CN209516935U - Single-input multi-output M switch group DC-DC converter - Google Patents
Single-input multi-output M switch group DC-DC converter Download PDFInfo
- Publication number
- CN209516935U CN209516935U CN201821186439.8U CN201821186439U CN209516935U CN 209516935 U CN209516935 U CN 209516935U CN 201821186439 U CN201821186439 U CN 201821186439U CN 209516935 U CN209516935 U CN 209516935U
- Authority
- CN
- China
- Prior art keywords
- switch group
- switch
- port
- output
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims description 13
- 239000003990 capacitor Substances 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 6
- 230000010363 phase shift Effects 0.000 description 4
- 101100537098 Mus musculus Alyref gene Proteins 0.000 description 3
- 101150095908 apex1 gene Proteins 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 101100269674 Mus musculus Alyref2 gene Proteins 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本实用新型提供单输入多输出M开关组DC‑DC变换器。变换器包括直流输入电源、M‑1路直流负载、M个开关组和耦合电感。每个开关组均由N个功率开关单元串联而成。本实用新型电路具有M个端口,与一路直流电源、M‑1路直流负载的连接方式可分为三种,第一种方式实现降压,第二种方式实现升压,第三种方式实现升降压,并且在第三种方式中,通过改变直流电源连接的具体端口,可以实现多种不同电压等级的升降压。本实用新型采用载波移相PWM控制,对功率开关单元中开关管的导通、关断进行控制,实现负载电压的调节。本实用新型适合单输入多输出的高压大功率直流应用场合。
The utility model provides a single-input multiple-output M switch group DC-DC converter. The converter includes a DC input power supply, M‑1 DC loads, M switch groups and coupled inductors. Each switch group is composed of N power switch units connected in series. The utility model circuit has M ports, and can be divided into three ways to connect with one DC power supply and one M-1 DC load. Step-up and step-down, and in the third way, by changing the specific port connected to the DC power supply, step-up and step-down of various voltage levels can be realized. The utility model adopts carrier wave phase-shifting PWM control to control the on and off of the switch tube in the power switch unit, so as to realize the regulation of the load voltage. The utility model is suitable for high-voltage and high-power DC application occasions with single input and multiple outputs.
Description
技术领域technical field
本实用新型涉及分布式发电系统和直流输电领域,具体涉及一种单输入多输出M开关组DC-DC变换器。The utility model relates to the field of distributed power generation systems and direct current transmission, in particular to a DC-DC converter with a single-input and multiple-output M switch group.
背景技术Background technique
随着新能源发电技术的发展、直流负载的增多和高压直流输电的发展, DC-DC变换器在分布式发电系统、风电场能量汇集和直流输电领域的应用也迅速增长。在这些领域,如何同时连接多个直流电源、直流负载和实现高压大功率变换是两个重要的技术问题。针对多个直流电源、直流负载的连接,传统上使用多个DC-DC变换器将直流电源和直流负载连接到直流母线上,通过直流母线实现能量汇集和分配,使用多个变换器无疑增加了系统成本和复杂性。因此,研究多端DC-DC高压变换器势在必行。With the development of new energy power generation technology, the increase of DC load and the development of high-voltage DC transmission, the application of DC-DC converters in distributed power generation systems, wind farm energy collection and DC transmission is also growing rapidly. In these fields, how to simultaneously connect multiple DC power sources and DC loads and realize high-voltage and high-power conversion are two important technical issues. For the connection of multiple DC power sources and DC loads, multiple DC-DC converters are traditionally used to connect DC power sources and DC loads to the DC bus, and energy collection and distribution are realized through the DC bus. Using multiple converters undoubtedly increases the System cost and complexity. Therefore, it is imperative to study multi-terminal DC-DC high-voltage converters.
实用新型内容Utility model content
本实用新型的目的在于克服上述现有技术的不足,提出一种单输入多输出 M开关组DC-DC变换器。The purpose of this utility model is to overcome above-mentioned deficiencies in the prior art, propose a kind of single-input multiple-output M switch group DC-DC converter.
本实用新型的目的采用如下技术方案之一实现。The purpose of this utility model adopts one of following technical schemes to realize.
单输入多输出M开关组DC-DC变换器包括一个直流输入电源Udc、M-1 路直流负载(R1、R2、…、RM-1)、M个开关组(A1、A2、…、AM)和耦合电感(Lp:Ls)串联而成;第j个开关组Aj由N个功率单元(SMAj1、SMAj2、…、 SMAjN)串联组成,j的取值为1~M,N为正整数;第j开关组Aj的上端构成变换器第j端口Tj,j取值为1~M-1,第M-1开关组的下端构成端口TM,第M 开关组的下端与接地点n相连。A single-input multiple-output M switch group DC-DC converter includes a DC input power supply U dc , M-1 DC loads (R 1 , R 2 ,..., R M-1 ), M switch groups (A 1 , A 2 ,..., A M ) and coupled inductance (L p : L s ) are connected in series; the jth switch group A j is composed of N power units (SM Aj1 , SM Aj2 ,..., SM AjN ) in series, j's The value is from 1 to M, and N is a positive integer; the upper end of the jth switch group A j constitutes the jth port T j of the converter, j takes a value from 1 to M-1, and the lower end of the M-1th switch group constitutes the port T M , the lower end of the Mth switch group is connected to the ground point n.
进一步的,单输入多输出M开关组DC-DC变换器的第一端口T1的电压 U1、第二端口T2的电压U2、…、第M-1端口TM-1的电压UM-1、第M端口TM的电压UM满足U1>U2>…>UM-1>UM。Further, the voltage U 1 of the first port T 1 of the single-input multiple-output M switch group DC-DC converter, the voltage U 2 of the second port T 2 , ..., the voltage U of the M-1th port T M-1 M-1 , the voltage U M of the Mth port TM satisfies U 1 >U 2 >…>UM -1 >UM .
进一步的,直流输入电源Udc、M-1路直流负载(R1、R2、…、RM-1)与M 个端口(T1、T2、…、TM)有三种不同连接方式。第一种方式:第一端口T1连接直流输入电源Udc的正极,直流输入电源Udc的负极与地n连接,第二端口 T2至第M端口TM依次分别与M-1路直流负载(R1、R2、…、RM-1)的一端连接,M-1路直流负载(R1、R2、…、RM-1)的另一端与地连接,实现降压功能;第二种方式:直流输入电源Udc的正极连接第M端口,直流输入电源Udc的负极与地n连接,第一端口至第M-1端口依次分别与M-1路直流负载(R1、R2、…、 RM-1)的一端连接,M-1路直流负载(R1、R2、…、RM-1)的另一端与地连接,实现升压功能;第三种方式:直流输入电源Udc的正极连接第j端口(j取值为 2~M-1),直流输入电源Udc的负极与地n连接,其余M-1个端口依次分别与 M-1路直流负载(R1、R2、…、RM-1)的一端连接,M-1路直流负载(R1、R2、…、 RM-1)的另一端与地连接,同时实现升降压功能,而且通过改变直流电源正极连接的具体端口,可以实现多种不同电压等级的升降压。Further, there are three different connection modes for the DC input power supply U dc , M-1 DC loads (R 1 , R 2 , ..., R M-1 ) and M ports (T 1 , T 2 , ..., TM ) . The first method: the first port T1 is connected to the positive pole of the DC input power supply Udc , the negative pole of the DC input power supply Udc is connected to the ground n, and the second port T2 to the Mth port T M are respectively connected to the M-1 direct current One end of the load (R 1 , R 2 , ..., R M -1 ) is connected, and the other end of the M-1 DC load (R 1 , R 2 , ..., R M-1 ) is connected to the ground to realize the step-down function ; The second way: the positive pole of the DC input power supply Udc is connected to the M port, the negative pole of the DC input power supply Udc is connected to the ground n, and the first port to the M-1th port are respectively connected to the M-1 road DC load (R 1 , R 2 ,..., R M-1 ) are connected at one end, and the other end of the M-1 DC load (R 1 , R 2 ,..., R M-1 ) is connected to the ground to realize the boost function; the third One way: the positive pole of the DC input power supply U dc is connected to the jth port (j is 2 to M-1), the negative pole of the DC input power supply U dc is connected to the ground n, and the remaining M-1 ports are respectively connected to M-1 One end of the DC load (R 1 , R 2 ,…, R M -1 ) is connected, and the other end of the M-1 DC load (R 1 , R 2 ,…, R M-1 ) is connected to the ground, and at the same time Buck-boost function, and by changing the specific port connected to the positive pole of the DC power supply, it can realize buck-boost of various voltage levels.
进一步的,桥臂中的耦合电感可由上桥臂电感和下桥臂电感两个数值相等的独立电感替代。Further, the coupled inductor in the bridge arm can be replaced by two independent inductors with equal values, the upper bridge arm inductor and the lower bridge arm inductor.
进一步的,功率开关单元包括第一开关管、第二开关管、第一二极管、第二二极管和电容;其中,电容的正极与第二开关管的集电极、第二二极管的阴极连接,第二开关管的发射极与第二二极管的阳极、第一开关管的集电极、第一二极管的阴极连接,第一开关管的发射极与第一二极管的阳极、电容的负极连接;第一开关管的集电极作为第一输出端,第一开关管的发射极作为第二输出端。Further, the power switch unit includes a first switch tube, a second switch tube, a first diode, a second diode and a capacitor; wherein, the anode of the capacitor is connected to the collector of the second switch tube, the second diode The cathode connection of the second switching tube, the emitter of the second switching tube is connected to the anode of the second diode, the collector of the first switching tube, and the cathode of the first diode, and the emitter of the first switching tube is connected to the first diode The anode of the capacitor is connected to the negative pole of the capacitor; the collector of the first switching tube is used as the first output terminal, and the emitter of the first switching tube is used as the second output terminal.
进一步的,每个开关组的第i个功率开关单元SMAji的第二输出端与第 i+1个功率开关单元SMAj(i+1)的第一输出端连接,其中i取值为1~(N-1),j取值为1~M。Further, the second output end of the i-th power switch unit SM Aji of each switch group is connected to the first output end of the i+1-th power switch unit SM Aj(i+1) , where the value of i is 1 ~(N-1), j takes a value of 1~M.
本实用新型上述变换器的控制方法是:采用载波移相PWM技术控制M个开关组(A1、A2、…、AM)中开关管的导通与关断;用于与调制波比较产生每个开关组第i个功率开关单元控制信号的三角载波uCi相同,其中,i取值为1~N; N个载波(uC1、uC2、…、uCN)依次滞后相角360°/N;M-1路调制波uRef1~uRefM-1采用直流波。The control method of the above-mentioned converter of the present invention is: adopting the carrier phase-shifting PWM technology to control the conduction and shutdown of the switch tubes in the M switch groups (A 1 , A 2 ,..., A M ); for comparison with the modulation wave The triangular carrier u Ci that generates the control signal of the i-th power switch unit in each switch group is the same, where i takes a value from 1 to N; N carriers (u C1 , u C2 ,..., u CN ) lag behind the phase angle by 360 in turn °/N; M-1 modulation waves u Ref1 ~ u RefM-1 adopt DC waves.
上述控制方法中,第j路调制波uRefj与第i个载波uCi通过比较器COMPji进行比较,当第j调制波uRefj大于第i个载波uCi时,比较器COMPji输出高电平,当第j调制波uRefj小于第i个载波uCi时,比较器COMPji输出低电平,其中,j的取值为1~M-1。比较器COMP1i的输出作为第一开关组A1的第i个功率开关单元SMA1i的第一开关管S1门极的控制电平,比较器COMPji输出通过非门后与比较器COMPj-1i的输出一起通过异或门,得到第j的开关组Aj的第i 个功率开关单元SMAji的第一开关管S1门极的控制电平,其中:j的取值为2~M-1,比较器COMPM-1i的输出通过非门得到第M个开关组AM的第i个功率开关单元 SMAMi的第一开关管S1门极的控制电平。每个开关组的每个功率开关单元中第一开关管S1门极的控制电平反相后得到该功率开关单元的第二开关管S2门极的控制电平。In the above control method, the j-th modulation wave u Refj is compared with the i-th carrier u Ci through the comparator COMP ji , when the j-th modulation wave u Refj is greater than the i-th carrier u Ci , the comparator COMP ji outputs a high voltage Ping, when the j-th modulation wave u Refj is smaller than the i-th carrier u Ci , the comparator COMP ji outputs a low level, where the value of j is 1 to M-1. The output of the comparator COMP 1i is used as the control level of the gate of the first switch tube S1 of the i-th power switch unit SM A1i of the first switch group A1, and the output of the comparator COMP ji is passed through the NOT gate and then ANDed by the comparator COMP j The output of -1i passes through the XOR gate together to obtain the control level of the gate of the first switching transistor S1 of the i-th power switch unit SM Aji of the j -th switch group Aj, where: the value of j is 2~ M-1, the output of the comparator COMP M-1i is passed through the NOT gate to obtain the control level of the gate of the first switch S1 of the i-th power switch unit SM AMi of the M -th switch group AM. The control level of the gate of the first switch S1 in each power switch unit of each switch group is obtained by inverting the control level of the gate of the second switch S2 of the power switch unit.
与现有技术相比,本实用新型具有如下优点:单输入多输出M开关组DC-DC变换器具有MMC的优点,通过改变开关组中的模块个数N,可以实现任意输出电压,适合高压、大功率场合的应用;与现有的DC-DC变换电路拓扑相比,本实用新型提出的DC-DC变换器能在一个输入直流电源的情况下,实现M-1路直流输出,极大地降低了工程成本;通过选择变换器端口与直流电源、直流负载间不同的连接方式,单输入多输出M开关组DC-DC变换器能实现升压、降压、同时升降压的功能。Compared with the prior art, the utility model has the following advantages: the single-input multiple-output M switch group DC-DC converter has the advantages of MMC, and by changing the number N of modules in the switch group, any output voltage can be realized, which is suitable for high-voltage , the application of high-power occasions; compared with the existing DC-DC conversion circuit topology, the DC-DC converter proposed by the utility model can realize M-1 DC output under the condition of one input DC power supply, which greatly improves the The engineering cost is reduced; by selecting different connection methods between the converter port and the DC power supply and DC load, the single-input multiple-output M-switch group DC-DC converter can realize the functions of step-up, step-down, and simultaneous step-up and step-down.
附图说明Description of drawings
图1是单输入多输出M开关组DC-DC变换器第二种连接方式下的电路结构图;Fig. 1 is a circuit structure diagram under the second connection mode of a single-input multiple-output M switch group DC-DC converter;
图2是图1所示单输入多输出M开关组DC-DC变换器的功率单元电路结构图;Fig. 2 is a circuit structure diagram of a power unit of a single-input multi-output M switch group DC-DC converter shown in Fig. 1;
图3是图1所示的单输入多输出M开关组DC-DC变换器的载波移相PWM 控制方法的结构图;Fig. 3 is a structural diagram of the carrier phase-shift PWM control method of the single-input multi-output M switch group DC-DC converter shown in Fig. 1;
图4是单输入三输出四开关组DC-DC变换器所采用载波移相PWM控制方法的调制波和载波波形。Figure 4 shows the modulation wave and carrier waveform of the carrier phase-shift PWM control method adopted by the single-input three-output four-switch group DC-DC converter.
图5是单输入三输出四开关组DC-DC变换器的仿真波形图。Fig. 5 is a simulation waveform diagram of a single-input three-output four-switch group DC-DC converter.
具体实施方式Detailed ways
为进一步阐述本实用新型的内容和特点,以下结合附图对本实用新型的具体实施方案进行具体说明,但本实用新型的实施不限于此。需指出的是,以下若有未特别详细说明之过程或符号,均是本领域技术人员可参照现有技术理解或实现的。In order to further illustrate the content and characteristics of the utility model, the specific implementation of the utility model will be described in detail below in conjunction with the accompanying drawings, but the implementation of the utility model is not limited thereto. It should be pointed out that, if there are any processes or symbols in the following that are not specifically described in detail, those skilled in the art can understand or implement them with reference to the prior art.
参考图1,本实施例的单输入多输出M开关组DC-DC变器,包括直流输入电源Udc、M-1路直流负载(R1、R2、…、RM-1)、M个开关组(A1、A2、…、 AM)和耦合电感(Lp:Ls);每个开关组由N个功率单元串联组成,N为正整数,本实例中M为大于等于4的正整数。第一开关组A1的下端与耦合电感(Lp: Ls)原边Lp的同名端连接,耦合电感(Lp:Ls)原边Lp的非同名端与第二开关组A2的上端连接,第j开关组Aj的下端与第j+1开关组Aj+1的上端连接,j 取值为2~M-2,第M-1开关组AM-1的下端与耦合电感(Lp:Ls)副边Ls的同名端相连,耦合电感(Lp:Ls)副边Ls的非同名端与第M开关组AM的上端连接,第M开关组AM的下端与地端n连接。第二种连接方式下第一端口T1至第M-1 端口TM-1分别依次与M-1路直流负载(R1、R2、…、RM-1)的一端相连,M-1 路直流负载(R1、R2、…、RM-1)的另一端与地相连,第M端口TM与直流输入电源Udc的正极连接,直流输入电源Udc的负极与地n连接。如图1所示,每个开关组的第i个功率开关单元(SMAji)的第二输出端与第i+1个功率开关单元(SMAj(i+1))的第一输出端连接,其中i取值为1~N-1,j取值为1~M。开关组中功率模块采用图2所示半桥子模块。Referring to Fig. 1, the single-input multiple-output M switch group DC-DC converter of this embodiment includes a DC input power supply U dc , M-1 DC loads (R 1 , R 2 , ..., R M-1 ), M switch groups (A 1 , A 2 ,..., A M ) and coupled inductors (L p : L s ); each switch group consists of N power units in series, and N is a positive integer. In this example, M is greater than or equal to A positive integer of 4. The lower end of the first switch group A1 is connected to the end with the same name of the primary side L p of the coupled inductance (L p : L s ), and the non-identical end of the primary side L p of the coupled inductance (L p : L s ) is connected to the end of the second switch group A2 The upper end is connected, the lower end of the jth switch group A j is connected to the upper end of the j+1th switch group A j+1 , the value of j is 2 to M-2, the lower end of the M-1th switch group A M-1 is coupled to The inductance (L p : L s ) is connected to the end with the same name of the secondary side L s , and the non-identical end of the secondary side L s of the coupled inductance (L p : L s ) is connected to the upper end of the M switch group A M , and the M switch group A The lower end of M is connected to the ground terminal n. In the second connection mode, the first port T 1 to the M-1th port T M-1 are respectively connected to one end of M-1 DC loads (R 1 , R 2 ,..., R M-1 ), M- The other end of a DC load (R 1 , R 2 , ..., R M-1 ) is connected to the ground, the Mth port TM is connected to the positive pole of the DC input power supply U dc , and the negative pole of the DC input power supply U dc is connected to the ground n connect. As shown in Figure 1, the second output end of the i-th power switch unit (SM Aji ) of each switch group is connected to the first output end of the i+1-th power switch unit (SM Aj(i+1) ) , where i takes a value from 1 to N-1, and j takes a value from 1 to M. The power module in the switch group adopts the half-bridge sub-module shown in Fig. 2 .
如图1所示,可得直流电源电压Udc、M-1路负载两端电压U1~UM-1为:As shown in Figure 1, the DC power supply voltage U dc and the voltages U 1 ~ U M-1 at both ends of the M-1 load can be obtained as:
uLp=uLs (2)u Lp =u Ls (2)
结合(1)(2)可得Combine (1)(2) to get
其中,2≤j≤M。Among them, 2≤j≤M.
根据载波移相调制策略,选用M-1路调制波为:According to the carrier phase-shift modulation strategy, select M-1 modulation waves as:
本例中单输入三输出四开关组DC-DC变换器采用第二种连接方式,并且 N=4,Uc=60V,U4=Udc=48V。为了获得三路输出U1=200V,U2=160V,U3=100V,由式(4)算得调制波uref1=0.5,uref2=0,uref3=-13/30。所得调制波和载波的波形如图4所示。In this example, the single-input three-output four-switch group DC-DC converter adopts the second connection mode, and N=4, U c =60V, U 4 =U dc =48V. In order to obtain three outputs U 1 =200V, U 2 =160V, and U 3 =100V, the modulated waves u ref1 =0.5, u ref2 =0, u ref3 =-13/30 are calculated from formula (4). The waveforms of the obtained modulated wave and carrier wave are shown in Figure 4.
单输入三输出四开关组DC-DC变换器采用载波移相PWM技术控制M个开关组(A1、A2、A3、A4)中开关管的导通与关断;与调制波比较得到每个开关组第i个功率开关单元控制信号的载波uCi相同,其中:i取值为1~4;4个载波(uC1、uC2、uC3、uC4)依次滞后相角90°,3路直流调制波为uRef1=0.5,uRef2=0, uRef3=-13/30。第j路调制波uRefj与第i个载波uCi通过第j比较器进行比较,当第j调制波uRefj大于第i个载波uCi时,第j比较器输出高电平,当第j调制波uRefj小于第i个载波uCi时,第j比较器输出低电平,j的取值为1~M-1。比较器COMP1i的输出作为第一开关组A1的第i个功率开关单元SMA1i的第一开关管S1门极的控制电平,比较器COMPji输出通过非门后与比较器COMPj-1i的输出一起通过异或门,得到第j的开关组Aj的第i个功率开关单元SMAji的第一开关管S1门极的控制电平,其中:j的取值为2~M-1,比较器COMPM-1i的输出通过非门得到第M个开关组AM的第i个功率开关单元SMAMi的第一开关管S1门极的控制电平。每个开关组的每个功率开关单元中第一开关管S1门极的控制电平反相后得到该功率开关单元的第二开关管S2门极的控制电平。Single-input three-output four-switch group DC-DC converter adopts carrier phase-shift PWM technology to control the conduction and turn-off of switch tubes in M switch groups (A 1 , A 2 , A 3 , A 4 ); compared with modulation wave The carrier u Ci of the control signal of the i-th power switch unit in each switch group is the same, where: i ranges from 1 to 4; the four carriers (u C1 , u C2 , u C3 , u C4 ) lag behind the phase angle by 90 in turn °, 3 channels of DC modulation waves are u Ref1 =0.5, u Ref2 =0, u Ref3 =-13/30. The j-th modulation wave u Refj is compared with the i-th carrier u Ci by the j-th comparator. When the j-th modulation wave u Refj is greater than the i-th carrier u Ci , the j-th comparator outputs a high level. When the j-th When the modulation wave u Refj is smaller than the i-th carrier u Ci , the j-th comparator outputs a low level, and the value of j is 1 to M-1. The output of the comparator COMP 1i is used as the control level of the gate of the first switch tube S1 of the i-th power switch unit SM A1i of the first switch group A1, and the output of the comparator COMP ji is passed through the NOT gate and then ANDed by the comparator COMP j The output of -1i passes through the XOR gate together to obtain the control level of the gate of the first switching transistor S1 of the i-th power switch unit SM Aji of the j -th switch group Aj, wherein: the value of j is 2~ M-1, the output of the comparator COMP M-1i is passed through the NOT gate to obtain the control level of the gate of the first switch S1 of the i-th power switch unit SM AMi of the M -th switch group AM. The control level of the gate of the first switch S1 in each power switch unit of each switch group is obtained by inverting the control level of the gate of the second switch S2 of the power switch unit.
图5为N=4,Udc=240V时,单输入三输出四开关组DC-DC变换器的仿真波形图,从上到下依次是第一调制波uRef1、第二调制波uRef2、第三调制波uRef3、第一负载电压U1和第一开关组输出电压uA1、第二负载电压U2和第二开关组的电压uA2,第三负载电压U3和第三开关组电压uA3,直流输入电压Udc和第四开关组电压uA4。从波形图可见,U1、U2、U3虽然为脉动直流,但其平均值分别为目标直流电压200V、160V、100V。Figure 5 is a simulation waveform diagram of a single-input three-output four-switch group DC-DC converter when N=4 and U dc =240V. From top to bottom are the first modulation wave u Ref1 , the second modulation wave u Ref2 , The third modulation wave u Ref3 , the first load voltage U 1 and the output voltage u A1 of the first switch group, the second load voltage U 2 and the voltage u A2 of the second switch group, the third load voltage U 3 and the third switch group voltage u A3 , the DC input voltage U dc and the fourth switch group voltage u A4 . It can be seen from the waveform diagram that although U 1 , U 2 , and U 3 are pulsating DC, their average values are respectively the target DC voltages of 200V, 160V, and 100V.
上述实施例为本实用新型较佳的实施方式,但本实用新型的实施方式并不受所述实施例的限制,其他的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。The above-mentioned embodiment is a preferred implementation mode of the present utility model, but the implementation mode of the present utility model is not limited by the described embodiment, and any other changes, modifications, modifications, Substitution, combination, and simplification should all be equivalent replacement methods, and are all included in the protection scope of the present utility model.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821186439.8U CN209516935U (en) | 2018-07-25 | 2018-07-25 | Single-input multi-output M switch group DC-DC converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821186439.8U CN209516935U (en) | 2018-07-25 | 2018-07-25 | Single-input multi-output M switch group DC-DC converter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209516935U true CN209516935U (en) | 2019-10-18 |
Family
ID=68186854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201821186439.8U Active CN209516935U (en) | 2018-07-25 | 2018-07-25 | Single-input multi-output M switch group DC-DC converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN209516935U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108880235A (en) * | 2018-07-25 | 2018-11-23 | 华南理工大学 | Single-input multi-output M switch group DC-DC converter and control method thereof |
-
2018
- 2018-07-25 CN CN201821186439.8U patent/CN209516935U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108880235A (en) * | 2018-07-25 | 2018-11-23 | 华南理工大学 | Single-input multi-output M switch group DC-DC converter and control method thereof |
CN108880235B (en) * | 2018-07-25 | 2021-07-23 | 华南理工大学 | Single-input multiple-output M-switch group DC-DC converter and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20060060825A (en) | High Efficiency DC Power Converter with Parallel Power Transmission Method | |
CN112928919B (en) | Isolated high-frequency resonant DC-DC converter with wide output voltage range and method | |
EP3091652A1 (en) | Bidirectional transmission convertor suitable for high voltage and high power | |
CN110855163A (en) | A single-stage isolated three-phase rectifier and its control method | |
CN109149922B (en) | Power factor correction circuit and alternating current charger for electric automobile using same | |
Cha et al. | Highly efficient step-up dc–dc converter for photovoltaic micro-inverter | |
CN108390366B (en) | A topology control method of three-wire DC power flow controller | |
CN112152464A (en) | Device series DC transformer with fault blocking capability and control method thereof | |
CN113328622A (en) | Control method of flying capacitor type three-level direct current buck converter | |
CN109713901A (en) | A kind of end Boost coupling inductance formula buck translation circuit and control method | |
CN108512430A (en) | A kind of three Port Translation device of ZVZCS full-bridges and its control method | |
CN216873080U (en) | Multiport DC-DC Converter for Photovoltaic System Based on Two-quadrant Inverter Topology Unit | |
CN109842299B (en) | Combined DC conversion system and its control method | |
CN114884318A (en) | Control method of bidirectional buck-boost direct current converter based on duty ratio compensation | |
Kokkonda et al. | A high gain soft-switching active-clamped coupled-inductor-based converter for grid-tied photovoltaic applications | |
Ghorbanian et al. | A soft-switching bridgeless buck-boost power factor correction converter with simple auxiliary circuit and low input current THD | |
CN107147303B (en) | A single-phase X-type interleaved three-level AC voltage regulating circuit | |
CN209516935U (en) | Single-input multi-output M switch group DC-DC converter | |
CN114679808A (en) | A soft-switching n-channel current sharing LED output circuit with wide input voltage | |
CN102097943B (en) | Dual-input direct-current (DC) converter | |
CN110336325B (en) | A control method and device based on a novel single-phase photovoltaic grid-connected topology | |
CN209767386U (en) | Four-Port Converter with Bipolar Output | |
CN117200602A (en) | A dual-mode non-leakage current non-isolated five-level single-stage boost grid-connected inverter | |
CN102647100A (en) | An Integrated Buck-flyback High Power Factor Converter | |
CN108880235A (en) | Single-input multi-output M switch group DC-DC converter and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |