CN209102996U - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
CN209102996U
CN209102996U CN201820642077.2U CN201820642077U CN209102996U CN 209102996 U CN209102996 U CN 209102996U CN 201820642077 U CN201820642077 U CN 201820642077U CN 209102996 U CN209102996 U CN 209102996U
Authority
CN
China
Prior art keywords
lens
optical axis
imaging system
optical
optical imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820642077.2U
Other languages
English (en)
Inventor
张永明
蔡振宏
李鸿文
赖建勋
刘耀维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ability Opto Electronics Technology Co Ltd
Original Assignee
Ability Opto Electronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ability Opto Electronics Technology Co Ltd filed Critical Ability Opto Electronics Technology Co Ltd
Application granted granted Critical
Publication of CN209102996U publication Critical patent/CN209102996U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统,由物侧至像侧依序包含第一透镜、第二透镜、第三透镜以及第四透镜。第一透镜具有正屈折力,其物侧面可为凸面。第二透镜至第三透镜具有屈折力,前述各透镜的两个表面可皆为非球面。第四透镜可具有负屈折力,其像侧面可为凹面,其两表面皆为非球面,其中第四透镜的至少一个表面具有反曲点。光学成像系统中具屈折力的透镜为第一透镜至第四透镜。当满足特定条件时,可具备更大的收光以及更佳的光路调节能力,以提升成像质量。

Description

光学成像系统
技术领域
本发明是有关于一种光学成像系统,且特别是有关于一种应用于电子产品上的小型化光学成像系统组。
背景技术
近年来,随着具有摄影功能的可携式电子产品的兴起,光学系统的需求日渐提高。一般光学系统的感光组件不外乎是感光耦合组件(Charge Coupled Device;CCD)或互补性氧化金属半导体元(Complementary Metal-Oxide SemiconduTPor Sensor;CMOSSensor)两种,且随着半导体制程技术的精进,使得感光组件的像素尺寸缩小,光学系统逐渐往高像素领域发展,因此对成像质量的要求也日益增加。
传统搭载于便携设备上的光学系统,多采用二片或三片式透镜结构为主,然而由于便携设备不断朝提升像素并且终端消费者对大光圈的需求例如微光与夜拍功能或是对广视角的需求例如前置镜头的自拍功能。惟设计大光圈的光学系统常面临产生更多像差致使周边成像质量随之劣化以及制造难易度的处境,而设计广视角的光学系统则会面临成像的畸变率(distortion)提高,习知的光学成像系统已无法满足更高阶的摄影要求。
因此,如何有效增加光学成像系统的进光量与增加光学成像系统的视角,除进一步提高成像的总像素与质量外同时能兼顾微型化光学成像系统的衡平设计,便成为一个相当重要的议题。
发明内容
本发明实施例的目的是针对一种光学成像系统,能够利用四个透镜的屈光力、凸面与凹面的组合(本发明所述凸面或凹面原则上是指各透镜的物侧面或像侧面于光轴上的几何形状描述),进而有效提高光学成像系统的进光量与增加光学成像系统的视角,同时提高成像的总像素与质量,以应用于小型的电子产品上。
本发明实施例相关的透镜参数的用语与其代号详列如下,作为后续描述的参考:
与长度或高度有关的透镜参数:光学成像系统的成像高度以HOI表示;光学成像系统的高度以HOS表示;光学成像系统的第一透镜物侧面至第四透镜像侧面间的距离以InTL表示;光学成像系统的第四透镜像侧面至成像面间的距离以InB表示;InTL+InB=HOS;光学成像系统的固定光栏(光圈)至成像面间的距离以InS表示;光学成像系统的第一透镜与第二透镜间的距离以IN12表示(例示);光学成像系统的第一透镜于光轴上的厚度以TP1表示(例示)。
与材料有关的透镜参数:光学成像系统的第一透镜的色散系数以NA1表示 (例示);第一透镜的折射率以Nd1表示(例示)。
与视角有关的透镜参数:视角以AF表示;视角的一半以HAF表示;主光线角度以MRA表示。
与出入瞳有关的透镜参数:光学成像系统的入射瞳直径以HEP表示;单一透镜的任一表面的最大有效半径是指系统最大视角入射光通过入射瞳最边缘的光线于该透镜表面交会点(Effective Half Diameter;EHD),该交会点与光轴之间的垂直高度。例如第一透镜物侧面的最大有效半径以EHD11表示,第一透镜像侧面的最大有效半径以EHD12表示。第二透镜物侧面的最大有效半径以EHD21 表示,第二透镜像侧面的最大有效半径以EHD22表示。光学成像系统中其余透镜的任一表面的最大有效半径表示方式以此类推。
与透镜面形深度有关的参数:第四透镜物侧面于光轴上的交点至第四透镜物侧面的最大有效半径位置于光轴的水平位移距离以InRS41表示(例示);第四透镜像侧面于光轴上的交点至第四透镜像侧面的最大有效半径位置于光轴的水平位移距离以InRS42表示(例示)。
与透镜面型有关的参数:临界点C是指特定透镜表面上,除与光轴的交点外,一与光轴相垂直的切面相切的点。承上,例如第三透镜物侧面的临界点C31 与光轴的垂直距离为HVT31(例示),第三透镜像侧面的临界点C32与光轴的垂直距离为HVT32(例示),第四透镜物侧面的临界点C41与光轴的垂直距离为 HVT41(例示),第四透镜像侧面的临界点C42与光轴的垂直距离为HVT42(例示)。其他透镜的物侧面或像侧面上的临界点及其与光轴的垂直距离的表示方式比照前述。
第四透镜物侧面上最接近光轴的反曲点为IF411,该点沉陷量SGI411(例示),SGI411亦即第四透镜物侧面于光轴上的交点至第四透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离,IF411该点与光轴间的垂直距离为 HIF411(例示)。第四透镜像侧面上最接近光轴的反曲点为IF421,该点沉陷量 SGI421(例示),SGI411亦即第四透镜像侧面于光轴上的交点至第四透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离,IF421该点与光轴间的垂直距离为HIF421(例示)。
第四透镜物侧面上第二接近光轴的反曲点为IF412,该点沉陷量SGI412(例示),SGI412亦即第四透镜物侧面于光轴上的交点至第四透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离,IF412该点与光轴间的垂直距离为HIF412(例示)。第四透镜像侧面上第二接近光轴的反曲点为IF422,该点沉陷量SGI422(例示),SGI422亦即第四透镜像侧面于光轴上的交点至第四透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离,IF422该点与光轴间的垂直距离为HIF422(例示)。
第四透镜物侧面上第三接近光轴的反曲点为IF413,该点沉陷量SGI413(例示),SGI413亦即第四透镜物侧面于光轴上的交点至第四透镜物侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离,IF4132该点与光轴间的垂直距离为HIF413(例示)。第四透镜像侧面上第三接近光轴的反曲点为IF423,该点沉陷量SGI423(例示),SGI423亦即第四透镜像侧面于光轴上的交点至第四透镜像侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离,IF423该点与光轴间的垂直距离为HIF423(例示)。
第四透镜物侧面上第四接近光轴的反曲点为IF414,该点沉陷量SGI414(例示),SGI414亦即第四透镜物侧面于光轴上的交点至第四透镜物侧面第四接近光轴的反曲点之间与光轴平行的水平位移距离,IF414该点与光轴间的垂直距离为HIF414(例示)。第四透镜像侧面上第四接近光轴的反曲点为IF424,该点沉陷量SGI424(例示),SGI424亦即第四透镜像侧面于光轴上的交点至第四透镜像侧面第四接近光轴的反曲点之间与光轴平行的水平位移距离,IF424该点与光轴间的垂直距离为HIF424(例示)。
其他透镜物侧面或像侧面上的反曲点及其与光轴的垂直距离或其沉陷量的表示方式比照前述。
与像差有关的变数:光学成像系统的光学畸变(Optical Distortion)以ODT表示;其TV畸变(TV Distortion)以TDT表示,并且可以进一步限定描述在成像 50%至100%视野间像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。
光学成像系统的调制转换函数特性图(Modulation Transfer Function;MTF),用来测试与评估系统成像的反差对比度及锐利度。调制转换函数特性图的垂直坐标轴表示对比转移率(数值从0到1),水平坐标轴则表示空间频率(cycles/mm; lp/mm;linepairs per mm)。完美的成像系统理论上能100%呈现被摄物体的线条对比,然而实际的成像系统,其垂直轴的对比转移率数值小于1。此外,一般而言成像的边缘区域会比中心区域较难得到精细的还原度。可见光频谱在成像面上,光轴、0.3视场以及0.7视场三处于空间频率55cycles/mm的对比转移率(MTF数值)分别以MTFE0、MTFE3以及MTFE7表示,光轴、0.3视场以及 0.7视场都处于空间频率110cycles/mm的对比转移率(MTF数值)分别以MTFQ0、 MTFQ3以及MTFQ7表示,光轴、0.3视场以及0.7视场都处于空间频率220 cycles/mm的对比转移率(MTF数值)分别以MTFH0、MTFH3以及MTFH7表示,光轴、0.3视场以及0.7视场都处于空间频率440cycles/mm的对比转移率(MTF 数值)分别以MTF0、MTF3以及MTF7表示,前述此三个视场对于镜头的中心、内视场以及外视场具有代表性,因此可用以评价特定光学成像系统的性能是否优异。若光学成像系统的设计是对应像素大小(Pixel Size)为含1.12微米以下的感光组件,因此调制转换函数特性图的四分的一空间频率、半数空间频率(半频) 以及完全空间频率(全频)分别至少为110cycles/mm、220cycles/mm以及440cycles/mm。
光学成像系统若同时须满足针对红外线频谱的成像,例如用于低光源的夜视需求,所使用的工作波长可为850nm或800nm,由于主要功能在辨识黑白明暗所形成的物体轮廓,无须高分辨率,因此可仅需选用小于110cycles/mm的空间频率评价特定光学成像系统在红外线频谱频谱的性能是否优异。前述工作波长850nm当聚焦在成像面上,影像于光轴、0.3视场以及0.7视场都处于空间频率55cycles/mm的对比转移率(MTF数值)分别以MTFI0、MTFI3以及 MTFI7表示。然而,也因为红外线工作波长850nm或800nm与一般可见光波长差距很远,若光学成像系统需同时能对可见光与红外线(双模)对焦并分别达到一定性能,在设计上有相当难度。
本发明提供一种光学成像系统,可同时对可见光与红外线(双模)对焦并分别达到一定性能,并且其第四透镜的物侧面或像侧面设置有反曲点,可有效调整各视场入射于第四透镜的角度,并针对光学畸变与TV畸变进行补正。另外,第四透镜的表面可具备更佳的光路调节能力,以提升成像质量。
依据本发明提供一种光学成像系统,由物侧至像侧依序包含第一透镜,具有屈折力;第二透镜,具有正屈折力;第三透镜,具有屈折力;第四透镜,具有屈折力;以及成像面;其中该光学成像系统具有屈折力的透镜为四个,该第一透镜至该第四透镜的焦距分别为f1、f2、f3、f4,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该成像面于光轴上具有一距离HOS,该第一透镜物侧面至该第四透镜像侧面于光轴上具有一距离 InTL,该光学成像系统的最大可视角度的一半为HAF,该第一透镜、该第二透镜、该第三透镜以及该第四透镜于1/2HEP高度且平行于光轴的厚度分别为 ETP1、ETP2、ETP3以及ETP4,前述ETP1至ETP4的总和为SETP,该第一透镜、该第二透镜、该第三透镜以及该第四透镜于光轴的厚度分别为TP1、TP2、TP3 以及TP4,前述TP1至TP4的总和为STP,其满足下列条件:1≦f/HEP≦10;0 deg<HAF≦150deg以及0.5≦SETP/STP<1。
优选地,该第一透镜与该第二透镜之间于光轴上的距离为IN12,该第二透镜与该第三透镜之间于光轴上的距离为IN23,该第三透镜与该第四透镜之间于光轴上的距离为IN34,其满足下列条件:IN12>IN23>IN34。
优选地,该第四透镜具有负屈折力。
优选地,可见光在该成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率55cycles/mm的调制转换对比转移率(MTF数值)分别以MTFE0、MTFE3以及MTFE7表示,其满足下列条件:MTFE0≧0.2;MTFE3≧0.01;以及MTFE7 ≧0.01。
优选地,该第一透镜物侧面上于1/2HEP高度的坐标点至该成像面间平行于光轴的水平距离为ETL,该第一透镜物侧面上于1/2HEP高度的坐标点至该第四透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,其满足下列条件:0.2≦EIN/ETL<1。
优选地,该第一透镜于1/2HEP高度且平行于光轴的厚度为ETP1,该第二透镜于1/2HEP高度且平行于光轴的厚度为ETP2,该第三透镜于1/2HEP高度且平行于光轴的厚度为ETP3,该第四透镜于1/2HEP高度且平行于光轴的厚度为ETP4,前述ETP1至ETP4的总和为SETP,该第一透镜物侧面上于1/2HEP 高度的坐标点至该第四透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,其满足下列公式:0.3≦SETP/EIN<1。
优选地,该光学成像系统包括一滤光组件,该滤光组件位于该第四透镜以及该成像面之间,该第四透镜像侧面上于1/2HEP高度的坐标点至该滤光组件间平行于光轴的距离为EIR,该第四透镜像侧面上与光轴的交点至该滤光组件间平行于光轴的距离为PIR,其满足下列公式:0.1≦EIR/PIR≦1.1。
优选地,该第三透镜像侧面上于1/2HEP高度的坐标点至该成像面间平行于光轴的水平距离为EBL,该第四透镜像侧面上与光轴的交点至该成像面平行于光轴的水平距离为BL,其满足下列公式:0.1≦EBL/BL≦1.5。
优选地,更包括一光圈,并且于该光圈至该成像面于光轴上具有一距离InS,其满足下列公式:0.2≦InS/HOS≦1.1。
依据本发明另提供一种光学成像系统,由物侧至像侧依序包含第一透镜,具有屈折力;第二透镜,具有正屈折力;第三透镜,具有屈折力;第四透镜,具有负屈折力;以及成像面;其中该光学成像系统具有屈折力的透镜为四个且该第一透镜至该第四透镜中至少一透镜其个别的至少一表面具有至少一反曲点,该第一透镜至该第四透镜的焦距分别为f1、f2、f3、f4,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该成像面于光轴上具有一距离HOS,该第一透镜物侧面至该第四透镜像侧面于光轴上具有一距离InTL,该光学成像系统的最大可视角度的一半为HAF,该第一透镜物侧面上于1/2HEP高度的坐标点至该成像面间平行于光轴的水平距离为ETL,该第一透镜物侧面上于1/2HEP高度的坐标点至该第四透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,其满足下列条件:1.0≦f/HEP≦ 10.0;0deg<HAF≦150deg以及0.2≦EIN/ETL<1。
优选地,该第三透镜与第四透镜于光轴上的厚度分别为TP3以及TP4,其满足下列条件:TP3>TP4。
优选地,该第一透镜的物侧面于光轴上为凹面,其像侧面于光轴上为凸面。
优选地,该第三透镜像侧面上于1/2HEP高度的坐标点至该第四透镜物侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为ED34,该第三透镜与该第四透镜之间于光轴上的距离为IN34,其满足下列条件:0<ED34/IN34≦50。
优选地,该第一透镜像侧面上于1/2HEP高度的坐标点至该第二透镜物侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为ED12,该第一透镜与该第二透镜之间于光轴上的距离为IN12,其满足下列条件:0<ED12/IN12≦35。
优选地,该第二透镜于1/2HEP高度且平行于光轴的厚度为ETP2,该第二透镜于光轴上的厚度为TP2,其满足下列条件:0.1≦ETP2/TP2≦5。
优选地,该第三透镜于1/2HEP高度且平行于光轴的厚度为ETP3,该第三透镜于光轴上的厚度为TP3,其满足下列条件:0.1≦ETP3/TP3≦5。
优选地,该第四透镜于1/2HEP高度且平行于光轴的厚度为ETP4,该第四透镜于光轴上的厚度为TP4,其满足下列条件:0.1≦ETP4/TP4≦5。
优选地,可见光在该成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率110cycles/mm的调制转换对比转移率(MTF数值)分别以MTFQ0、MTFQ3 以及MTFQ7表示,其满足下列条件:MTFQ0≧0.2;MTFQ3≧0.01;以及MTFQ7 ≧0.01。
优选地,该第一透镜、该第二透镜、该第三透镜及该第四透镜中至少一透镜为波长小于500nm的光线滤除组件。
依据本发明再提供一种光学成像系统,由物侧至像侧依序包含第一透镜,具有屈折力;第二透镜,具有正屈折力;第三透镜,具有正屈折力;第四透镜,具有负屈折力;以及成像面;其中该光学成像系统具有屈折力的透镜为四个且该第一透镜至该第四透镜中至少一透镜其个别的至少一表面具有至少一反曲点,该第一透镜至该第四透镜的焦距分别为f1、f2、f3、f4,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该成像面于光轴上具有一距离HOS,该第一透镜物侧面至该第四透镜像侧面于光轴上具有一距离InTL,该光学成像系统的最大可视角度的一半为HAF,该第一透镜物侧面上于1/2HEP高度的坐标点至该成像面间平行于光轴的水平距离为ETL,该第一透镜物侧面上于1/2HEP高度的坐标点至该第四透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,其满足下列条件:1.0≦f/HEP≦10; 0deg<HAF≦100deg以及0.2≦EIN/ETL<1。
优选地,该第一透镜与该第二透镜之间于光轴上的距离为IN12,该第二透镜与该第三透镜之间于光轴上的距离为IN23,该第三透镜与该第四透镜之间于光轴上的距离为IN34,其满足下列条件:IN12>IN23>IN34。
优选地,该第三透镜与第四透镜于光轴上的厚度分别为TP3以及TP4,其满足下列条件:TP3>TP4。
优选地,该第三透镜的像侧面于光轴上为凸面。
优选地,该第三透镜与该第四透镜之间于光轴上的距离为IN34,且满足下列公式:0<IN34/f≦5。
优选地,该光学成像系统更包括一光圈、一影像感测组件以及一驱动模块,该影像感测组件设置于该成像面,并且于该光圈至该成像面于光轴上具有一距离InS,该驱动模块可与该些透镜相耦合并使该些透镜产生位移,其满足下列公式:0.2≦InS/HOS≦1.1。
单一透镜在1/2入射瞳直径(HEP)高度的厚度,特别影响该1/2入射瞳直径 (HEP)范围内各光线视场共享区域的修正像差以及各视场光线间光程差的能力,厚度越大则修正像差的能力提升,然而同时亦会增加生产制造上的困难度,因此必须控制单一透镜在1/2入射瞳直径(HEP)高度的厚度,特别是控制该透镜在 1/2入射瞳直径(HEP)高度的厚度(ETP)与该表面所属的该透镜于光轴上的厚度 (TP)间的比例关是(ETP/TP)。例如第一透镜在1/2入射瞳直径(HEP)高度的厚度以ETP1表示。第二透镜在1/2入射瞳直径(HEP)高度的厚度以ETP2表示。光学成像系统中其余透镜在1/2入射瞳直径(HEP)高度的厚度,其表示方式以此类推。前述ETP1至ETP4的总和为SETP,本发明的实施例可满足下列公式:0.3 ≦SETP/EIN<1。
为同时权衡提升修正像差的能力以及降低生产制造上的困难度,特别需控制该透镜在1/2入射瞳直径(HEP)高度的厚度(ETP)与该透镜于光轴上的厚度(TP) 间的比例关系(ETP/TP)。例如第一透镜在1/2入射瞳直径(HEP)高度的厚度以 ETP1表示,第一透镜于光轴上的厚度为TP1,两者间的比值为ETP1/TP1。第二透镜在1/2入射瞳直径(HEP)高度的厚度以ETP2表示,第二透镜于光轴上的厚度为TP2,两者间的比值为ETP2/TP2。光学成像系统中其余透镜在1/2入射瞳直径(HEP)高度的厚度与该透镜于光轴上的厚度(TP)间的比例关系,其表示方式以此类推。本发明的实施例可满足下列公式:0.1≦ETP/TP≦5。
相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离以ED表示,前述水平距离(ED)是平行于光学成像系统的光轴,并且特别影响该1/2入射瞳直径(HEP) 位置各光线视场共享区域的修正像差以及各视场光线间光程差的能力,水平距离越大则修正像差的能力的可能性将提升,然而同时亦会增加生产制造上的困难度以及限制光学成像系统的长度”微缩”的程度,因此必须控制特定相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离(ED)。
为同时权衡提升修正像差的能力以及降低光学成像系统的长度”微缩”的困难度,特别需控制该相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离(ED) 与该相邻两透镜于光轴上的水平距离(IN)间的比例关系(ED/IN)。例如第一透镜与第二透镜在1/2入射瞳直径(HEP)高度的水平距离以ED12表示,第一透镜与第二透镜于光轴上的水平距离为IN12,两者间的比值为ED12/IN12。第二透镜与第三透镜在1/2入射瞳直径(HEP)高度的水平距离以ED23表示,第二透镜与第三透镜于光轴上的水平距离为IN23,两者间的比值为ED23/IN23。光学成像系统中其余相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离与该相邻两透镜于光轴上的水平距离两者间的比例关系,其表示方式以此类推。
该第四透镜像侧面上于1/2HEP高度的坐标点至该成像面间平行于光轴的水平距离为EBL,该第四透镜像侧面上与光轴的交点至该成像面平行于光轴的水平距离为BL,本发明的实施例为同时权衡提升修正像差的能力以及预留其他光学组件的容纳空间,可满足下列公式:0.1≦EBL/BL≦1.5。
光学成像系统可更包括一滤光组件,该滤光组件位于该第四透镜以及该成像面之间,该第四透镜像侧面上于1/2HEP高度的坐标点至该滤光组件间平行于光轴的距离为EIR,该第四透镜像侧面上与光轴的交点至该滤光组件间平行于光轴的距离为PIR,本发明的实施例可满足下列公式:0.1≦EIR/PIR≦1.1。
前述光学成像系统可用以搭配成像在对角线长度为1/1.2英吋大小以下的影像感测组件,该影像感测组件的尺寸优选者为1/2.3英吋,该影像感测组件的像素尺寸小于1.4微米(μm),优选者其像素尺寸小于1.12微米(μm),最佳者其像素尺寸小于0.9微米(μm)。此外,该光学成像系统可适用于长宽比为16:9的影像感测组件。
前述光学成像系统可适用于百万或千万像素以上的摄录像要求(例如4K2K 或称UHD、QHD)并拥有良好的成像质量。
当│f1│>f4时,光学成像系统的系统总高度(HOS;Height of Optic System)可以适当缩短以达到微型化的目的。
当│f2│+│f3│>∣f1│+∣f4│时,藉由第二透镜至第三透镜中至少一透镜具有弱的正屈折力或弱的负屈折力。所称弱屈折力,是指特定透镜的焦距的绝对值大于10。当本发明第二透镜至第三透镜中至少一透镜具有弱的正屈折力,其可有效分担第一透镜的正屈折力而避免不必要的像差过早出现,反的若第二透镜至第三透镜中至少一透镜具有弱的负屈折力,则可以微调补正系统的像差。
第四透镜可具有负屈折力,其像侧面可为凹面。藉此,有利于缩短其后焦距以维持小型化。另外,第四透镜的至少一表面可具有至少一反曲点,可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
附图说明
本发明上述及其他特征将藉由参照附图详细说明。
图1A是展示本发明第一实施例的光学成像系统的示意图;
图1B由左至右依序展示本发明第一实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图1C是展示本发明第一实施例光学成像系统的可见光频谱调制转换特征图;
图2A是展示本发明第二实施例的光学成像系统的示意图;
图2B由左至右依序展示本发明第二实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图2C是展示本发明第二实施例光学成像系统的可见光频谱调制转换特征图;
图3A是展示本发明第三实施例的光学成像系统的示意图;
图3B由左至右依序展示本发明第三实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图3C是展示本发明第三实施例光学成像系统的可见光频谱调制转换特征图;
图4A是展示本发明第四实施例的光学成像系统的示意图;
图4B由左至右依序展示本发明第四实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图4C是展示本发明第四实施例光学成像系统的可见光频谱调制转换特征图;
图5A是展示本发明第五实施例的光学成像系统的示意图;
图5B由左至右依序展示本发明第五实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图5C是展示本发明第五实施例光学成像系统的可见光频谱调制转换特征图;
图6A是展示本发明第六实施例的光学成像系统的示意图;
图6B由左至右依序展示本发明第六实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图6C是展示本发明第六实施例光学成像系统的可见光频谱调制转换特征图。
具体实施方式
一种光学成像系统,由物侧至像侧依序包含具屈折力的第一透镜、第二透镜、第三透镜以及第四透镜。光学成像系统更可包含一影像感测组件,其设置于成像面。
光学成像系统可使用三个工作波长进行设计,分别为486.1nm、587.5nm、656.2nm,其中587.5nm为主要参考波长为主要提取技术特征的参考波长。光学成像系统亦可使用五个工作波长进行设计,分别为470nm、510nm、555nm、 610nm、650nm,其中555nm为主要参考波长为主要提取技术特征的参考波长。
光学成像系统的焦距f与每一片具有正屈折力的透镜的焦距fp的比值PPR,光学成像系统的焦距f与每一片具有负屈折力的透镜的焦距fn的比值NPR,所有正屈折力的透镜的PPR总和为ΣPPR,所有负屈折力的透镜的NPR总和为ΣNPR,当满足下列条件时有助于控制光学成像系统的总屈折力以及总长度:0.5 ≦ΣPPR/│ΣNPR│≦4.5,优选地,可满足下列条件:1≦ΣPPR/│ΣNPR│≦3.5。
光学成像系统的系统高度为HOS,当HOS/f比值趋近于1时,将有利于制作微型化且可成像超高像素的光学成像系统。
光学成像系统的每一片具有正屈折力的透镜的焦距fp的总和为ΣPP,每一片具有负屈折力的透镜的焦距总和为ΣNP,本发明的光学成像系统的一种实施方式,其满足下列条件:0<ΣPP≦200;以及f1/ΣPP≦0.85。优选地,可满足下列条件:0<ΣPP≦150;以及0.01≦f1/ΣPP≦0.7。藉此,有助于控制光学成像系统的聚焦能力,并且适当分配系统的正屈折力以抑制显著的像差过早产生。
第一透镜可具有正屈折力,其物侧面可为凸面。藉此,可适当调整第一透镜的正屈折力强度,有助于缩短光学成像系统的总长度。
第二透镜可具有负屈折力。藉此,可补正第一透镜产生的像差。
第三透镜可具有正屈折力。藉此,可分担第一透镜的正屈折力。
第四透镜可具有负屈折力,其像侧面可为凹面。藉此,有利于缩短其后焦距以维持小型化。另外,第四透镜的至少一表面可具有至少一反曲点,可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。优选地,其物侧面以及像侧面均具有至少一反曲点。
光学成像系统可更包含一影像感测组件,其设置于成像面。影像感测组件有效感测区域对角线长的一半(即为光学成像系统的成像高度或称最大像高)为 HOI,第一透镜物侧面至成像面于光轴上的距离为HOS,其满足下列条件: HOS/HOI≦3;以及0.5≦HOS/f≦3.0。优选地,可满足下列条件:1≦HOS/HOI ≦2.5;以及1≦HOS/f≦2。藉此,可维持光学成像系统的小型化,以搭载于轻薄可携式的电子产品上。
另外,本发明的光学成像系统中,依需求可设置至少一光圈,以减少杂散光,有助于提升影像质量。
本发明的光学成像系统中,光圈配置可为前置光圈或中置光圈,其中前置光圈意即光圈设置于被摄物与第一透镜间,中置光圈则表示光圈设置于第一透镜与成像面间。若光圈为前置光圈,可使光学成像系统的出瞳与成像面产生较长的距离而容置更多光学组件,并可增加影像感测组件接收影像的效率;若为中置光圈,是有助于扩大系统的视场角,使光学成像系统具有广角镜头的优势。前述光圈至成像面间的距离为InS,其满足下列条件:0.2≦InS/HOS≦1.1。优选地,可满足下列条件:0.8≦InS/HOS≦1。藉此,可同时兼顾维持光学成像系统的小型化以及具备广角的特性。
本发明的光学成像系统中,第一透镜物侧面至第四透镜像侧面间的距离为 InTL,于光轴上所有具屈折力的透镜的厚度总和ΣTP,其满足下列条件:0.45 ≦ΣTP/InTL≦0.95。优选地,可满足下列条件:0.6≦ΣTP/InTL≦0.9。藉此,当可同时兼顾系统成像的对比度以及透镜制造的良率并提供适当的后焦距以容置其他组件。
第一透镜物侧面的曲率半径为R1,第一透镜像侧面的曲率半径为R2,其满足下列条件:0.01≦│R1/R2│≦0.5。藉此,第一透镜的具备适当正屈折力强度,避免球差增加过速。优选地,可满足下列条件:0.01≦│R1/R2│≦0.4。
第四透镜物侧面的曲率半径为R7,第四透镜像侧面的曲率半径为R8,其满足下列条件:-200<(R7-R8)/(R7+R8)<30。藉此,有利于修正光学成像系统所产生的像散。
第一透镜与第二透镜于光轴上之间隔距离为IN12,其满足下列条件: 0<IN12/f≦0.25。优选地,可满足下列条件:0.01≦IN12/f≦0.20。藉此,有助于改善透镜的色差以提升其性能。
第二透镜与第三透镜于光轴上之间隔距离为IN23,其满足下列条件: 0<IN23/f≦0.25。优选地,可满足下列条件:0.01≦IN23/f≦0.20。藉此,有助于改善透镜的性能。
第三透镜与第四透镜于光轴上之间隔距离为IN34,其满足下列条件: 0<IN34/f≦5。优选地,可满足下列条件:0.001≦IN34/f≦0.20。藉此,有助于改善透镜的性能。
第一透镜与第二透镜于光轴上的厚度分别为TP1以及TP2,其满足下列条件:1≦(TP1+IN12)/TP2≦10。藉此,有助于控制光学成像系统制造的敏感度并提升其性能。
第三透镜与第四透镜于光轴上的厚度分别为TP3以及TP4,前述两透镜于光轴上之间隔距离为IN34,其满足下列条件:0.2≦(TP4+IN34)/TP4≦3。藉此,有助于控制光学成像系统制造的敏感度并降低系统总高度。
第二透镜与第三透镜于光轴上之间隔距离为IN23,第一透镜至第四透镜于光轴上的总和距离为ΣTP,其满足下列条件:0.01≦IN23/(TP2+IN23+TP3)≦0.5。优选地,可满足下列条件:0.05≦IN23/(TP2+IN23+TP3)≦0.4。藉此有助层层微幅修正入射光行进过程所产生的像差并降低系统总高度。
本发明的光学成像系统中,第四透镜物侧面142于光轴上的交点至第四透镜物侧面142的最大有效半径位置于光轴的水平位移距离为InRS41(若水平位移朝向像侧,InRS41为正值;若水平位移朝向物侧,InRS41为负值),第四透镜像侧面144于光轴上的交点至第四透镜像侧面144的最大有效半径位置于光轴的水平位移距离为InRS42,第四透镜140于光轴上的厚度为TP4,其满足下列条件:-1mm≦InRS41≦1mm;-1mm≦InRS42≦1mm;1mm≦│InRS41∣ +│InRS42∣≦2mm;0.01≦│InRS41∣/TP4≦10;0.01≦│InRS42∣/TP4≦10。藉此,可控制第四透镜两面间最大有效半径位置,而有助于光学成像系统的外围视场的像差修正以及有效维持其小型化。
本发明的光学成像系统中,第四透镜物侧面于光轴上的交点至第四透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI411表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI421表示,其满足下列条件:0<SGI411/(SGI411+TP4)≦ 0.9;0<SGI421/(SGI421+TP4)≦0.9。优选地,可满足下列条件: 0.01<SGI411/(SGI411+TP4)≦0.7;0.01<SGI421/(SGI421+TP4)≦0.7。
第四透镜物侧面于光轴上的交点至第四透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI412表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI422表示,其满足下列条件:0<SGI412/(SGI412+TP4)≦0.9; 0<SGI422/(SGI422+TP4)≦0.9。优选地,可满足下列条件:0.1≦ SGI412/(SGI412+TP4)≦0.8;0.1≦SGI422/(SGI422+TP4)≦0.8。
第四透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF411表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF421表示,其满足下列条件:0.01≦HIF411/HOI≦0.9;0.01≦ HIF421/HOI≦0.9。优选地,可满足下列条件:0.09≦HIF411/HOI≦0.5;0.09≦ HIF421/HOI≦0.5。
第四透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF412表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF422表示,其满足下列条件:0.01≦HIF412/HOI≦0.9; 0.01≦HIF422/HOI≦0.9。优选地,可满足下列条件:0.09≦HIF412/HOI≦0.8; 0.09≦HIF422/HOI≦0.8。
第四透镜物侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF413表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF423表示,其满足下列条件:0.001mm≦│HIF413 ∣≦5mm;0.001mm≦│HIF423∣≦5mm。优选地,可满足下列条件:0.1mm ≦│HIF423∣≦3.5mm;0.1mm≦│HIF413∣≦3.5mm。
第四透镜物侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF414表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF424表示,其满足下列条件:0.001mm≦│HIF414 ∣≦5mm;0.001mm≦│HIF424∣≦5mm。优选地,可满足下列条件:0.1mm ≦│HIF424∣≦3.5mm;0.1mm≦│HIF414∣≦3.5mm。
本发明的光学成像系统的一种实施方式,可藉由具有高色散系数与低色散系数的透镜交错排列,而助于光学成像系统色差的修正。
上述非球面的方程式是为:
z=ch2/[1+[1-(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+…(1)
其中,z为沿光轴方向在高度为h的位置以表面顶点作参考的位置值,k为锥面系数,c为曲率半径的倒数,且A4、A6、A8、A10、A12、A14、A16、 A18以及A20为高阶非球面系数。
本发明提供的光学成像系统中,透镜的材质可为塑料或玻璃。当透镜材质为塑料,可以有效降低生产成本与重量。另当透镜的材质为玻璃,则可以控制热效应并且增加光学成像系统屈折力配置的设计空间。此外,光学成像系统中第一透镜至第四透镜的物侧面及像侧面可为非球面,其可获得较多的控制变量,除用以消减像差外,相较于传统玻璃透镜的使用甚至可缩减透镜使用的数目,因此能有效降低本发明光学成像系统的总高度。
再者,本发明提供的光学成像系统中,若透镜表面是为凸面,则表示透镜表面于近光轴处为凸面;若透镜表面是为凹面,则表示透镜表面于近光轴处为凹面。
另外,本发明的光学成像系统中,依需求可设置至少一光栏,以减少杂散光,有助于提升影像质量。
本发明的光学成像系统更可视需求应用于移动对焦的光学系统中,并兼具优良像差修正与良好成像质量的特色,从而扩大应用层面。
本发明的光学成像系统更可视需求包括一驱动模块,该驱动模块可与该些透镜相耦合并使该些透镜产生位移。前述驱动模块可以是音圈马达(VCM)用于带动镜头进行对焦,或者为光学防手振组件(OIS)用于降低拍摄过程因镜头振动所导致失焦的发生频率。
本发明的光学成像系统更可视需求令第一透镜、第二透镜、第三透镜、第四透镜中至少一透镜为波长小于500nm的光线滤除组件,其可藉由该特定具滤除功能的透镜的至少一表面上镀膜或该透镜本身即由具可滤除短波长的材质所制作而达成。
本发明的光学成像系统的成像面更可视需求选择为一平面或一曲面。当成像面为一曲面(例如具有一曲率半径的球面),有助于降低聚焦光线于成像面所需的入射角,除有助于达成微缩光学成像系统的长度(TTL)外,对于提升相对照度同时有所帮助。
根据上述实施方式,以下提出具体实施例并配合图式予以详细说明。
第一实施例
请参照图1A及第1B,其中图1A展示依照本发明第一实施例的一种光学成像系统的示意图,图1B由左至右依序为第一实施例的光学成像系统的球差、像散及光学畸变曲线图。图1C为第一实施例的光学成像系统的可见光调制转换特征图。由图1A可知,光学成像系统10由物侧至像侧依序包含光圈100、第一透镜110、第二透镜120、第三透镜130、第四透镜140、红外线滤光片170、成像面180以及影像感测组件190。
第一透镜110具有正屈折力,且为塑料材质,其物侧面112为凸面,其像侧面114为凹面,并皆为非球面,且其物侧面112以及像侧面114均具有一反曲点。第一透镜于光轴上的厚度为TP1,第一透镜在1/2入射瞳直径(HEP)高度的厚度以ETP1表示。
第一透镜物侧面于光轴上的交点至第一透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI111表示,第一透镜像侧面于光轴上的交点至第一透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI121 表示,其满足下列条件:SGI111=0.2008mm;SGI121=0.0113mm;∣SGI111∣ /(∣SGI111∣+TP1)=0.3018;∣SGI121∣/(∣SGI121∣+TP1)=0.0238。
第一透镜物侧面于光轴上的交点至第一透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF111表示,第一透镜像侧面于光轴上的交点至第一透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF121表示,其满足下列条件: HIF111=0.7488mm;HIF121=0.4451mm;HIF111/HOI=0.2552; HIF121/HOI=0.1517。
第二透镜120具有正屈折力,且为塑料材质,其物侧面122为凹面,其像侧面124为凸面,并皆为非球面,且其物侧面122具有一反曲点。第二透镜于光轴上的厚度为TP2,第二透镜在1/2入射瞳直径(HEP)高度的厚度以ETP2表示。
第二透镜物侧面于光轴上的交点至第二透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI211表示,第二透镜像侧面于光轴上的交点至第二透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI221 表示,其满足下列条件:SGI211=-0.1791mm;∣SGI211∣/(∣SGI211∣+TP2)=0.3109。
第二透镜物侧面于光轴上的交点至第二透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF211表示,第二透镜像侧面于光轴上的交点至第二透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF221表示,其满足下列条件: HIF211=0.8147mm;HIF211/HOI=0.2777。
第三透镜130具有负屈折力,且为塑料材质,其物侧面132为凹面,其像侧面134为凸面,并皆为非球面,且其像侧面134具有一反曲点。第三透镜于光轴上的厚度为TP3,第三透镜在1/2入射瞳直径(HEP)高度的厚度以ETP3表示。
第三透镜物侧面于光轴上的交点至第三透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI311表示,第三透镜像侧面于光轴上的交点至第三透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI321 表示,其满足下列条件:SGI321=-0.1647mm;∣SGI321∣/(∣SGI321∣ +TP3)=0.1884。
第三透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF311表示,第三透镜像侧面于光轴上的交点至第三透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF321表示,其满足下列条件:HIF321=0.7269mm; HIF321/HOI=0.2477。
第四透镜140具有负屈折力,且为塑料材质,其物侧面142为凸面,其像侧面144为凹面,并皆为非球面,且其物侧面142具有二反曲点以及像侧面144 具有一反曲点。第四透镜于光轴上的厚度为TP4,第四透镜在1/2入射瞳直径 (HEP)高度的厚度以ETP4表示。
第四透镜物侧面于光轴上的交点至第四透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI411表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI421 表示,其满足下列条件:SGI411=0.0137mm;SGI421=0.0922mm;∣SGI411∣/(∣SGI411∣+TP4)=0.0155;∣SGI421∣/(∣SGI421∣+TP4)=0.0956。
第四透镜物侧面于光轴上的交点至第四透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI412表示,其满足下列条件: SGI412=-0.1518mm;∣SGI412∣/(∣SGI412∣+TP4)=0.1482。
第四透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF411表示,第四透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF411表示,其满足下列条件:HIF411=0.2890mm;HIF421=0.5794mm;HIF411/HOI=0.0985; HIF421/HOI=0.1975。
第四透镜物侧面第二近光轴的反曲点与光轴间的垂直距离以HIF412表示,其满足下列条件:HIF412=1.3328mm;HIF412/HOI=0.4543。
第一透镜物侧面上于1/2HEP高度的坐标点至该成像面间平行于光轴的距离为ETL,第一透镜物侧面上于1/2HEP高度的坐标点至该第四透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,其满足下列条件: ETL=18.744mm;EIN=12.339mm;EIN/ETL=0.658。
本实施例满足下列条件,ETP1=0.949mm;ETP2=2.483mm;ETP3=0.345mm; ETP4=1.168mm。前述ETP1至ETP4的总和SETP=4.945mm。TP1=0.918mm; TP2=2.500mm;TP3=0.300mm;TP4=1.248mm;前述TP1至TP4的总和 STP=4.966mm;SETP/STP=0.996;SETP/EIN=0.40076。
本实施例为特别控制各该透镜在1/2入射瞳直径(HEP)高度的厚度(ETP)与该表面所属的该透镜于光轴上的厚度(TP)间的比例关系(ETP/TP),以在制造性以及修正像差能力间取得平衡,其满足下列条件,ETP1/TP1=1.034; ETP2/TP2=0.993;ETP3/TP3=1.148;ETP4/TP4=0.936。
本实施例为控制各相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离,以在光学成像系统的长度HOS”微缩”程度、制造性以及修正像差能力三者间取得平衡,特别是控制该相邻两透镜在1/2入射瞳直径(HEP)高度的水平距离(ED) 与该相邻两透镜于光轴上的水平距离(IN)间的比例关系(ED/IN),其满足下列条件,第一透镜与第二透镜间在1/2入射瞳直径(HEP)高度的平行于光轴的水平距离为ED12=4.529mm;第二透镜与第三透镜间在1/2入射瞳直径(HEP)高度的平行于光轴的水平距离为ED23=2.735mm;第三透镜与第四透镜间在1/2入射瞳直径(HEP)高度的平行于光轴的水平距离为ED34=0.131mm。
第一透镜与第二透镜于光轴上的水平距离为IN12=4.571mm,两者间的比值为ED12/IN12=0.991。第二透镜与第三透镜于光轴上的水平距离为 IN23=2.752mm,两者间的比值为ED23/IN23=0.994。第三透镜与第四透镜于光轴上的水平距离为IN34=0.094mm,两者间的比值为ED34/IN34=1.387。
第四透镜像侧面上于1/2HEP高度的坐标点至该成像面间平行于光轴的水平距离为EBL=6.405mm,第四透镜像侧面上与光轴的交点至该成像面之间平行于光轴的水平距离为BL=6.3642mm,本发明的实施例可满足下列公式: EBL/BL=1.00641。本实施例第四透镜像侧面上于1/2HEP高度的坐标点至红外线滤光片之间平行于光轴的距离为EIR=0.065mm,第四透镜像侧面上与光轴的交点至红外线滤光片之间平行于光轴的距离为PIR=0.025mm,并满足下列公式: EIR/PIR=2.631。
红外线滤光片170为玻璃材质,其设置于第四透镜140及成像面180间且不影响光学成像系统的焦距。
第一实施例的光学成像系统中,光学成像系统的焦距为f,光学成像系统的入射瞳直径为HEP,光学成像系统中最大视角的一半为HAF,其数值如下: f=3.4375mm;f/HEP=2.23;以及HAF=39.69度与tan(HAF)=0.8299。
第一实施例的光学成像系统中,第一透镜110的焦距为f1,第四透镜140 的焦距为f4,其满足下列条件:f1=3.2736mm;∣f/f1│=1.0501;f4=-8.3381mm;以及∣f1/f4│=0.3926。
第一实施例的光学成像系统中,第二透镜120至第三透镜130的焦距分别为f2、f3,其满足下列条件:│f2│+│f3│=10.0976mm;∣f1│+│f4│=11.6116 mm以及│f2│+│f3│<∣f1│+∣f4│。
光学成像系统的焦距f与每一片具有正屈折力的透镜的焦距fp的比值PPR,光学成像系统的焦距f与每一片具有负屈折力的透镜的焦距fn的比值NPR,第一实施例的光学成像系统中,所有正屈折力的透镜的PPR总和为ΣPPR=∣f/f1 ∣+∣f/f2∣=1.95585,所有负屈折力的透镜的NPR总和为ΣNPR=∣f/f3∣+∣f/f4∣=0.95770,ΣPPR/│ΣNPR│=2.04224。同时亦满足下列条件:∣f/f1│=1.05009;∣f/f2│=0.90576;∣f/f3│=0.54543;∣f/f4│=0.41227。
第一实施例的光学成像系统中,第一透镜物侧面112至第四透镜像侧面144 间的距离为InTL,第一透镜物侧面112至成像面180间的距离为HOS,光圈 100至成像面180间的距离为InS,影像感测组件190有效感测区域对角线长的一半为HOI,第四透镜像侧面144至成像面180间的距离为InB,其满足下列条件:InTL+InB=HOS;HOS=4.4250mm;HOI=2.9340mm;HOS/HOI=1.5082; HOS/f=1.2873;InTL/HOS=0.7191;InS=4.2128mm;以及InS/HOS=0.95204。
第一实施例的光学成像系统中,于光轴上所有具屈折力的透镜的厚度总和为ΣTP,其满足下列条件:ΣTP=2.4437mm;以及ΣTP/InTL=0.76793。藉此,当可同时兼顾系统成像的对比度以及透镜制造的良率并提供适当的后焦距以容置其他组件。
第一实施例的光学成像系统中,第一透镜物侧面112的曲率半径为R1,第一透镜像侧面114的曲率半径为R2,其满足下列条件:│R1/R2│=0.1853。藉此,第一透镜的具备适当正屈折力强度,避免球差增加过速。
第一实施例的光学成像系统中,第四透镜物侧面142的曲率半径为R7,第四透镜像侧面144的曲率半径为R8,其满足下列条件:(R7-R8)/(R7+R8)=0.2756。藉此,有利于修正光学成像系统所产生的像散。
第一实施例的光学成像系统中,第一透镜110与第二透镜120的个别焦距分别为f1、f2,所有具有正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=f1+f2=7.0688mm;以及f1/(f1+f2)=0.4631。藉此,有助于适当分配第一透镜110的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
第一实施例的光学成像系统中,第三透镜130与第四透镜140的个别焦距分别为f3以及f4,所有具有负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=f3+f4=-14.6405mm;以及f4/(f2+f4)=0.5695。藉此,有助于适当分配第四透镜的负屈折力至其他负透镜,以抑制入射光线行进过程显著像差的产生。
第一实施例的光学成像系统中,第一透镜110与第二透镜120于光轴上之间隔距离为IN12,其满足下列条件:IN12=0.3817mm;IN12/f=0.11105。藉此,有助于改善透镜的色差以提升其性能。
第一实施例的光学成像系统中,第二透镜120与第三透镜130于光轴上之间隔距离为IN23,其满足下列条件:IN23=0.0704mm;IN23/f=0.02048。藉此,有助于改善透镜的色差以提升其性能。
第一实施例的光学成像系统中,第三透镜130与第四透镜140于光轴上之间隔距离为IN34,其满足下列条件:IN34=0.2863mm;IN34/f=0.08330。藉此,有助于改善透镜的色差以提升其性能。
第一实施例的光学成像系统中,第一透镜110与第二透镜120于光轴上的厚度分别为TP1以及TP2,其满足下列条件:TP1=0.46442mm;TP2=0.39686mm; TP1/TP2=1.17023以及(TP1+IN12)/TP2=2.13213。藉此,有助于控制光学成像系统制造的敏感度并提升其性能。
第一实施例的光学成像系统中,第三透镜130与第四透镜140于光轴上的厚度分别为TP3以及TP4,前述两透镜于光轴上之间隔距离为IN34,其满足下列条件:TP3=0.70989mm;TP4=0.87253mm;TP3/TP4=0.81359以及 (TP4+IN34)/TP3=1.63248。藉此,有助于控制光学成像系统制造的敏感度并降低系统总高度。
第一实施例的光学成像系统中,其满足下列条件: IN23/(TP2+IN23+TP3)=0.05980。藉此有助层层微幅修正入射光行进过程所产生的像差并降低系统总高度。
第一实施例的光学成像系统中,第四透镜物侧面142于光轴上的交点至第四透镜物侧面142的最大有效半径位置于光轴的水平位移距离为InRS41,第四透镜像侧面144于光轴上的交点至第四透镜像侧面144的最大有效半径位置于光轴的水平位移距离为InRS42,第四透镜140于光轴上的厚度为TP4,其满足下列条件:InRS41=-0.23761mm;InRS42=-0.20206mm;│InRS41∣+│InRS42 ∣=0.43967mm;│InRS41∣/TP4=0.27232;以及│InRS42∣/TP4=0.23158。藉此有利于镜片制作与成型,并有效维持其小型化。
本实施例的光学成像系统中,第四透镜物侧面142的临界点C41与光轴的垂直距离为HVT41,第四透镜像侧面144的临界点C42与光轴的垂直距离为 HVT42,其满足下列条件:HVT41=0.5695mm;HVT42=1.3556mm; HVT41/HVT42=0.4201。藉此,可有效修正离轴视场的像差。
本实施例的光学成像系统其满足下列条件:HVT42/HOI=0.4620。藉此,有助于光学成像系统的外围视场的像差修正。
本实施例的光学成像系统其满足下列条件:HVT42/HOS=0.3063。藉此,有助于光学成像系统的外围视场的像差修正。
第一实施例的光学成像系统中,第一透镜的色散系数为NA1,第二透镜的色散系数为NA2,第三透镜的色散系数为NA3,第四透镜的色散系数为NA4,其满足下列条件:∣NA1-NA2│=0;NA3/NA2=0.39921。藉此,有助于光学成像系统色差的修正。
第一实施例的光学成像系统中,光学成像系统于结像时的TV畸变为TDT,结像时的光学畸变为ODT,其满足下列条件:│TDT│=0.4%;│ODT│=2.5%。
本实施例的光学成像系统中,在该成像面上的光轴、0.3HOI以及0.7HOI 都处于半频的调制转换对比转移率(MTF数值)分别以MTFH0、MTFH3以及 MTFH7表示,其满足下列条件:MTFH0约为0.525;MTFH3约为0.375;以及MTFH7约为0.35。
再配合参照下列表一以及表二。
表二、第一实施例的非球面系数
表一为第一实施例详细的结构数据,其中曲率半径、厚度、距离及焦距的单位为mm,且表面0-14依序表示由物侧至像侧的表面。表二为第一实施例中的非球面数据,其中,k表非球面曲线方程式中的锥面系数,A1-A20则表示各表面第1-20阶非球面系数。此外,以下各实施例表格乃对应各实施例的示意图与像差曲线图,表格中数据的定义皆与第一实施例的表一及表二的定义相同,在此不加赘述。
第二实施例
请参照图2A及图2B,其中图2A展示依照本发明第二实施例的一种光学成像系统的示意图,图2B由左至右依序为第二实施例的光学成像系统的球差、像散及光学畸变曲线图。图2C为第二实施例的光学成像系统的可见光频谱调制转换特征图。由图2A可知,光学成像系统20由物侧至像侧依序包含第一透镜210、光圈200、第二透镜220、第三透镜230、第四透镜240、红外线滤光片270、成像面280以及影像感测组件290。
第一透镜210具有正屈折力,且为塑料材质,其物侧面212为凹面,其像侧面214为凸面,并皆为非球面,且其物侧面212以及像侧面214均具有一反曲点。
第二透镜220具有正屈折力,且为塑料材质,其物侧面222为凹面,其像侧面224为凸面,并皆为非球面,且其像侧面224具有一反曲点。
第三透镜230具有正屈折力,且为塑料材质,其物侧面232为凹面,其像侧面234为凸面,并皆为非球面,且其物侧面232以及像侧面234均具有一反曲点。
第四透镜240具有负屈折力,且为塑料材质,其物侧面242为凸面,其像侧面244为凹面,并皆为非球面,且其物侧面242具有二反曲点以及像侧面244 具有一反曲点。
红外线滤光片270为玻璃材质,其设置于第四透镜240及成像面280间且不影响光学成像系统的焦距。
请配合参照下列表三以及表四。
表四、第二实施例的非球面系数
第二实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表三及表四可得到下列条件式数値:
依据表三及表四可得到下列条件式数値:
第三实施例
请参照图3A及图3B,其中图3A展示依照本发明第三实施例的一种光学成像系统的示意图,图3B由左至右依序为第三实施例的光学成像系统的球差、像散及光学畸变曲线图。图3C为第三实施例的光学成像系统的可见光频谱调制转换特征图。由图3A可知,光学成像系统30由物侧至像侧依序包含第一透镜310、第二透镜320、光圈300、第三透镜330、第四透镜340、红外线滤光片370、成像面380以及影像感测组件390。
第一透镜310具有负屈折力,且为塑料材质,其物侧面312为凸面,其像侧面314为凹面,并皆为非球面,且其物侧面312以及像侧面314均具有二反曲点。
第二透镜320具有正屈折力,且为塑料材质,其物侧面322为凸面,其像侧面324为凹面,并皆为非球面,其物侧面322具有一反曲点。
第三透镜330具有正屈折力,且为塑料材质,其物侧面332为凸面,其像侧面334为凸面,并皆为非球面,其像侧面334具有一反曲点。
第四透镜340具有负屈折力,且为塑料材质,其物侧面342为凹面,其像侧面344为凹面,并皆为非球面,且其物侧面342具有一反曲点以及像侧面344 具有二反曲点。
红外线滤光片370为玻璃材质,其设置于第四透镜340及成像面380间且不影响光学成像系统的焦距。
请配合参照下列表五以及表六。
表六、第三实施例的非球面系数
第三实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表五及表六可得到下列条件式数値:
依据表五及表六可得到下列条件式数値:
第四实施例
请参照图4A及图4B,其中图4A展示依照本发明第四实施例的一种光学成像系统的示意图,图4B由左至右依序为第四实施例的光学成像系统的球差、像散及光学畸变曲线图。图4C为第四实施例的光学成像系统的可见光频谱调制转换特征图。由图4A可知,光学成像系统40由物侧至像侧依序包含第一透镜410、光圈400、第二透镜420、第三透镜430、第四透镜440、红外线滤光片470、成像面480以及影像感测组件490。
第一透镜410具有负屈折力,且为玻璃材质,其物侧面412为凸面,其像侧面414为凹面,并皆为非球面。
第二透镜420具有正屈折力,且为塑料材质,其物侧面422为凸面,其像侧面424为凸面,并皆为非球面,且其物侧面422具有一反曲点。
第三透镜430具有正屈折力,且为塑料材质,其物侧面432为凹面,其像侧面434为凸面,并皆为非球面,且其物侧面432以及像侧面434均具有一反曲点。
第四透镜440具有负屈折力,且为塑料材质,其物侧面442为凸面,其像侧面444为凹面,并皆为非球面,且其物侧面442以及像侧面444均具有一反曲点。
红外线滤光片470为玻璃材质,其设置于第四透镜440及成像面480间且不影响光学成像系统的焦距。
请配合参照下列表七以及表八。
表八、第四实施例的非球面系数
第四实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表七及表八可得到下列条件式数値:
依据表七及表八可得到下列条件式数値:
第五实施例
请参照图5A及图5B,其中图5A展示依照本发明第五实施例的一种光学成像系统的示意图,图5B由左至右依序为第五实施例的光学成像系统的球差、像散及光学畸变曲线图。图5C为第五实施例的光学成像系统的可见光频谱调制转换特征图。由图5A可知,光学成像系统50由物侧至像侧依序包含第一透镜510、光圈500、第二透镜520、第三透镜530、第四透镜540、红外线滤光片570、成像面580以及影像感测组件590。
第一透镜510具有正屈折力,且为塑料材质,其物侧面512为凹面,其像侧面514为凸面,并皆为非球面,其物侧面512以及像侧面514均具有一反曲点。
第二透镜520具有正屈折力,且为塑料材质,其物侧面522为凹面,其像侧面524为凸面,并皆为非球面,其像侧面524具有一反曲点。
第三透镜530具有正屈折力,且为塑料材质,其物侧面532为凹面,其像侧面534为凸面,并皆为非球面,且其像侧面534具有二反曲点。
第四透镜540具有负屈折力,且为塑料材质,其物侧面542为凸面,其像侧面544为凹面,并皆为非球面,且其物侧面542以及像侧面544均具有一反曲点。
红外线滤光片570为玻璃材质,其设置于第四透镜540及成像面580间且不影响光学成像系统的焦距。
请配合参照下列表九以及表十。
表十、第五实施例的非球面系数
第五实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表九及表十可得到下列条件式数値:
依据表九及表十可得到下列条件式数値:
第六实施例
请参照图6A及第6B,其中图6A展示依照本发明第六实施例的一种光学成像系统的示意图,图6B由左至右依序为第六实施例的光学成像系统的球差、像散及光学畸变曲线图。图6C为第六实施例的光学成像系统的可见光频谱调制转换特征图。由图6A可知,光学成像系统60由物侧至像侧依序包含第一透镜610、光圈600、第二透镜620、第三透镜630、第四透镜640、红外线滤光片670、成像面680以及影像感测组件690。
第一透镜610具有负屈折力,且为玻璃材质,其物侧面612为凸面,其像侧面614为凹面,并皆为非球面。
第二透镜620具有负屈折力,且为塑料材质,其物侧面622为凸面,其像侧面624为凹面,并皆为非球面,且其物侧面622以及像侧面624均具有一反曲点。
第三透镜630具有正屈折力,且为塑料材质,其物侧面632为凸面,其像侧面634为凸面,并皆为非球面,且其像侧面644具有一反曲点。
第四透镜640具有负屈折力,且为塑料材质,其物侧面642为凸面,其像侧面644为凹面,并皆为非球面,且其物侧面642以及像侧面644均具有一反曲点。
红外线滤光片670为玻璃材质,其设置于第四透镜640及成像面680间且不影响光学成像系统的焦距。
请配合参照下列表十一以及表十二。
表十二、第六实施例的非球面系数
第六实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表十一及表十二可得到下列条件式数値:
依据表十一及表十二可得到下列条件式数値:
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视后附的权利要求所界定者为准。
虽然本发明已参照其例示性实施例而特别地显示及描述,将为本领域的技术人员所理解的是,于不脱离权利要求及其等效物所定义的本发明的精神与范畴下可对其进行形式与细节上的各种变更。
【符号说明】
光学成像系统:1、20、30、40、50、60
光圈:100、200、300、400、500、600
第一透镜:110、210、310、410、510、610
物侧面:112、212、312、412、512、612
像侧面:114、214、314、414、514、614
第二透镜:120、220、320、420、520、620
物侧面:122、222、322、422、522、622
像侧面:124、224、324、424、524、624
第三透镜:130、230、330、430、530、630
物侧面:132、232、332、432、532、632
像侧面:134、234、334、434、534、634
第四透镜:140、240、340、440、540、640
物侧面:142、242、342、442、542、642
像侧面:144、244、344、444、544、644
红外线滤光片:170、270、370、470、570、670
成像面:180、280、380、480、580、680
影像感测组件:190、290、390、490、590、690
光学成像系统的焦距:f
第一透镜的焦距:f1;第二透镜的焦距:f2;第三透镜的焦距:f3;第四透镜的焦距:f4
光学成像系统的光圈値:f/HEP;Fno;F#
光学成像系统的最大视角的一半:HAF
第一透镜的色散系数:NA1
第二透镜至第四透镜的色散系数:NA2、NA3、NA4
第一透镜物侧面以及像侧面的曲率半径:R1、R2
第二透镜物侧面以及像侧面的曲率半径:R3、R4
第三透镜物侧面以及像侧面的曲率半径:R5、R6
第四透镜物侧面以及像侧面的曲率半径:R7、R8
第一透镜于光轴上的厚度:TP1
第二透镜至第四透镜于光轴上的厚度:TP2、TP3、TP4
所有具屈折力的透镜的厚度总和:ΣTP
第一透镜与第二透镜于光轴上之间隔距离:IN12
第二透镜与第三透镜于光轴上之间隔距离:IN23
第三透镜与第四透镜于光轴上之间隔距离:IN34
第四透镜物侧面于光轴上的交点至第四透镜物侧面的最大有效半径位置于光轴的水平位移距离:InRS41
第四透镜物侧面上最接近光轴的反曲点:IF411;该点沉陷量:SGI411
第四透镜物侧面上最接近光轴的反曲点与光轴间的垂直距离:HIF411
第四透镜像侧面上最接近光轴的反曲点:IF421;该点沉陷量:SGI421
第四透镜像侧面上最接近光轴的反曲点与光轴间的垂直距离:HIF421
第四透镜物侧面上第二接近光轴的反曲点:IF412;该点沉陷量:SGI412
第四透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离:HIF412
第四透镜像侧面上第二接近光轴的反曲点:IF422;该点沉陷量:SGI422
第四透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离:HIF422
第四透镜物侧面上第三接近光轴的反曲点:IF413;该点沉陷量:SGI413
第四透镜物侧面第三接近光轴的反曲点与光轴间的垂直距离:HIF413
第四透镜像侧面上第三接近光轴的反曲点:IF423;该点沉陷量:SGI423
第四透镜像侧面第三接近光轴的反曲点与光轴间的垂直距离:HIF423
第四透镜物侧面上第四接近光轴的反曲点:IF414;该点沉陷量:SGI414
第四透镜物侧面第四接近光轴的反曲点与光轴间的垂直距离:HIF414
第四透镜像侧面上第四接近光轴的反曲点:IF424;该点沉陷量:SGI424
第四透镜像侧面第四接近光轴的反曲点与光轴间的垂直距离:HIF424
第四透镜物侧面的临界点:C41;第四透镜像侧面的临界点:C42
第四透镜物侧面的临界点与光轴的水平位移距离:SGC41
第四透镜像侧面的临界点与光轴的水平位移距离:SGC42
第四透镜物侧面的临界点与光轴的垂直距离:HVT41
第四透镜像侧面的临界点与光轴的垂直距离:HVT42
系统总高度(第一透镜物侧面至成像面于光轴上的距离):HOS
影像感测组件的对角线长度:Dg;光圈至成像面的距离:InS
第一透镜物侧面至该第四透镜像侧面的距离:InTL
第四透镜像侧面至该成像面的距离:InB
影像感测组件有效感测区域对角线长的一半(最大像高):HOI
光学成像系统于结像时的TV畸变(TV Distortion):TDT
光学成像系统于结像时的光学畸变(Optical Distortion):ODT。

Claims (24)

1.一种光学成像系统,其特征在于,由物侧至像侧依序包含:
第一透镜,具有屈折力;
第二透镜,具有正屈折力;
第三透镜,具有屈折力;
第四透镜,具有屈折力;以及
成像面;
其中该光学成像系统具有屈折力的透镜为四个,该第一透镜至该第四透镜的焦距分别为f1、f2、f3、f4,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该成像面于光轴上具有一距离HOS,该第一透镜物侧面至该第四透镜像侧面于光轴上具有一距离InTL,该光学成像系统的最大可视角度的一半为HAF,该第一透镜、该第二透镜、该第三透镜以及该第四透镜于1/2HEP高度且平行于光轴的厚度分别为ETP1、ETP2、ETP3以及ETP4,前述ETP1至ETP4的总和为SETP,该第一透镜、该第二透镜、该第三透镜以及该第四透镜于光轴的厚度分别为TP1、TP2、TP3以及TP4,前述TP1至TP4的总和为STP,更包括一光圈,并且于该光圈至该成像面于光轴上具有一距离InS,其满足下列条件:1≦f/HEP≦10;0deg<HAF≦150deg;0.5≦SETP/STP<1;以及0.2≦InS/HOS≦0.74659。
2.如权利要求1所述的光学成像系统,其特征在于,该第一透镜与该第二透镜之间于光轴上的距离为IN12,该第二透镜与该第三透镜之间于光轴上的距离为IN23,该第三透镜与该第四透镜之间于光轴上的距离为IN34,其满足下列条件:IN12>IN23>IN34。
3.如权利要求1所述的光学成像系统,其特征在于,该第四透镜具有负屈折力。
4.如权利要求1所述的光学成像系统,其特征在于,可见光在该成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率55cycles/mm的调制转换对比转移率(MTF数值)分别以MTFE0、MTFE3以及MTFE7表示,其满足下列条件:MTFE0≧0.2;MTFE3≧0.01;以及MTFE7≧0.01。
5.如权利要求1所述的光学成像系统,其特征在于,该第一透镜物侧面上于1/2HEP高度的坐标点至该成像面间平行于光轴的水平距离为ETL,该第一透镜物侧面上于1/2HEP高度的坐标点至该第四透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,其满足下列条件:0.2≦EIN/ETL<1。
6.如权利要求1所述的光学成像系统,其特征在于,该第一透镜于1/2HEP高度且平行于光轴的厚度为ETP1,该第二透镜于1/2HEP高度且平行于光轴的厚度为ETP2,该第三透镜于1/2HEP高度且平行于光轴的厚度为ETP3,该第四透镜于1/2HEP高度且平行于光轴的厚度为ETP4,前述ETP1至ETP4的总和为SETP,该第一透镜物侧面上于1/2HEP高度的坐标点至该第四透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,其满足下列公式:0.3≦SETP/EIN<1。
7.如权利要求1所述的光学成像系统,其特征在于,该光学成像系统包括一滤光组件,该滤光组件位于该第四透镜以及该成像面之间,该第四透镜像侧面上于1/2HEP高度的坐标点至该滤光组件间平行于光轴的距离为EIR,该第四透镜像侧面上与光轴的交点至该滤光组件间平行于光轴的距离为PIR,其满足下列公式:0.1≦EIR/PIR≦1.1。
8.如权利要求1所述的光学成像系统,其特征在于,该第三透镜像侧面上于1/2HEP高度的坐标点至该成像面间平行于光轴的水平距离为EBL,该第四透镜像侧面上与光轴的交点至该成像面平行于光轴的水平距离为BL,其满足下列公式:0.1≦EBL/BL≦1.5。
9.一种光学成像系统,其特征在于,由物侧至像侧依序包含:
第一透镜,具有屈折力;
第二透镜,具有正屈折力;
第三透镜,具有屈折力;
第四透镜,具有负屈折力;以及
成像面;
其中该光学成像系统具有屈折力的透镜为四个且该第一透镜至该第四透镜中至少一透镜的至少一表面具有至少一反曲点,该第一透镜至该第四透镜的焦距分别为f1、f2、f3、f4,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该成像面于光轴上具有一距离HOS,该第一透镜物侧面至该第四透镜像侧面于光轴上具有一距离InTL,该光学成像系统的最大可视角度的一半为HAF,该第一透镜物侧面上于1/2HEP高度的坐标点至该成像面间平行于光轴的水平距离为ETL,该第一透镜物侧面上于1/2HEP高度的坐标点至该第四透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,更包括一光圈,并且于该光圈至该成像面于光轴上具有一距离InS,其满足下列条件:1.0≦f/HEP≦10.0;0deg<HAF≦150deg;0.2≦EIN/ETL<1;以及0.2≦InS/HOS≦0.74659。
10.如权利要求9所述的光学成像系统,其特征在于,该第三透镜与第四透镜于光轴上的厚度分别为TP3以及TP4,其满足下列条件:TP3>TP4。
11.如权利要求9所述的光学成像系统,其特征在于,该第一透镜的物侧面于光轴上为凹面,其像侧面于光轴上为凸面。
12.如权利要求9所述的光学成像系统,其特征在于,该第三透镜像侧面上于1/2HEP高度的坐标点至该第四透镜物侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为ED34,该第三透镜与该第四透镜之间于光轴上的距离为IN34,其满足下列条件:0<ED34/IN34≦50。
13.如权利要求9所述的光学成像系统,其特征在于,该第一透镜像侧面上于1/2HEP高度的坐标点至该第二透镜物侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为ED12,该第一透镜与该第二透镜之间于光轴上的距离为IN12,其满足下列条件:0<ED12/IN12≦35。
14.如权利要求9所述的光学成像系统,其特征在于,该第二透镜于1/2HEP高度且平行于光轴的厚度为ETP2,该第二透镜于光轴上的厚度为TP2,其满足下列条件:0.1≦ETP2/TP2≦5。
15.如权利要求9所述的光学成像系统,其特征在于,该第三透镜于1/2HEP高度且平行于光轴的厚度为ETP3,该第三透镜于光轴上的厚度为TP3,其满足下列条件:0.1≦ETP3/TP3≦5。
16.如权利要求9所述的光学成像系统,其特征在于,该第四透镜于1/2HEP高度且平行于光轴的厚度为ETP4,该第四透镜于光轴上的厚度为TP4,其满足下列条件:0.1≦ETP4/TP4≦5。
17.如权利要求9所述的光学成像系统,其特征在于,可见光在该成像面上的光轴、0.3HOI以及0.7HOI三处于空间频率110cycles/mm的调制转换对比转移率分别以MTFQ0、MTFQ3以及MTFQ7表示,其满足下列条件:MTFQ0≧0.2;MTFQ3≧0.01;以及MTFQ7≧0.01。
18.如权利要求9所述的光学成像系统,其特征在于,该第一透镜、该第二透镜、该第三透镜及该第四透镜中至少一透镜为波长小于500nm的光线滤除组件。
19.一种光学成像系统,其特征在于,由物侧至像侧依序包含:
第一透镜,具有屈折力;
第二透镜,具有正屈折力;
第三透镜,具有正屈折力;
第四透镜,具有负屈折力;以及
成像面;
其中该光学成像系统具有屈折力的透镜为四个且该第一透镜至该第四透镜中至少一透镜的至少一表面具有至少一反曲点,该第一透镜至该第四透镜的焦距分别为f1、f2、f3、f4,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该成像面于光轴上具有一距离HOS,该第一透镜物侧面至该第四透镜像侧面于光轴上具有一距离InTL,该光学成像系统的最大可视角度的一半为HAF,该第一透镜物侧面上于1/2HEP高度的坐标点至该成像面间平行于光轴的水平距离为ETL,该第一透镜物侧面上于1/2HEP高度的坐标点至该第四透镜像侧面上于1/2HEP高度的坐标点间平行于光轴的水平距离为EIN,更包括一光圈,并且于该光圈至该成像面于光轴上具有一距离InS,其满足下列条件:1.0≦f/HEP≦10;0deg<HAF≦100deg;0.2≦EIN/ETL<1;以及0.2≦InS/HOS≦0.74659。
20.如权利要求19所述的光学成像系统,其特征在于,该第一透镜与该第二透镜之间于光轴上的距离为IN12,该第二透镜与该第三透镜之间于光轴上的距离为IN23,该第三透镜与该第四透镜之间于光轴上的距离为IN34,其满足下列条件:IN12>IN23>IN34。
21.如权利要求19所述的光学成像系统,其特征在于,该第三透镜与第四透镜于光轴上的厚度分别为TP3以及TP4,其满足下列条件:TP3>TP4。
22.如权利要求19所述的光学成像系统,其特征在于,该第三透镜的像侧面于光轴上为凸面。
23.如权利要求19所述的光学成像系统,其特征在于,该第三透镜与该第四透镜之间于光轴上的距离为IN34,且满足下列公式:0<IN34/f≦5。
24.如权利要求19所述的光学成像系统,其特征在于,该光学成像系统更包括一影像感测组件以及一驱动模块,该影像感测组件设置于该成像面,该驱动模块与该些透镜相耦合并使该些透镜产生位移。
CN201820642077.2U 2018-02-13 2018-05-02 光学成像系统 Active CN209102996U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107105354A TWI703366B (zh) 2018-02-13 2018-02-13 光學成像系統
TW107105354 2018-02-13

Publications (1)

Publication Number Publication Date
CN209102996U true CN209102996U (zh) 2019-07-12

Family

ID=67148961

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201820642077.2U Active CN209102996U (zh) 2018-02-13 2018-05-02 光学成像系统
CN201810407860.5A Active CN110161651B (zh) 2018-02-13 2018-05-02 光学成像系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810407860.5A Active CN110161651B (zh) 2018-02-13 2018-05-02 光学成像系统

Country Status (3)

Country Link
US (1) US10725268B2 (zh)
CN (2) CN209102996U (zh)
TW (1) TWI703366B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI689746B (zh) 2019-03-22 2020-04-01 大立光電股份有限公司 光學成像系統、取像裝置及電子裝置
TWI754166B (zh) * 2019-08-30 2022-02-01 先進光電科技股份有限公司 光學成像系統
TWI755625B (zh) * 2019-08-30 2022-02-21 先進光電科技股份有限公司 光學成像系統
TWI789568B (zh) * 2020-01-17 2023-01-11 先進光電科技股份有限公司 光學成像系統

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416196B (zh) * 2011-04-15 2013-11-21 Largan Precision Co Ltd 影像擷取鏡頭
JP6003504B2 (ja) * 2012-10-04 2016-10-05 株式会社ニコン 接眼光学系、光学機器
TWI585453B (zh) * 2015-07-13 2017-06-01 先進光電科技股份有限公司 光學成像系統
TWM541018U (zh) * 2016-04-22 2017-05-01 先進光電科技股份有限公司 光學成像系統
TWI620954B (zh) * 2016-05-13 2018-04-11 先進光電科技股份有限公司 光學成像系統
JP6783549B2 (ja) * 2016-05-19 2020-11-11 キヤノン株式会社 光学系及びそれを有する撮像装置
TWM547110U (zh) * 2016-07-18 2017-08-11 先進光電科技股份有限公司 可見光與紅外光兩用之低焦平面偏移量光學成像系統
TWI622797B (zh) * 2016-07-21 2018-05-01 先進光電科技股份有限公司 光學成像系統
TWI659225B (zh) * 2016-07-21 2019-05-11 先進光電科技股份有限公司 光學成像系統
CN206990889U (zh) * 2017-06-23 2018-02-09 浙江舜宇光学有限公司 光学成像系统
CN107219610B (zh) * 2017-07-25 2022-09-20 浙江舜宇光学有限公司 成像镜头
CN206930828U (zh) * 2017-07-26 2018-01-26 浙江舜宇光学有限公司 光学成像系统
CN107678124B (zh) * 2017-09-13 2020-05-15 华中科技大学鄂州工业技术研究院 一种内窥镜取像镜头

Also Published As

Publication number Publication date
US10725268B2 (en) 2020-07-28
TW201935065A (zh) 2019-09-01
TWI703366B (zh) 2020-09-01
CN110161651A (zh) 2019-08-23
CN110161651B (zh) 2021-11-12
US20190250370A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
CN106501920B (zh) 光学成像系统
CN106483629B (zh) 光学成像系统
CN106547071B (zh) 光学成像系统
CN106405789B (zh) 光学成像系统
CN106483633B (zh) 光学成像系统
CN107045179B (zh) 光学成像系统
CN106249381B (zh) 光学成像系统
CN106468823B (zh) 光学成像系统
CN106291877B (zh) 光学成像系统
CN106291870B (zh) 光学成像系统
CN106680967B (zh) 光学成像系统
CN106405792B (zh) 光学成像系统
CN106154498B (zh) 光学成像系统
CN106353876B (zh) 光学成像系统
CN106569316B (zh) 光学成像系统
CN107153250B (zh) 光学成像系统
CN107085286B (zh) 光学成像系统
CN106468821B (zh) 光学成像系统
CN106324801B (zh) 光学成像系统
CN106483628B (zh) 光学成像系统
CN107632367B (zh) 光学成像系统
CN108957688A (zh) 光学成像系统
CN106291875B (zh) 光学成像系统
CN108279473A (zh) 光学成像系统
CN106842498B (zh) 光学成像系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant