CN209656178U - 温度检测电路、检测igbt元件温度的电路和电动车 - Google Patents
温度检测电路、检测igbt元件温度的电路和电动车 Download PDFInfo
- Publication number
- CN209656178U CN209656178U CN201821598616.3U CN201821598616U CN209656178U CN 209656178 U CN209656178 U CN 209656178U CN 201821598616 U CN201821598616 U CN 201821598616U CN 209656178 U CN209656178 U CN 209656178U
- Authority
- CN
- China
- Prior art keywords
- voltage
- circuit
- output end
- temperature
- thermistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 claims abstract description 32
- 230000001681 protective effect Effects 0.000 claims description 12
- 230000003321 amplification Effects 0.000 claims description 8
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 230000005611 electricity Effects 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
Landscapes
- Measurement Of Current Or Voltage (AREA)
Abstract
本实用新型涉及温度检测电路、检测IGBT元件温度的电路和电动车,温度检测电路包括:依次串联的电压输入端、热敏电阻、对数运算电路和电压输出端;电压输入端和电压输出端均分别连接有一个电压检测装置;与两个电压检测装置均分别连接的计算器。本实用新型实施例通过对数运算电路对热敏电阻输出端的电压进行处理,使得最终得到的电压值与热敏电阻检测的温度值对应的曲线具有更高的线性度,增强采样精度,同时,由于对数运算之后的电压值较小,将数值控制在计算器可以识别的范围以内,主要起到保护计算器的作用。
Description
技术领域
本实用新型涉及温度检测技术领域,尤其涉及温度检测电路、检测IGBT元件温度的电路和电动车。
背景技术
随着全球汽车数量的急剧上升,导致能源极度匮乏,环境污染越来越严重,适当减少燃油交通工具的使用量和开发节能环保的新型能源汽车成为社会发展的必然趋势。随着电力电子器件的不断发展,IGBT 集成模块主要是通过控制PWM占空比,将直流电流变为电机所需的交流电流大小起到相应反馈控制的作用,由此成了电机驱动的重要部分。
IGBT集成模块是一个温度敏感的电力电子器件,因此,在新能源电动车运行的过程中,需要对IGBT的温度进行实时的检测,以确保 IGBT一旦超过保护温度的时候,电动车可以立刻停止运行,故提高对 IGBT温度检测的精度,可提高电动车的安全性能。
现有的温度检测技术通过热敏电阻检测IGBT元件温度时,得到的温度和热敏电阻的阻值呈现出与对数函数相似的走线趋势,该走线趋势拟合处理得到的线性度较低,而线性度越低,在通过其中一个变量得到另一个变量时,就越容易出现错误,而且,由于线性度较低,为获取正确的变量,就必须使用分段查表法来进行操作,而分段过少,会导致曲线的线性度越差,分段过多,处理器需要查表的数量就越多,这样无形之中增加了处理器的处理压力,所以温度与热敏电阻的阻值之间的线性度越低,就越难以通过热敏电阻的阻值测到正确的温度值。
实用新型内容
为了解决现有技术存在的问题,本实用新型的至少一个实施例提供了温度检测电路、检测IGBT元件温度的电路和电动车。
第一方面,本实用新型实施例提供了一种温度检测电路,所述检测电路包括:
依次串联的电压输入端、热敏电阻、对数运算电路和电压输出端;
所述电压输入端和所述电压输出端均分别连接有一个电压检测装置;
与两个所述电压检测装置均分别连接的计算器。
基于上述技术方案,本实用新型实施例还可以做出如下改进。
结合第一方面,在第一方面的第一种实施例中,所述检测电路还包括:放大器;
所述热敏电阻的两端分别连接所述放大器的负极输入端和输出端;
所述放大器的正极输入端接地;所述放大器将所述热敏电阻输出端的电压放大。
结合第一方面的第一种实施例,在第一方面的第二种实施例中,所述电压输入端与热敏电阻之间还设置有保护电阻。
结合第一方面或第一方面的第一或第二种实施例,在第一方面的第三种实施例中,所述检测电路还包括:
设置在所述对数运算电路和所述电压输出端之间的放大电路;所述放大电路将所述对数运算电路输出端的电压放大。
结合第一方面的第三种实施例,在第一方面的第四种实施例中,所述检测电路还包括:
设置在所述放大电路和所述电压输出端之间的钳位保护电路。
结合第一方面的第四种实施例,在第一方面的第五种实施例中,所述钳位保护电路的钳位电压的最大值为3V。
第二方面,本实用新型实施例提供了一种检测IGBT元件温度的电路,包括:所述IGBT元件和上述第一方面中任一所述的温度检测电路。
第三方面,本实用新型实施例提供了一种新能源电动车,包括: IGBT元件和上述第二方面中所述的检测IGBT元件温度的电路。
本实用新型的上述技术方案与现有技术相比具有如下优点:本实用新型实施例通过对数运算电路对热敏电阻输出端的电压进行处理,使得最终得到的电压值与热敏电阻检测的温度值对应的曲线具有更高的线性度,增强采样精度,同时,由于对数运算之后的电压值较小,将数值控制在计算器可以识别的范围以内,主要起到保护计算器的作用。
附图说明
图1是本实用新型实施例提供的一种温度检测电路结构示意图;
图2是本实用新型另一实施例提供的一种温度检测电路结构示意图;
图3是本实用新型又一实施例提供的一种温度检测电路结构示意图。
图中,1:电压输入端;2:热敏电阻;3:对数运算电路;4:电压输出端;5:放大器;6:放大电路;7:钳位保护电路。
具体实施方式
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
如图1所示,本实用新型实施例提供的一种温度检测电路,检测电路包括:依次串联的电压输入端、热敏电阻、对数运算电路和电压输出端,热敏电阻与待检测物体相接触,由于热敏电阻的特性,不同的温度下表现出不同的电阻值。正温度系数热敏电阻在温度越高时电阻值越大,负温度系数热敏电阻在温度越高时电阻值越低,根据电压输入端的电压和电压输出端的电压变化即可计算出相应的热敏电阻的电阻值,在使用过程中,热敏电阻在某个温度区间中温度和电阻值会呈正比,但是,在整个温度曲线中热敏电阻阻值与温度之间的关系呈现与对数函数相似的走线趋势,现有技术中根据热敏电阻检测温度,温度和电阻值的对数函数关系得到的线性度较低,线性度是反映两个变量之间的相关关系以及这种相关关系的密切度的一个统计量,越接近于1,两个变量越密切;越接近于0,则不存在线性关系,而线性度越高最终根据电压值得到的电阻值就越精确,而不同变量之间的线性度过低,就必须使用分段查表法来进行操作,但是分段过少,会导致曲线的线性度越差,如果分段过多又会需要控制器芯片查表的更多,这样无形之中增加了控制芯片的处理压力,增加执行程序时的不必要时间,浪费芯片资源,所以,在本实施例中,在热敏电阻后串联一对数运算电路,对经过热敏电阻后的电压值进行对数运算,使得最终的得到的温度值和电阻值的线性度趋近于1,以提高通过电压值进行温度检测的精度。
如图2所示,在本实施例中,检测电路还包括:电压输入端和电压输出端均分别连接有一个电压检测装置;电压输入端和电压输出端均分别连接一个电压检测装置,通过电压检测装置分别检测电压输入端的电压值和电压输出端的电压值。与两个电压检测装置均分别连接的计算器;计算器根据电压输入端的电压值和电压输出端的电压值计算热敏电阻的热敏电阻值,并根据热敏电阻值计算检测温度值。
在本实施例中,电压检测装置可以与所述计算器集成在一个处理器上,比如将电压检测芯片和计算芯片中的代码程序集成到一个处理器中,以同时实现上述检测电压输入端和电压输出端的电压值,并根据电压输入端和电压输出端的电压值计算热敏电阻的电阻值,并根据热敏电阻值计算相应的温度值,实现温度检测的功能。
在本实施例中,检测电路还包括:放大器;热敏电阻的两端分别连接放大器的负极输入端和输出端;放大器的正极输入端接地;通过放大器将热敏电阻的电阻值转化为可以检测的电压信号,进行处理。
在本实施例中,电压输入端与放大器的负极输入端之间还设置有保护电阻,为避免热敏电阻出现损坏时,电路直接导通导致线路短路,在电压输入端和热敏电阻之间串联一保护电阻以保护电路,避免线路短路导致放大器出现故障。
在本实施例中,计算器具体用于:通过如下计算公式计算检测温度值:
第一运算公式第一运算公式计算通过对数运算计算对数运算电路中的二极管两端的电压值。
第二运算公式第二运算公式为热敏电阻经过放大电路作用后,热敏电阻后续电路的电压值。
第三运算公式第三运算公式为热敏电阻随温度变化函数,用于计算热敏电阻的温度。
第四运算公式第四运算公式为对数运算电路中二极管的电压当量,闭合电路中,由于两点间存在温差而出现的电位差叫做热电压,也称为温度的电压当量,电压当量仅与温度有关。
其中,V01为对数运算电路输出端的电压值,VD为对数运算电路中二极管两端的电压值,VT为二极管两端的电压当量;Us为经过放大器放大的热敏电阻输出端的电压值,R5为对数运算电路的内阻,Is为二极管的反向饱和电流,Ui为电压输入端的电压值,Rt为热敏电阻的电阻值,R1为保护电阻的电阻值,A为根据热敏电阻的材料确定的常数系数,B为根据热敏电阻的材料确定的常数系数,T为检测温度值。
在本实施例中,将上述第二运算公式、第三运算公式和第四运算公式代入第一运算公式中,根据上述计算公式得到如下计算公式:由于A、B、R1、R5、Is均为定值,Ui 可以由用户设定输入,当用户将Ui设置为任意恒定输入值时,V01和T呈一次函数,即此时的电压值和温度值的线性度理论上是等于1的,在经过上述处理后,更容易通过输入端和输出端的电压值测量到温度的正确值,提高了芯片资源的利用率,提高了新能源电动汽车IGBT模块温度采样的精度;节约了计算器的内部资源,而且,一般的计算器所能识别的电压范围并不会非常大,比如DSP处理芯片,其所能识别的电压范围为0-3V,V为电压单位,通过对数运算电路处理后的电路电压值会大幅降低,以保护计算器。
在本实施例中,检测电路还包括:设置在对数运算电路和电压输出端之间的放大电路;放大电路对对数运算电路输出端的电压放大;
V0=αV01;
其中,V01对数运算电路输出端的电压;V0电压输出端的电压值,α为放大电路的放大倍数。
将电压输入端和电压输出端的电压值代入上述计算公式,计算得到检测温度值。
如图3所示,在本实施例中,检测电路还包括:设置在对数运算电路和电压输出端之间的放大电路;放大电路将对数运算电路输出端的电压放大,电压在经过对数运算电路后,输出端的电压的值会比较低,虽然,对数运算电路输出端的电压较低可以保护后续计算器,避免计算器收到的电压值过高导致计算器损坏,但是过低的电压值也可能影响到后续计算结果,比如,5V的输入电压最终能得到的输出电压为0.3V-0.6V,而一般的处理芯片能接收的电压值一般在0~3V,所以,在本实施例中通过将对数运算电路输出的电压进行放大,便于处理芯片对温度采样的数据进行处理。
在本实施例中,检测电路还包括:设置在放大电路和电压输出端之间的钳位保护电路,钳位保护电路使得放大电路后的线路中的电位进行钳制,使得钳位保护电路的钳位电压的最大值为3V,以避免电压值过高导致后续处理芯片出现损坏。
如图3所示,本实用新型实施例提供了一种温度检测电路,该温度检测电路包括:电压输入端的电压为5V,放大器的负极输入端与保护电阻和热敏电阻的一端连接,放大器的正极输入端通过电阻接地,热敏电阻的另一端与放大器的输出端连接,Us为放大器的输出端的电压,放大器的输出端与对数运算电路输入端连接,V01为对数运算电路输出端的电压值,对数运算电路的输出端与放大电路的输入端连接,放大电路的输出端与电压输出端连接,钳位电路连接在放大电路的输出端和电压输出端之间,钳位电路包括两个正向连接的二极管,在钳位电路中,二极管负极接地,则正极端电路被钳位零电位以下。
本实用新型实施例提供了一种检测IGBT元件温度的电路,包括: IGBT元件和上述任一实施例的温度检测电路。
在本实施例中,温度检测电路包括:依次串联的电压输入端、热敏电阻、对数运算电路和电压输出端。
在本实施例中,温度检测电路还包括:电压输入端和电压输出端均分别连接有一个电压检测装置,与两个电压检测装置均分别连接的计算器;计算器根据电压输入端的电压值和电压输出端的电压值计算热敏电阻的热敏电阻值,并根据热敏电阻值计算检测温度值。
在本实施例中,温度检测电路还包括:放大器;热敏电阻的两端分别连接放大器的负极输入端和输出端;放大器的正极输入端接地。
在本实施例中,温度检测电路还包括:电压输入端与热敏电阻之间还设置有保护电阻。
在本实施例中,温度检测电路还包括:设置在对数运算电路和电压输出端之间的放大电路;放大电路将对数运算电路输出端的电压放大。
在本实施例中,温度检测电路还包括:设置在放大电路和电压输出端之间的钳位保护电路。
本实用新型实施例提供了一种新能源电动车,包括:IGBT元件和上述检测IGBT元件温度的电路。
最后应说明的是:以上实施例仅用以说明本实用新型的技术方案,而非对其限制;尽管参照前述实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的精神和范围。
Claims (8)
1.一种温度检测电路,其特征在于,所述检测电路包括:
依次串联的电压输入端、热敏电阻、对数运算电路和电压输出端;
所述电压输入端和所述电压输出端均分别连接有一个电压检测装置;
与两个所述电压检测装置均分别连接的计算器。
2.根据权利要求1所述的温度检测电路,其特征在于,所述检测电路还包括:放大器;
所述热敏电阻的两端分别连接所述放大器的负极输入端和输出端;
所述放大器的正极输入端接地;所述放大器将所述热敏电阻输出端的电压放大。
3.根据权利要求2所述的温度检测电路,其特征在于,所述电压输入端与所述放大器的负极输入端之间还设置有保护电阻。
4.根据权利要求1-3中任一所述的温度检测电路,其特征在于,所述检测电路还包括:
设置在所述对数运算电路和所述电压输出端之间的放大电路;所述放大电路将所述对数运算电路输出端的电压放大。
5.根据权利要求4所述的温度检测电路,其特征在于,所述检测电路还包括:
设置在所述放大电路和所述电压输出端之间的钳位保护电路。
6.根据权利要求5所述的温度检测电路,其特征在于,所述钳位保护电路的钳位电压的最大值为3V。
7.一种检测IGBT元件温度的电路,其特征在于,包括:所述IGBT元件和如权利要求1-6中任一所述的温度检测电路。
8.一种新能源电动车,其特征在于,包括:IGBT元件和如权利要求7所述的检测IGBT元件温度的电路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821598616.3U CN209656178U (zh) | 2018-09-28 | 2018-09-28 | 温度检测电路、检测igbt元件温度的电路和电动车 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821598616.3U CN209656178U (zh) | 2018-09-28 | 2018-09-28 | 温度检测电路、检测igbt元件温度的电路和电动车 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209656178U true CN209656178U (zh) | 2019-11-19 |
Family
ID=68505730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201821598616.3U Expired - Fee Related CN209656178U (zh) | 2018-09-28 | 2018-09-28 | 温度检测电路、检测igbt元件温度的电路和电动车 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN209656178U (zh) |
-
2018
- 2018-09-28 CN CN201821598616.3U patent/CN209656178U/zh not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104181385B (zh) | 空调器的电能检测方法及电能检测装置 | |
CN105629052B (zh) | 芯片功耗实时检测方法 | |
CN103477234A (zh) | 电流传感器 | |
CN102645287B (zh) | 一种电机绕组温升的检测方法 | |
CN114755553A (zh) | 一种低功耗屏蔽栅半导体功率器件的测试系统 | |
CN109990954B (zh) | 一种检漏方法、检漏装置和电子设备 | |
CN209656178U (zh) | 温度检测电路、检测igbt元件温度的电路和电动车 | |
CN101634667B (zh) | 测量直流电机消耗的平均电流的方法与电路 | |
CN110081320A (zh) | 一种液冷系统漏液检测装置及检测方法 | |
CN203287120U (zh) | 电机温度检测电路 | |
CN109100042A (zh) | 一种温度检测电路和检测igbt元件温度的电路 | |
CN218888389U (zh) | 一种具有自动温度调控功能的电子负载功率限制电路 | |
CN103323657B (zh) | 一种电机控制器过流判断电路 | |
CN206773162U (zh) | 变频器状态监测电路和包含该电路的变频器 | |
CN105371906A (zh) | 具有变频式液体导电度测量功能的电磁式流量计 | |
CN207832882U (zh) | 一种高精度计量用电和漏电值的集成电路 | |
CN215493952U (zh) | 一种开关管检测电路及其系统 | |
CN212749654U (zh) | 一种带电流监测的恒流源电路 | |
CN208508828U (zh) | 采样电路及电机控制系统 | |
CN106841764B (zh) | 一种利用mosfet管内阻实现输出电流检测的方法 | |
CN204575214U (zh) | 一种最高温度采样电路 | |
CN214011337U (zh) | 一种继电器检测和控制电路 | |
CN208654590U (zh) | 一种电池移除检测电路 | |
CN208537614U (zh) | 电流检测装置 | |
CN201945622U (zh) | 一种电流检测电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20191119 |