CN209659181U - A kind of wave drive-type ocean thermal energy conversion comprehensive platform - Google Patents

A kind of wave drive-type ocean thermal energy conversion comprehensive platform Download PDF

Info

Publication number
CN209659181U
CN209659181U CN201920537553.9U CN201920537553U CN209659181U CN 209659181 U CN209659181 U CN 209659181U CN 201920537553 U CN201920537553 U CN 201920537553U CN 209659181 U CN209659181 U CN 209659181U
Authority
CN
China
Prior art keywords
water
cold source
pipe
cold
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201920537553.9U
Other languages
Chinese (zh)
Inventor
田卡
龙振东
王家之
王世明
陈瀚铮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ocean University
Original Assignee
Shanghai Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ocean University filed Critical Shanghai Ocean University
Priority to CN201920537553.9U priority Critical patent/CN209659181U/en
Application granted granted Critical
Publication of CN209659181U publication Critical patent/CN209659181U/en
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

The utility model relates to a kind of wave drive-type ocean thermal energy conversion comprehensive platform, the ocean wave to move up and down is absorbed by the float-type piston of array in parallel, drives that ocean is shallow, deep sea water is realized in platform and circulated with this;By ocean, shallow, deep sea water flows through the Mare Frigoris water diffuser casing of thermo-electric generation system, in hot sea water heat dissipation chamber, respectively as its thermo-electric generation cold and heat source, and triggers the semiconductor temperature differential power generating sheet paroxysm electricity that series connection is formed, finally realizes power generation process.The semiconductor temperature differential power generating sheet battle array is by multiple groups P, and N-type semiconductor initial and end passes sequentially through upper and lower connection copper sheet and is connected in series, and the upper and lower connection copper sheet is connect with upper and lower two pieces of radiating support plates respectively.The utility model can efficiently use ocean wave energy as generation platform power source, it generates electricity using heat, Mare Frigoris water as hot cold source and in conjunction with semiconductor thermoelectric battle array, the loss that self-energy during traditional turbine type thermo-electric generation can effectively be avoided, improves generating efficiency.

Description

A kind of wave drive-type ocean thermal energy conversion comprehensive platform
Technical field
The utility model relates to the ocean power generation comprehensive platforms of a kind of combination wave, the temperature difference and solar energy, belong to ocean hair Electro-technical field.
Background technique
Renewable energy abundant is contained in ocean, and development and utilization regenerable marine energy has become current people and seeks First approach of clean energy resource.Ocean wave energy is abundant, has kinetic energy and longitudinally reciprocal potential energy.
Ocean thermal energy power generation is generated electricity using the temperature difference of seawater of shallow-layer and deep layer.Data shows, general temperature seawater The temperature difference with Mare Frigoris water can produce pure electric power at 20 degrees Celsius or more.Earth Perenniporia martius surface seawater temperature can Up to 65 degrees Celsius, Mare Frigoris water is extracted from deep-sea, and temperature is generally at 4~5 degrees Celsius, therefore ocean temperature differential power prospect extremely may be used It sees.Ocean thermal energy conversion form traditional at present is with shallow layer sea water, as heat source, by the low boiling working fluid of closed cycle system Gas is flashed to, turbine rotary electrification is pushed;Deep sea water is condensed into liquid as cold source, by the steam working medium of boiling, and By the promotion of working medium pump, working medium is circulated in realization system.The thermo-electric generation of such form needs low-boiling working medium, The loss of working medium is inevitably caused because being used for a long time;And extract deep, shallow sea water and push the use of the pump of working medium circulation flowing, The electric energy in system is inherently consumed, the generating efficiency of system is reduced.
Utility model content
It is comprehensive flat that the technical problem to be solved by the utility model is to provide a kind of wave drive-type ocean thermal energy conversions Platform can use power source of the ocean wave energy as seawater circulation needed for platform electricity generation system, realize ocean shallow-layer and deep layer The self-loopa of seawater avoids the loss of self-energy during traditional turbine type thermo-electric generation.
To solve the above-mentioned problems, the technical solution adopted in the utility model is as follows:
A kind of wave drive-type ocean thermal energy conversion comprehensive platform, including platform structure, hot water cyclesystem, cold water The circulatory system, thermo-electric generation system and power control system,
The platform structure includes main platform body, platform upper cover, is fixed in the several vertical of the main platform body lower end Column and the platform base for being fixed between all column bottoms and being fixed on seabed,
The heat, cold water circulating system are located in main platform body, and heat, cold water circulating system respectively include several arranged side by side Float-type piston cylinder, the air bag being looped around outside all float-type piston cylinders, the upper end two sides of the float-type piston cylinder respectively with Heat, cold source water supplying pipe are connected with heat, cold source water inlet pipe, and each float-type piston cylinder is respectively equipped with check-valves into and out of water end (W.E.), The heat, cold source water supplying pipe bottom end be located at ocean phytal zone and ocean deepwater area, under the piston rod of float-type piston cylinder End is equipped with float, and the lower end of each float-type piston cylinder passes through piston branch respectively and connect perforation with air bag, piston bottom end with It is connected with spring between cylinder body, air pressure check valve is respectively installed on each air bag,
The thermo-electric generation system includes shell, and two be horizontally set in the shell piece radiating support plate is from top to bottom It is divided into hot sea water heat dissipation chamber, power compartment and Mare Frigoris water diffuser casing, semiconductor temperature differential power generating sheet battle array is installed in the power compartment, Hot sea water heat dissipation chamber inner disc is wound with hot channel, and the Mare Frigoris water diffuser casing inner disc is wound with cold source water pipe, the heat-dissipating pipe The both ends in road and the both ends of cold source water pipe are stretched out outside shell respectively, the respective wherein one end of hot channel, cold source water pipe with heat, it is cold Source water inlet pipe is connected,
The power control system includes power-supply controller of electric and battery, the power-supply controller of electric respectively with thermo-electric generation system System and battery are electrically connected, and the battery is connect with electrical equipment.
The working principle of above-mentioned wave drive-type ocean thermal energy conversion platform is that wave pushes float to move up and down, seawater Respectively from heat, cold source water supplying pipe flow into piston the cylinder piston above cavity in, then again under the promotion of piston through heat, cold source into The hot sea water that water pipe separately flows into thermo-electric generation system radiates the cold source water pipe in indoor hot channel or Mare Frigoris water diffuser casing, Then it is flowed out from the other end of hot channel or cold source water pipe.
When float is moved downward with wave, guide the piston push rod in hot and cold seawater circulation system in piston cylinder by On move downward, because of the intracorporal pressure change of chamber above piston, check valve of the seawater through piston cylinder water inlet side and enter cylinder body It is interior, it is flowed into the cavity above piston at this point, the seawater of profundal zone, phytal zone enters water supplying pipe;At the same time, chamber below piston Gas in body enters in air bag, and lower section cavity inner spring is compressed, to carry hydraulic weight in upper cavity, the fortune of stable plunger It is dynamic.
On the contrary, guiding the piston push rod in hot and cold seawater circulation system in piston when float is moved upwards with wave Moved from bottom to top in cylinder, due to piston cylinder water inlet end side closed check valve, seawater flow through the check valve of water outlet side and Outflow, hot and cold seawater separately flow into the cold source water pipe and hot channel of thermo-electric generation system, flow through hot sea water heat dissipation chamber or Mare Frigoris It is flowed out after water diffuser casing;At the same time, because of the pressure change in cavity below piston, the gas in air bag enters in piston cylinder, Because of spring elongation, stablizing for piston is kept to push;If atmospheric pressure be greater than air bag pressure, then air pressure check valve open, gas into Enter air bag, to keep lower chamber air pressure constant.
During the float continual reciprocating motion for absorbing wave, heat-dissipating pipe in thermo-electric generation system has been pushed Seawater circulates in road, cold source water pipe, and at this time the two of thermo-electric generation system radiating support plate absorbs hot and cold seawater respectively Temperature, form apparent temperature difference in the upper and lower end of concatenated semiconductor temperature differential power generating sheet plate, promote semiconductor power generation sheet into Row power generation, system, which generates electricity, to be flowed into power supervisor by conducting wire.
Further, ocean thermal energy conversion comprehensive platform further includes solar power system, as to temperature difference platform electric energy Supplement, the solar power system include the solar panel being mounted on platform on lid and the photoelectric conversion being attached thereto Device, the photoelectric converter and power-supply controller of electric are electrically connected.Energy collected by solar panel passes through photoelectric converter It is changed into regulated power, and accesses in power-supply controller of electric.
Further, heat source outlet pipe, the cold source are connected between the other end of the hot channel and heat source water supplying pipe It is connected with cold source outlet pipe between the other end and cold source water supplying pipe of water pipe, distinguishes on the heat source outlet pipe and cold source outlet pipe Check-valves is installed.Due to the setting of heat source outlet pipe and cold source outlet pipe, make to be formed between water supplying pipe, water inlet pipe and outlet pipe The circuit of seawater circulation.
Further, the hot channel and cold source water pipe are made of capillary channel respectively, hot channel and cold source water pipe Both ends pass through branching-passage device for tube respectively and are connected with heat, cold water circulating system water inlet pipe.Branching-passage device for tube can by heat, cold water circulating system into The seawater of water pipe is diverted in capillary channel.
Further, for the ease of the heat exchange between hot channel, cold source water pipe and radiating support plate, the heat dissipation support Several strip cooling fins, the hot channel or cold source water pipe are fixed on plate side by side along between neighboring strips shape cooling fin The S-shaped detour coiling in channel.
Further, the heat source water supplying pipe and cold source water supplying pipe are separately installed with seawater filter in water inlet end, and cold source supplies The water inlet end of water pipe is placed at 1000 meters of b.s.l..
Further, the main platform body is shell structure, inside sets thermal cycle chamber, power generation chamber and SAPMAC method chamber, the hot water The circulatory system, cold water circulating system are located at thermal cycle chamber and SAPMAC method is intracavitary, and the thermo-electric generation system and power supply control It is intracavitary that system is located at power generation.
Further, anti-collision body is installed on the outside of main platform body, the shape of main platform body is quadrangle.
Further, in order to facilitate the installation of hot/cold source water supplying pipe, the column is hollow structure, and the hot/cold source is supplied water Pipe is passed into main platform body from column center respectively.
Further, in order to prevent in floating material encounter float, influence float up and down motion, the lower section of the main platform body It is installed with float protective frame, the float frame is located at the periphery of float.
To sum up, compared with prior art, the utility model has the beneficial effects that:
1, the utility model can efficiently use ocean wave energy as generation platform power source, realize ocean shallow-layer and deep layer The self-loopa of seawater;And it can be using solar energy as the supplement energy.
2, the utility model generates electricity using heat, Mare Frigoris water as hot cold source, and traditional turbine type temperature difference can effectively be avoided to send out The loss of self-energy, improves generating efficiency in electric process.
3, the utility model is platform structure, can carry various marine monitoring sensing equipments, it can be achieved that ocean real-time monitoring And each equipment self-powered function in platform.
Detailed description of the invention
Fig. 1 is the structural schematic diagram of the platform structure in one preferred embodiment of the utility model.
Fig. 2 is the three-dimensional structure diagram of the platform structure in one preferred embodiment of the utility model.
Fig. 3 is the main view of hot water or cold water's circulatory system in one preferred embodiment of the utility model.
Fig. 4 is the axis side view of hot water or cold water's circulatory system in one preferred embodiment of the utility model.
Fig. 5 is the structural schematic diagram of thermo-electric generation system in one preferred embodiment of the utility model.
Fig. 6 is the top view of Fig. 5.
Fig. 7 is the structural representation for fixing strip cooling fin in one preferred embodiment of the utility model on radiating support plate Figure.
Fig. 8 is that hot channel or cold source water pipe are circuitous along neighboring strips shape cooling fin in one preferred embodiment of the utility model Return the structural schematic diagram of coiling.
Fig. 9 is the top view of Fig. 8.
Figure 10 is the stereoscopic schematic diagram of Fig. 8.
Figure 11 is the structural schematic diagram of semiconductor temperature differential power generating sheet battle array in a preferred embodiment.
Figure 12 is the main view of semiconductor temperature differential power generating sheet battle array in a preferred embodiment.
Figure 13 is the top view of semiconductor temperature differential power generating sheet battle array in a preferred embodiment.
Figure 14 is the electricity generating principle figure of the utility model wave drive-type ocean thermal energy conversion platform.
Specific embodiment
The utility model is described in further detail below in conjunction with the drawings and specific embodiments.It is said according to following Bright, the purpose of this utility model, technical solution and advantage will be apparent from.It should be noted that described embodiment is this The preferred embodiment of utility model, instead of all the embodiments.
A kind of wave drive-type ocean thermal energy conversion comprehensive platform is optimally suitable for the torrid zone or subtropical zone sea area, most The good form that lays is that offshore is fixed;The utility model absorbs the ocean wave to move up and down by the float-type piston of array in parallel Wave, drives that ocean is shallow, deep sea water is realized in platform and circulated with this;By ocean, shallow, deep sea water flows through thermo-electric generation In the Mare Frigoris water diffuser casing of system, hot sea water heat dissipation chamber, respectively as its thermo-electric generation cold and heat source, and trigger what series connection was formed Semiconductor temperature differential power generating sheet paroxysm electricity, finally realizes power generation process.
Referring to figs 1 and 3, wave drive-type ocean thermal energy conversion comprehensive platform includes platform structure 1, hot water The circulatory system 2, cold water circulating system 3, thermo-electric generation system 4 and power control system 5.
With reference to Fig. 1, the platform structure 1 includes main platform body 11, platform upper cover 12, is fixed under main platform body 11 Several columns 14 at end and the platform base 15 for being fixed between all 14 bottoms of column and being fixed on seabed.Preferably, described vertical Column 14, seabed pedestal 15 are highly corrosion resistant material, or carry out surface anticorrosion processing.With reference to Fig. 2, preferably, around described It is semicircular anti-collision body 13, the preferred highly corrosion resistant of the anti-collision body 13 that the wrapping around of main platform body 11, which is equipped with a ring cross-section, The elastic material of property;The shape of main platform body 11 is quadrangle.With reference to Fig. 2, the main platform body 11 is shell structure, inside sets heat Torus A, power generation chamber B and SAPMAC method chamber C, the hot water cyclesystem 2, cold water circulating system 3 are separately positioned on thermal cycle chamber A In SAPMAC method chamber C, the thermo-electric generation system 4 is located in power generation chamber B with power control system 5.The column 14 is preferred For hollow structure, so that following hot/cold sources water supplying pipe 22,32 is passed into main platform body 11 from column center respectively.It is worth Illustrate: according to demand, sensor device 63 can be installed by the fixed bracket 61 of sensor on above-mentioned column 14, realized flat Platform carries sensor monitoring functions of the equipments.
In conjunction with Fig. 3 and Fig. 4, the heat, cold water circulating system are located in main platform body 11, heat, cold water circulating system It respectively include several float-type piston cylinders 24 arranged side by side, the air bag 27 being looped around outside all float-type piston cylinders 24, the float-type Piston cylinder 24 connect perforation with hot/cold source water supplying pipe 22/32 in the side of upper end, in the other side and hot/cold source water inlet pipe 25/ 35 connection perforations, each float-type piston cylinder are respectively equipped with check-valves 23 into and out of water end (W.E.).The bottom end position of the heat source water supplying pipe The bottom end of Yu Haiyang phytal zone, cold source water supplying pipe is located at ocean deepwater area.
The piston-rod lower end of each float-type piston cylinder 24 is equipped with float 210, and the float 210 stretches out main platform body 11 Bottom outside is contacted with wave, and the lower end of each float-type piston cylinder 24 passes through piston branch 241 and section respectively as ellipse Air bag 27 connect perforation, spring 240 is connected between piston bottom end and cylinder body, it is unidirectional to be respectively equipped with air pressure on each air bag 27 Valve 28 is connected with ambient atmosphere, and the compressible gases such as air are filled in air bag;The air pressure individual event valve 28 allows atmosphere to flow to air bag, To keep lower chamber air pressure constant.Float is encountered with the floating material in seawater in order to prevent, the lower section of the main platform body 11 is solid Be connected to cylindrical float protective frame 16, the float frame 16 is located at the periphery of float 210, and with piston rod of piston cylinder is concentric matches Close installation.
In conjunction with shown in Fig. 5 to Fig. 8, the thermo-electric generation system 4 includes shell 40, is horizontally set in the shell 40 Two pieces of radiating support plates 44 be from top to bottom divided into hot sea water heat dissipation chamber 440, power compartment 441 and Mare Frigoris water diffuser casing 442, institute It states and semiconductor temperature differential power generating sheet battle array 46 as shown in figure 11 is installed in power compartment 441, upper in the hot sea water heat dissipation chamber 440 Coiling has hot channel 451 on the radiating support plate 44 of side, and 442 inner disc of Mare Frigoris water diffuser casing is wound with cold source water pipe 452, cold Main water supply tube 452 is contacted with the bottom surface of the radiating support plate 44 of lower section, the both ends of the hot channel 451 and cold source water pipe 452 Both ends stretched out outside shell 40 respectively, the respective wherein one end of hot channel, cold source water pipe and heat, cold source water inlet pipe 25,35 phases Connection.In conjunction with shown in Fig. 7 to Figure 10, several strip cooling fins 441, the heat dissipation are fixed on the radiating support plate 44 side by side Pipeline 451 or cold source water pipe 452 are coiled along the S-shaped detour in channel between neighboring strips shape cooling fin 441.The heat-dissipating pipe It is filled with temperature slightly higher seawater in phytal zone in road 451, is then profundal zone Mare Frigoris water in cold source water pipe 452.
Preferably, radiating support plate 44, strip cooling fin 441 and hot channel 451 are high conductance material.
With continued reference to Fig. 3 and Fig. 4, preferably, in order to make to form seawater between water supplying pipe, water inlet pipe and outlet pipe The circuit of circulation is connected with heat source outlet pipe 29 between the other end and heat source water supplying pipe 22 of the hot channel 451, described cold Cold source outlet pipe 39, the heat source outlet pipe 29 and cold source are connected between the other end and cold source water supplying pipe 32 of main water supply tube 452 Check-valves 23 is separately installed on outlet pipe 39.
The power control system 5 include power-supply controller of electric 51 and battery 53, the power-supply controller of electric 51 respectively with temperature Poor electricity generation system 4 and battery 53 are electrically connected, and the battery 53 is connect with electrical equipment 63, and the electrical equipment 63 is excellent It is selected as sensor device.
As shown in connection with fig. 5 and Fig. 3 being referred to, the hot channel 451 and cold source water pipe 452 are made of capillary channel respectively, The both ends of hot channel 451 and cold source water pipe 452 pass through branching-passage device for tube 261 and heat, cold water circulating system water inlet pipe 25,35 phases respectively Connection.
In conjunction with Figure 11, Figure 12 and Figure 13, semiconductor temperature differential power generating sheet battle array 46 is by multiple groups P, 461,462 head and the tail of N-type semiconductor Pass sequentially through connection copper sheet 4631, lower connection copper sheet 4632 is connected in series;The heat dissipation of upper the connection copper sheet 4631 and top Support plate 44 connects, i.e., this end is contacted with warm seawater heat source;The lower connection copper sheet 4632 and the radiating support plate 44 of lower section connect It connects, i.e., this end is contacted with Mare Frigoris water cooling source;Positive and negative electrode conducting wire is drawn in first P-type semiconductor lower end and last N-type semiconductor lower end respectively 47, it is connected into the power supervisor 51 in power control system 5.
With reference to Fig. 1, Fig. 3 and Fig. 4, the heat source water supplying pipe 22 and cold source water supplying pipe 32 are separately installed with seawater in water inlet end Filter 21, prevents the pollutant in seawater from entering hot Mare Frigoris water circulation system, and the water inlet end of cold source water supplying pipe 32 is placed in sea Below plane at 1000 meters.
Preferably, in conjunction with Fig. 1 and with reference to Figure 14, the utility model further includes solar power system, as right The supplement of temperature difference platform electric energy, the solar power system include the solar panel 20 being mounted in platform upper cover 12 With the photoelectric converter 52 being attached thereto, the photoelectric converter 52 is electrically connected with power-supply controller of electric 51.Solar panel Energy collected by 20 is changed into regulated power by photoelectric converter 52, and accesses in power-supply controller of electric 51.
It is worth noting that: in the course of work of the utility model generation platform, the seawater of each float-type piston cylinder is followed Ring movement is independent of each other, and greater number of piston cylinder array will improve the efficiency of this electricity generation system.
The above is only the description explanation of the preferred embodiment in the utility model, not to scope of protection of the utility model Restriction, it is clear that anyone skilled in the art based on the above embodiment, can readily occur in replacement or variation to obtain Other embodiments, these, which should all cover, is within the protection scope of the utility model.

Claims (10)

1. a kind of wave drive-type ocean thermal energy conversion comprehensive platform, it is characterised in that:
Including platform structure, hot water cyclesystem, cold water circulating system, thermo-electric generation system and power control system,
The platform structure includes main platform body, platform upper cover, several columns for being fixed in main platform body lower end and affixed Between all column bottoms and it is fixed on the platform base in seabed,
The heat, cold water circulating system are located in main platform body, and heat, cold water circulating system respectively include several floats arranged side by side Formula piston cylinder, the air bag being looped around outside all float-type piston cylinders, the upper end two sides of the float-type piston cylinder respectively with heat, it is cold Source water supplying pipe is connected with heat, cold source water inlet pipe, and each float-type piston cylinder is respectively equipped with check-valves into and out of water end (W.E.), described Hot, cold source water supplying pipe bottom end is located at ocean phytal zone and ocean deepwater area, the piston-rod lower end peace of float-type piston cylinder Equipped with float, the lower end of each float-type piston cylinder passes through piston branch respectively and connect perforation, piston bottom end and cylinder body with air bag Between be connected with spring, air pressure check valve is respectively installed on each air bag,
The thermo-electric generation system includes shell, and two be horizontally set in the shell piece radiating support plate from top to bottom separates For hot sea water heat dissipation chamber, power compartment and Mare Frigoris water diffuser casing, semiconductor temperature differential power generating sheet battle array is installed in the power compartment, it is described Hot sea water heat dissipation chamber inner disc is wound with hot channel, and the Mare Frigoris water diffuser casing inner disc is wound with cold source water pipe, the hot channel Both ends and the both ends of cold source water pipe are stretched out outside shell respectively, the respective wherein one end of hot channel, cold source water pipe and heat, cold source into Water pipe is connected,
The power control system includes power-supply controller of electric and battery, the power-supply controller of electric respectively with thermo-electric generation system and Battery is electrically connected, and the battery is connect with electrical equipment.
2. wave drive-type ocean thermal energy conversion comprehensive platform according to claim 1, it is characterised in that:
It further includes solar power system, and the solar power system includes the solar battery being mounted on platform on lid Plate and the photoelectric converter being attached thereto, the photoelectric converter and power-supply controller of electric are electrically connected.
3. wave drive-type ocean thermal energy conversion comprehensive platform according to claim 1, it is characterised in that:
Heat source outlet pipe, the other end of the cold source water pipe are connected between the other end and heat source water supplying pipe of the hot channel It is connected with cold source outlet pipe between cold source water supplying pipe, is separately installed with non-return on the heat source outlet pipe and cold source outlet pipe Valve.
4. wave drive-type ocean thermal energy conversion comprehensive platform according to claim 1, it is characterised in that:
The hot channel and cold source water pipe are made of capillary channel respectively, and the both ends of hot channel and cold source water pipe pass through respectively Branching-passage device for tube is connected with heat, cold water circulating system water inlet pipe.
5. wave drive-type ocean thermal energy conversion comprehensive platform according to claim 4, it is characterised in that:
Several strip cooling fins are fixed on the radiating support plate side by side, the hot channel or cold source water pipe are along adjacent length The S-shaped detour coiling in channel between bar shaped cooling fin.
6. wave drive-type ocean thermal energy conversion comprehensive platform according to claim 1, it is characterised in that:
The heat source water supplying pipe and cold source water supplying pipe are separately installed with seawater filter, the water inlet end of cold source water supplying pipe in water inlet end It is placed at 1000 meters of b.s.l..
7. wave drive-type ocean thermal energy conversion comprehensive platform according to claim 1, it is characterised in that:
The main platform body is shell structure, inside sets thermal cycle chamber, power generation chamber and SAPMAC method chamber, the hot water cyclesystem, cold Water circulation system is located at thermal cycle chamber and SAPMAC method is intracavitary, and the thermo-electric generation system and power control system are located at power generation It is intracavitary.
8. wave drive-type ocean thermal energy conversion comprehensive platform according to claim 7, it is characterised in that:
Anti- collision body is installed on the outside of the main platform body, the shape of main platform body is quadrangle.
9. wave drive-type ocean thermal energy conversion comprehensive platform according to claim 1, it is characterised in that:
The column is hollow structure, and hot/cold source water supplying pipe is passed into main platform body from column center respectively.
10. wave drive-type ocean thermal energy conversion comprehensive platform according to claim 1, it is characterised in that:
Float frame is installed with below the main platform body, the float frame is located at the periphery of float.
CN201920537553.9U 2019-04-19 2019-04-19 A kind of wave drive-type ocean thermal energy conversion comprehensive platform Withdrawn - After Issue CN209659181U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920537553.9U CN209659181U (en) 2019-04-19 2019-04-19 A kind of wave drive-type ocean thermal energy conversion comprehensive platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920537553.9U CN209659181U (en) 2019-04-19 2019-04-19 A kind of wave drive-type ocean thermal energy conversion comprehensive platform

Publications (1)

Publication Number Publication Date
CN209659181U true CN209659181U (en) 2019-11-19

Family

ID=68529595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920537553.9U Withdrawn - After Issue CN209659181U (en) 2019-04-19 2019-04-19 A kind of wave drive-type ocean thermal energy conversion comprehensive platform

Country Status (1)

Country Link
CN (1) CN209659181U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889102A (en) * 2019-04-19 2019-06-14 上海海洋大学 A kind of wave drive-type ocean thermal energy conversion comprehensive platform
CN115013228A (en) * 2022-07-13 2022-09-06 广州海洋地质调查局三亚南海地质研究所 Wave energy temperature difference energy power generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889102A (en) * 2019-04-19 2019-06-14 上海海洋大学 A kind of wave drive-type ocean thermal energy conversion comprehensive platform
CN109889102B (en) * 2019-04-19 2024-03-12 上海海洋大学 Wave-driven ocean temperature difference power generation comprehensive platform
CN115013228A (en) * 2022-07-13 2022-09-06 广州海洋地质调查局三亚南海地质研究所 Wave energy temperature difference energy power generation device

Similar Documents

Publication Publication Date Title
CN109889102A (en) A kind of wave drive-type ocean thermal energy conversion comprehensive platform
US4170878A (en) Energy conversion system for deriving useful power from sources of low level heat
CN209659181U (en) A kind of wave drive-type ocean thermal energy conversion comprehensive platform
WO2021068190A1 (en) Wave energy heat storage-type ocean thermal energy conversion apparatus
US9267489B2 (en) Engine for conversion of thermal energy to kinetic energy
US8453443B2 (en) Engine for energy conversion
JPS587147B2 (en) The current energy level is low.
US20050198960A1 (en) Thermal conversion device and process
US20100024413A1 (en) Engine for energy conversion
CN110005594A (en) A kind of isotherm compression method of liquid medium heat accumulation and piston heat transfer
CN113161880A (en) Bury waterproof heat dissipation type regulator cubicle
JP2015526638A (en) Energy conversion engine
CN110469468A (en) A kind of power generator using the underground heat temperature difference
CN105508160A (en) Temperature differential power generation method and temperature differential power generation equipment
CN204386829U (en) Thermo-electric generation equipment
CN114678191A (en) Oil immersed shunt reactor
CN201858096U (en) Myriameter single deep well gravity vacuum auxiliary heat pipe circulation dry heat rock electric generator
CN206739657U (en) A kind of solar energy carbon dioxide accumulator to be generated electricity for carbon dioxide recycle
CN204027365U (en) Immersion porous media condenser peculiar to vessel
CN105429592A (en) Highly efficient heat dissipation system of concentrating solar cell panel
CN204371553U (en) Generation of electricity by new energy device
RU193703U1 (en) Device for preventing formation of ice on water surface
CN219181427U (en) Small-sized offshore solar thermoelectric power generation device
CN218934555U (en) Radiator with multilayer radiating pipes for generating set
CN211174864U (en) Hydraulic cylinder that radiating effect is good

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20191119

Effective date of abandoning: 20240312

AV01 Patent right actively abandoned

Granted publication date: 20191119

Effective date of abandoning: 20240312

AV01 Patent right actively abandoned
AV01 Patent right actively abandoned