) * | 2015-05-19 | 2015-09-09 | 集美大学 | 无扇叶涡轮发动机 |
CN105371374A (zh) * | 2015-12-03 | 2016-03-02 | 珠海格力电器股份有限公司 | 空调器 |
CN108253523A (zh) * | 2017-12-11 | 2018-07-06 | 珠海格力电器股份有限公司 | 空调器 |
Also Published As
Publication number | Publication date |
---|---|
CN111442394A (zh) | 2020-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN209877120U (zh) | 立式空调器室内机 | |
CN209840264U (zh) | 立式空调器室内机 | |
CN209877119U (zh) | 立式空调器室内机 | |
CN209877123U (zh) | 立式空调器室内机 | |
CN111442391B (zh) | 壁挂式空调器室内机 | |
CN111442394B (zh) | 立式空调器室内机 | |
CN111442400B (zh) | 立式空调器室内机 | |
CN209877122U (zh) | 立式空调器室内机 | |
CN111442397B (zh) | 立式空调器室内机 | |
CN111442401B (zh) | 立式空调器室内机 | |
CN111442403B (zh) | 立式空调器室内机 | |
CN111442402B (zh) | 立式空调器室内机 | |
CN111442399B (zh) | 立式空调器室内机 | |
CN111442406B (zh) | 立式空调器室内机 | |
CN111442398B (zh) | 立式空调器室内机 | |
CN111442396B (zh) | 立式空调器室内机 | |
CN111442393B (zh) | 立式空调器室内机 | |
CN111442405B (zh) | 立式空调器室内机 | |
CN111442395B (zh) | 立式空调器室内机 | |
CN111442407B (zh) | 立式空调器室内机 | |
CN111442404B (zh) | 立式空调器室内机 | |
CN111442386B (zh) | 壁挂式空调器室内机 | |
CN111442358B (zh) | 壁挂式空调器室内机 | |
CN111442390B (zh) | 壁挂式空调器室内机 | |
CN111442351B (zh) | 壁挂式空调器室内机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210716 Address after: No.1 Gangcheng South Road, Jiangbei District, Chongqing, 400026 Applicant after: CHONGQING HAIER AIR-CONDITIONER Co.,Ltd. Applicant after: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd. Applicant after: Haier Smart Home Co., Ltd. Address before: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao Applicant before: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |